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Abstract: The essence of biomimetics in human–computer interaction (HCI) is the inspiration derived
from natural systems to drive innovations in modern-day technologies. With this in mind, this
paper introduces a biomimetic adaptive pure pursuit (A-PP) algorithm tailored for the four-wheel
differential drive robot (FWDDR). Drawing inspiration from the intricate natural motions subjected
to constraints, the FWDDR’s kinematic model mirrors non-holonomic constraints found in biological
entities. Recognizing the limitations of traditional pure pursuit (PP) algorithms, which often mimic a
static behavioral approach, our proposed A-PP algorithm infuses adaptive techniques observed in
nature. Integrated with a quadratic polynomial, this algorithm introduces adaptability in both lateral
and longitudinal dimensions. Experimental validations demonstrate that our biomimetically inspired
A-PP approach achieves superior path-following accuracy, mirroring the efficiency and fluidity seen
in natural organisms.

Keywords: human–computer interaction; FWDDR; path following; bionic motion; kinematic inspiration;
adaptive techniques; quadratic polynomial integration

1. Introduction

In recent decades, wheeled mobile robots have garnered increased attention from
researchers. Owing to their exceptional load-bearing capacity, flexibility, and strong sta-
bility [1], these robots are extensively used in fields such as modern industry, logistics,
transportation, and firefighting. Numerous scholars have conducted relevant research
on mobile robots, making significant contributions to automatic navigation [2–10]. Path
tracking, a key technology in automatic navigation, critically determines the performance
accuracy of autonomous driving. Therefore, it is vital to study path-tracking control
algorithms to enhance the autonomous navigation capabilities of robots [11].

Path tracking involves controlling the robot to follow a predetermined path closely,
minimize tracking errors, and maintain high robustness against disturbances. The design
of the controller is crucial for path following. Consequently, many scholars have conducted
corresponding research and proposed various control algorithms. These control algorithms
can be mainly categorized into direct feedback control, dynamic model-based control, and
geometric tracking control. The direct feedback control primarily adjusts the wheel’s rota-
tion angle based on system feedback without considering the robot’s model, parameters, or
other information. For example, methods like the PID (Proportional Integral Derivative)
control [12] and the Fuzzy control [13] fall under this category. In [14], a genetic algorithm
(GA) was introduced to enhance PID tracking, effectively overcoming external interferences.
In [15], fuzzy logic control was integrated with predictive control to improve the robustness
and immunity of the controller and to overcome the time delay caused by the sensors.

Biomimetics 2024, 9, 41. https://doi.org/10.3390/biomimetics9010041 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics9010041
https://doi.org/10.3390/biomimetics9010041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0003-3169-3113
https://doi.org/10.3390/biomimetics9010041
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9010041?type=check_update&version=2


Biomimetics 2024, 9, 41 2 of 17

In addition, in [16,17], the hybrid algorithm of fuzzy logic and Adaptive Neuro-Fuzzy
Inference System (ANFIS) also provides some inspiration. The dynamics model-based
control primarily analyzes the relationship between the robot’s forces and dynamics param-
eters, like velocity, using the established robot dynamics model. For example, methods like
Model Predictive Control (MPC) [18] and Linear Quadratic Regulator (LQR) control [19] fall
under this category. In [20], an MPC-based interval trajectory tracking control method was
designed to enhance the speed and stability of AGV travel in a feasible area by increasing
the limit of the yaw angle. In [21], a fast rolling optimization algorithm was designed based
on the LQR lateral controller for a tracked mobile robot, and the weight coefficient matrices
Q and R were optimized to improve the tracking accuracy and dynamic performance of
the controller. The geometric tracking control method emphasizes analyzing the robot’s
geometric relationship with the reference path to determine wheel rotation angles. There
are many typical representatives of geometric tracking control methods, such as the PP
control method [22] and the Stanley control method. In [23], an improved PP control
algorithm was proposed, which adaptively modified the pre-sight distance by selecting the
temporary pre-sight point, and improved robot tracking accuracy. In [24], an adaptive steer-
ing controller based on the Stanley tracking controller was studied. This system integrates
a database driven by the particle swarm optimization algorithm and a fuzzy monitoring
strategy, enhancing the adaptability of armored vehicles to trajectory alterations.

Among the prevalent control methods, PID and LQR demonstrate reduced robustness
against external disturbances and are less stable. MPC, though sophisticated, demands
rigorous modeling and intense computational efforts, compromising its real-time efficiency.
Meanwhile, the Stanley method necessitates a curvature-continuous path. In contrast,
PP control offers robust resilience to external interference without specific path prerequi-
sites. Although the algorithm simulates human driving habits and is progressive, how
to determine the best forward-looking distance is still a problem.Addressing this, this
paper introduces an adaptive pure pursuit (A-PP) algorithm. This algorithm enhances the
quadratic polynomial in both lateral and longitudinal dimensions to adaptively adjust the
forward-looking distance. This makes the tracking more accurate.

The main contributions of this paper are as follows: (1) At the lateral level, the lateral
error is taken into account. When the error increases, reduce the forward-looking distance
in order to eliminate the error as soon as possible and improve the response speed. When
the error decreases, increase the forward-looking distance appropriately to avoid the
system response overshoot. (2) At the longitudinal level, the path curvature is taken into
account and the forward-looking distance is adjusted according to the road conditions
of the reference path, featuring online adaption of the control parameters, especially the
lateral error during the turning section.

The remaining sections of this paper are organized as follows: In Section 2, the
FWDDR kinematic model is established, and the relationship between pose and veloci-
ties is elucidated by analyzing the motion characteristics of FWDDR. In Section 3, the
principles of the traditional algorithm and A-PP algorithm are introduced. In Section 4,
the feasibility of the A-PP algorithm is assessed via simulation. In Section 5, the A-PP
algorithm’s efficacy is demonstrated in a real-world setting using FWDDR. Section 6
offers a comprehensive summary.

2. Kinematic Model
2.1. Kinematic Analysis

Generally, differential drive robots lack enough torque to drive the wheels directly. In
order to augment the torque, robot wheels are often connected directly to the reduction
motor. The four-wheel differential structure derives its steering power from the left and
right motor differential. Power, once generated from the motors, is transmitted to both the
left and right front and rear axles via a reducer, eventually reaching the wheels. The FWDDR
relies on motors to drive the wheel movement independently, which has the advantages
of potent driving force and agile control. During operation, deviations exist between the
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robot’s actual and ideal motion states. Considering the non-holonomic constraints of the
FWDDR, the following conditions should be assumed [25–27].

(1) Four wheels of the FWDDR are symmetrically distributed on the same plane;
(2) None of the FWDDR’s wheels idle;
(3) The FWDDR does not exhibit longitudinal skidding during steering;
(4) The FWDDR possesses an ample turning radius;
(5) The FWDDR’s center of mass is situated on the robot’s x-axis.

The kinematic diagram of the FWDDR is shown in Figure 1. XOY represents the
global coordinate system, with xory illustrating the local or body coordinate system. The
parameters i (1, 2, 3, 4) symbolize the robot’s four wheels. Points (A, B, C, D) indicate where
the tire contacts the ground, b denotes the spacing between rear wheels, and Or and G
symbolize the FWDDR’s particle and geometric centers, respectively.

Y

X
O

q

Figure 1. Kinematics of an FWDDR.

The velocity direction of ideal contact points A, B, C, and D between the tire and the
ground is perpendicular to the radial direction of the radius of gyration. Furthermore, it
can be decomposed into longitudinal component velocity along the rolling direction of the
wheel and transverse component velocity along the axial direction of the motor, which can
be written as: 

vl = v1x = v3x
vr = v2x = v4x
v f = v1y = v2y
vb = v3y = v4y

(1)

where vl and vr are the longitudinal partial velocities of the left and right wheels, and vb
and v f are the transverse partial velocities of the front and rear wheels, respectively. From
(1), it can be seen that the longitudinal partial velocity of wheels on the same side is equal,
and similarly, the transverse partial velocity of wheels on the same end is equal [28].



Biomimetics 2024, 9, 41 4 of 17

2.2. Equation of Motion

In Figure 1, the point ICR signifies the robot’s instantaneous center of rotation, lo-
cated on the y-axis of the center-of-mass coordinate system. Meanwhile, R denotes the
instantaneous radius of rotation during motion [29,30].

Due to the v = ω · R, if ω is constant, v is proportional to R, the rotation angular
velocity of the robot can be expressed as:

ω =
v
R

=
vr

R + b/2
=

vl
R − b/2

(2)

where vr and vl denote the speeds of the right and left wheels, respectively, v signifies the
linear velocity, and w is the rotational angular velocity.

According to (2), the following can be obtained:

ω =
vr − vl

b
(3)

v = ωR =
vr + vl

2
(4)

Combined with Formulas (3) and (4), the FWDDR’s instantaneous radius of rotation R
can be expressed as:

R =
b
2

vr + vl
vr − vl

(5)

Combined with Figure 1, matrix form of the kinematic model can be derived as follows:
�
x
�
y
�
θ

 =


cos θ 0

sin θ 0

0 1


[

v

w

]
(6)

By substituting (3) and (4) into (6), we obtain:
�
x
�
y
�
θ

 =


cos θ

2
cos θ

2

sin θ
2

sin θ
2

1
b − 1

b


[

vr

vl

]
(7)

Equation (7) is the general form of the kinematic model of the FWDDR, establishing
the relationship between the robot’s position and the speeds of the left and right wheels.

3. Path-Tracking Controller Design

Path tracking involves adjusting a robot’s steering to align with a desired trajectory
by assessing the deviation between its current position and the trajectory’s target point.
Figure 2 presents the general block diagram for FWDDR path tracking.

Reference trajectory is obtained through the planning layer. The reference trajectory’s
desired attitude is relayed to the subsequent layer as the target for trajectory tracking.
The subsequent layer consists of a trajectory-tracking controller, designed based on the
kinematic model. It utilizes an optimization algorithm to transmit speed instructions to the
motors, achieving trajectory tracking.
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Figure 2. General block diagram of FWDDR path tracking.

3.1. Traditional PP Control

The PP algorithm’s primary characteristic is its robustness against external interference,
with modest path requirements. it is apt for both continuous and discontinuous path
scenarios, boasting a broad application spectrum. This algorithm is a typical lateral control
method. The main idea involves identifying a preview point from the rear wheel’s central
position towards the desired trajectory. Then, it is assumed that the vehicle can travel along
an arc passing through the preview point, and the vehicle angle is determined according
to the geometric relationship among the preview distance, rotation radius, and rotation
angle [31]. Thus, the mobile robot achieves precise tracking of the desired trajectory. As
shown in Figure 3, point A represents the FWDDR’s rear wheel center, whereas point B
denotes the reference trajectory’s preview point, distanced ld from point A. The robot takes
point O as the circle center and R as the rotation radius. Following a circular motion with an
angle of 2α, the robot reaches the preview point B to achieve the desired trajectory tracking.

R

2a

d
l

b

Figure 3. Schematic diagram of PP algorithm of the FWDDR.

To ensure that the rear wheel’s center point (point A) of the robot follows the dotted
arc to reach point B, the following conditions must be satisfied:

∠AOB = π − 2∠CAB = π − 2
(π

2
− α

)
= 2α (8)

Note that in △AOB, the law of sine is satisfied and is given as:

AB
sin(2α)

=
AO

sin(π
2 − α)

(9)
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Which can then be written as:

ld
sin(2α)

=
R

sin(π
2 − α)

(10)

ld
2 sin α cos α

=
R

cos α
(11)

The formula of robot radius of rotation can be simplified as:

R =
1
2

ld
sin α

(12)

Substituting (5) into (12), it can be obtained:

ld
sin α

=
b(vr + vl)

vr − vl
(13)

By solving simultaneous Equations (4) and (13), the left and right wheel velocities of
the FWDDR under PP algorithm can be obtained:

vr

v
= 1 +

L sin α

ld
vl
v

= 1 − L sin α

ld

(14)

The lateral error between the mobile robot’s current pose and the target point, denoted
as er, can be formulated as:

er = ld sin α (15)

The lateral error er can also be expressed as:

er =
l2
d

2L
β (16)

where L is the long wheelbase of the FWDDR, β is the steering angle.
The equations highlight that the PP algorithm essentially acts as a P controller for

lateral cornering, with the preview distance ld being crucial for effective tracking. In general,
a linear relationship is established between the preview distance and the current vehicle
speed, as defined in [32]:

ld = kv + ld0 (17)

where k is an adjustable parameter, ld0 is the preset preview distance, and v is the current
vehicle speed.

Substituting (17) into (14), it can be obtained:
vr

v
= 1 +

L sin α

kv + ld0
vl
v

= 1 − L sin α

kv + ld0

(18)

The aforementioned formulas elucidate the relationship between k and the speeds
of the left and right wheels. In fact, the preview distance profoundly influences control
effects. When the look-ahead distance is longer, the control effect will be smoother, but
it will lead to premature steering. Conversely, when the look-ahead distance is shorter,
the control effect will be more accurate, but it will bring some oscillation and lead to an
unstable tracking state, as shown in Figure 4.
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Figure 4. Renderings at different look-ahead distances.

3.2. Quadratic Polynomial-Based A-PP Control

As analyzed in the previous section, the look-ahead distance not only has a signifi-
cant impact on the tracking effect but also affects the operational stability of the mobile
robot to a certain extent. However, in a traditional PP algorithm, the look-ahead distance
remains a constant value, which lacks the ability of randomization. Based on human
driving habits, the look-ahead distance should correlate with parameters such as speed
and path conditions.

Reference [33] considers the mathematical relationship between the look-ahead dis-
tance and the speed, and after several debug sessions, a formula was obtained for the
relationship between the look-ahead distance and the speed:

ld =
1
6

v2
c +

1
5

vc + 5 (19)

where vc is the speed of motion of the car.
In (19), only the vehicle’s speed influence on the look-ahead distance is considered,

neglecting continuous speed changes and road curvature effects. Therefore, reference [34]
introduced the consideration of path curvature and proposed a new look-ahead distance
calculation method:

ld = k1v + k2Ω + ld0 (20)

where k1 is the speed coefficient with positive value, k2 is the road curvature coefficient
with negative value, Ω is the road curvature, and ld0 is the initial value of forward-
looking distance.

To determine the optimal values, it is necessary to adjust the parameters k1 and k2.
Equation (20) is usually applied to path tracking under constant speed conditions and may
not be suitable for scenarios involving continuous speed changes. Therefore, to ensure
stability during mobile robot navigation on curved roads and to maintain consistent speed
changes, we propose a new A-PP control rooted in quadratic polynomials. When the
mobile robot deviates from the desired path in terms of lateral position, the forward-
looking distance is promptly adjusted and optimized to minimize lateral position errors.
This enhances the effectiveness of path-tracking control and enables adaptive control, as
outlined below:

ld = k1v2 + k2 φ + k3er + ld0 (21)

where v is the linear velocity of the FWDDR and φ is the governing factor, k1 can be
expressed as:

k1 =
1

2amax
(22)
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Taking into account the robot’s nonholonomic constraints, the following parameters
are relevant: amax represents the maximum acceleration of the FWDDR, k2 is a real-time
path curvature adjustment factor, k3 is a real-time lateral error adjustment factor, and ld0 is
the initial forward-looking distance. Optimal values for k2 and k3 need to be determined
through meticulous debugging. The flowchart of the A-PP algorithm is shown in Figure 5,
and the specific steps are as follows:

Step 1: Retrieve reference path information, including horizontal and vertical coordi-
nates (Xre f , Yre f ) and heading angle φre f .

Step 2: Calculate the path curvature and lateral error at each position, and use them
as inputs in the forward-looking distance calculation formula. This allows for real-time
determination of the appropriate forward-looking distance at the current position.

Step 3: Analyze the reference path by taking into account the look-ahead distance and
FWDDR’s current position to identify the optimal preview point.

Step 4: Calculate the turning radius of the FWDDR using the PP algorithm’s principles.
Convert the coordinates of the lookahead point to the robot’s coordinate system. This is
achieved by translating the lookahead point’s coordinates to a system with the vehicle’s
coordinates as the origin and then rotating this translated system by the heading angle of
the differential drive robot to establish the final FWDDR coordinate system.

Step 5: Determine the FWDDR’s current position using its linear and angular velocities.
Assess if it is the path’s endpoint. If so, conclude the program; otherwise, recalculate the
preview distance.

( )x y q

ee

jj Begin

re
Calculate the 

look-ahead 

distance

Calculation of 

lateral error

Calculate 

curvature

Read reference 

path information

Path end?

Yes

End

A-PP

FWDDR left and

right wheel speed

Actual 

position

re

j

( , , )x y q

( , , )
ref ref ref
X Y j

No

Figure 5. A-PP algorithm path-tracking flowchart.

In the lateral control of the A-PP algorithm, the error is multiplied with the adjustment
factor and fed back to (21). When the error increases or decreases, the forward-looking
distance is adjusted quickly and adaptively to eliminate the error as soon as possible and
improve the response speed. In the longitudinal control, the reference path curvature
and the adjustment factor are multiplied and fed back to (21) to adaptively adjust the
forward-looking distance online, especially in the turning road condition.
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3.3. Road Curvature Calculation Method

Given three consecutive discrete points (A, B, C), the parametric curve equation of
three adjacent discrete points is as follows:{

x(t) = a0 + a1t + a2t2

y(t) = b0 + b1t + b2t2 (23)

where a0, a1, a2 and b0, b1, b2 are the undetermined coefficients.
The three-point parametric equation diagram is shown in Figure 6. Additionally, the

curvature calculation formula for a parameter curve is as follows:

k =
x′′y′ − x′y′′

(x′2 + y′2)3/2 =
a2b1 − a1b2(
a2

1 + b2
1
)3/2 (24)

Obviously, to accurately calculate the curvature of the parameter curve in (24), it is
essential to first determine the six undetermined coefficients in Equation (23). The lengths
of the two vectors derived from the three discrete points can be denoted as: ta =

√
(x2 − x1)

2 + (y2 − y1)
2

tb =
√
(x3 − x2)

2 + (y3 − y2)
2

(25)

where ta is the distance between discrete points A and B, and tb is the distance between
discrete points B and C.

Given the proximity of points A, B, and C, the central angle of the corresponding
curvature radius remains relatively consistent. Consequently, we can approximate the arc
AB length to the straight-line distance between A and B. For Equation (23), this implies
that the variation in the independent variable t adheres to the approximation:

(x, y)|t=−ta = (x1, y1)
(x, y)|t=0 = (x2, y2)
(x, y)|t=tb = (x3, y3)

(26)

By substituting (26) into (25), the following can be obtained:
x1 = a0 − a1ta + a2t2

a
x2 = a0
x3 = a0 + a1tb + a2t2

b

,


y1 = b0 − b1ta + b2t2

a
y2 = b0
y3 = b0 + b1tb + b2t2

b

(27)

The preceding formula can be reformulated in matrix representation:

 x1
x2
x3

 =

 1 −ta t2
a

1 0 0
1 tb t2

b

 a0
a1
a2


 y1

y2
y3

 =

 1 −ta t2
a

1 0 0
1 tb t2

b

 b0
b1
b2


(28)
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Note:

X =

 x1
x2
x3

, Y =

 y1
y2
y3



A =

 a0
a1
a2

, B =

 b0
b1
b2



M =

 1 −ta t2
a

1 0 0
1 tb t2

b



(29)

Subsequently, the matrix of undetermined coefficients can be written as:{
A = M−1X
B = M−1Y

(30)

where M−1 is the inverse matrix of M.
Finally, by substituting (30) into (24), the curvature can be obtained.

1 1
( , )A x y

2 2
( , )B x y

3 3
( , )C x y

a
t

b
t

Figure 6. Three-point parametric equation.

4. Path Planning and Tracking

In this design, the stability of the mobile robot when tracking both straight and curved
paths will be verified. The coordinates of the starting and ending points are (0.8, 0.2) and
(0.2, 0.6), respectively. The reference path is shown in the blue curve in Figure 7. In this
comparative simulation, the feasibility of the A-PP algorithm is assessed. The mobile
robot’s speed is fixed at 0.2 m/s, whereas the look-ahead distance varies (0.1 m in yellow,
0.2 m in green, and 0.3 m in red) for comparison with the proposed A-PP algorithm. At
the same time, compared with the current mainstream MPC algorithm, the adaptability of
A-PP algorithm is evaluated.

0 0.5 1 1.5 2 2.5
X(m)

1.5

1

0.5

0

Y
(m

)

MPC

Reference path
ld=0.1m
ld=0.2m
ld=0.3m

A-PP

Figure 7. Simulation path-tracking effect.
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Using the three-point parametric equation method (as per (24)), we derive the road
curvature depicted in Figure 8. It can be seen that the curved part of the reference path
exhibits a maximum curvature value of 1.66679. Conversely, the straight part holds a
minimum curvature value close to 0.

0 50 100 150 200 250 300 350 400 450
Index

1.8

1.6

1.4

1.2

   1

0.8

0.6

0.4

0.2

   0

C
u
rv

at
u
re

(m
- 1

)

Figure 8. Simulation road curvature.

The simulation tracking results are shown in Figure 7. With a look-ahead distance of
0.1 m (yellow), significant control oscillations are observed, especially during the initial
phase, resulting in considerable tracking errors and poor alignment with the reference
path. In contrast, with the A-PP algorithm, the robot starts without pronounced oscillations
and maintains stability throughout. The simulation of partial curve enlargement is shown
in Figure 9. It is evident that a significant curvature change occurs when entering the
curve. At this time, the A-PP algorithm can rapidly make necessary adjustments, enabling
it to closely follow the desired path and enhancing the stability and reliability of the
mobile robot. However, with forward-looking distances of 0.2 m (green) and 0.3 m (red),
significant lateral errors occur on curved roads. This inconsistency arises because traditional
algorithms use a fixed forward-looking distance that remains unaltered, irrespective of road
conditions. MPC has improved stability compared to the traditional PP algorithm, but it is
not as effective as the A-PP algorithm in terms of tracking effectiveness, especially in road
conditions with large curvature changes. In Figure 10, it is evident that as the mobile robot
travels in a straight line, the curvature decreases, whereas the forward distance increases.
Conversely, as the robot reaches a turning position, the curvature increases, and the forward
distance decreases. Forward distance adjusts according to the reference path’s curvature,
ranging between 0.08 m and 0.2 m.

1.7 1.72 1.74 1.76 1.78 1.8 1.82
X(m)

Y
(m

)

MPC

Reference path
ld=0.1m
ld=0.2m
ld=0.3m

A-PP

0.245

 0.24

0.235

 0.23

0.225

 0.22

0.215

 0.21

Figure 9. Simulation of partial curve enlargement.
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Figure 10. Simulation forward view distance.

The simulation’s lateral error diagram is shown in Figure 11. It is evident that, com-
pared to traditional PP algorithms, the A-PP algorithm exhibits negligible lateral errors on
straight paths. Upon entering a curved road, lateral errors increase; however, the A-PP
algorithm promptly adjusts to maintain the mobile robot’s stable operation with minimal
error. The MPC algorithm has a similar tracking effect compared to A-PP in straight-line
road conditions, but when encountering road conditions with large changes in curvature,
the tracking error of MPC increases, whereas the A-PP has a smaller tracking error and is
able to respond quickly according to the road conditions. As illustrated in Table 1, while
tracking the desired path, the A-PP algorithm achieves an average lateral error of 0.00694 m,
a variance of 0.004663 m, and a maximum lateral error of 0.012837 m. The stability and
accuracy are notably improved when compared to the traditional PP and MPC algorithms.

0 2 4 6 8 10 12 14
t(s)

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 0

L
at

er
al

 e
rr

o
r(

m
)

MPC

ld=0.1m
ld=0.2m
ld=0.3m

A-PP

Figure 11. Simulation lateral error of FWDDR.

Table 1. Simulation error comparison table.

Method Average Value of Lateral Error (m) Variance (m) Maximum Lateral
Error (m)

Ld = 0.1 m 0.01007 0.010075 0.094842
Ld = 0.2 m 0.01688 0.010333 0.029417
Ld = 0.3 m 0.02462 0.015404 0.046663
MPC 0.01467 0.010247 0.021854
A-PP 0.00694 0.004663 0.012837

5. Experiment

To further validate the practicality of the A-PP algorithm, experimental verification is
conducted using a physical FWDDR as the platform.
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5.1. Experimental Setup

The overall design specifications of the FWDDR are shown in Table 2:

Table 2. Overall design specifications.

Parameters Value Units

Length 770 mm
Width 658 mm
Wheelbase 470 mm
Wheel tread 573 mm
Minimum turning 1015 mm
Tire size (diameter) 260 mm
Maximum motor speed 3600 rpm
Maximum driving torque 47.5 N·m
Maximum load ≥50 kg

The following describes the workflow of the four-wheel differential electric
drive system:

(1) Control commands are sent through the PC Matlab/Simulink control interface via the
RS485 bus;

(2) On the PC side, E32-DTU converts commands transmitted via the RS485 bus into
LoRa RF signals;

(3) On the FWDDR side, E32-DTU converts LoRa signals into RS485 signals;
(4) The motion controller interprets RS485 signals based on the four-wheel differential

model and generates corresponding servo drive commands. These commands are
then transmitted to the four servo drives through the CAN bus;

(5) The motion controller transmits motor status, battery voltage, and other parameters
back to the upper computer through a reverse path.

5.2. Experiment Process

The experimental site is shown in Figure 12, where location is obtained through a UWB
device based on the DW1000 protocol. The maximum distance measurement range is 150 m,
with positioning accuracy reaching the centimeter level. A rectangular positioning area is
established using four base stations, with the reference trajectory positioned within this area.
One of the base stations is connected to the upper computer via a cable. Furthermore, a
UWB tag is positioned at the rear wheel’s center on the FWDDR. As the FWDDR moves, the
tag continuously updates its coordinate position to record the FWDDR’s motion trajectory.

Upper 

computer

Upper 

computer

FWDDRFWDDR

Reference pathReference path

UWBUWB

Figure 12. Experimental site.

In this experiment, the A-PP algorithm was compared and analyzed with traditional
PP and MPC algorithms to validate A-PP’s superiority. We set the speed at 0.1 m/s and
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used a forward-looking distance of 0.2 m for the experiment. After multiple rounds of
parameter-tuning tests, the tracking effect is best when k1 = 1

4 , k2 = −0.07, k3 = −0.2.

5.3. Analysis of Experimental Results

The experimental tracking results, along with an enlarged view of a partial bend in
the experiment, are depicted in Figures 13 and 14. An observation from the figures reveals
that the traditional PP and MPC algorithms track the desired path well under straight road
conditions. However, it exhibits significant tracking errors when encountering curved-
road conditions, failing to meet the design requirements. In contrast, the A-PP algorithm
achieves adaptive adjustments by controlling in both the lateral and longitudinal directions.
This enables it to better track both straight-line and curved-road conditions to meet the
design requirements. As evident from the experimental lateral error in Figure 15, the
traditional PP algorithm exhibits slight oscillations at startup, whereas the A-PP algorithm
operates stably with high tracking accuracy on straight sections. When the road surface
curvature undergoes significant changes upon entering a curve, A-PP can swiftly make
necessary adjustments. In contrast, the traditional pp and MPC algorithms have large
errors on the curve and cannot achieve accurate tracking. The experiment error comparison
table is presented in Table 3. When the A-PP algorithm tracks the desired path, the average
lateral error measures 0.01070 m, with a variance of 0.006663 m and a maximum lateral
error of 0.019443 m. These values represent a significant enhancement in stability and
accuracy compared to the traditional PP and MPC algorithms.

1 1.5 2 2.5 3 3.5
X(m)

2.4

2.2

 2

1.8

1.6

1.4

Y
(m

)

MPC

Reference
path
Pure pursuit

A-PP

Figure 13. Experimental tracking effect.

1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44 1.46 1.48
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2.45

 2.4

2.35

 2.3

2.25

Y
(m

)

MPC
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Figure 14. Enlarged view of the experimental partial bend.
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Figure 15. Experimental lateral error.

Table 3. Experiment error comparison table.

Method Average Value of Lat-
eral Error (m) Variance (m) Maximum Lateral

Error (m)

Pure pursuit 0.02372 0.016588 0.036705
MPC 0.02069 0.014416 0.031628
A-PP 0.01070 0.006663 0.019443

6. Conclusions

In the field of mobile robot path tracking, achieving a precise trajectory following
is of utmost importance. However, traditional methods often lack real-time adjustment
capability for the forward-looking distance. In this study, we proposed and verified the
A-PP algorithm, which incorporates a quadratic polynomial in both lateral and longitudinal
dimensions. The main findings of the paper are as follows:

(1) The quadratic polynomial is enhanced in both lateral and longitudinal dimensions
to facilitate adaptive dynamic adjustment of the forward-looking distance. This
enhancement reduces the lateral deviation of the FWDDR during path tracking and
enhances both tracking accuracy and operational stability.

(2) The A-PP algorithm is simulated and verified by Matlab/Simulink, and the results
indicate that the A-PP algorithm achieves a mean lateral error of 0.00694 m, a variance
of 0.004663 m, and a maximum lateral error of 0.012837 m during path tracking, which
represent a significant enhancement in stability and accuracy when compared to the
traditional PP and MPC algorithms.

(3) Experimental tests further validated the A-PP algorithm. The results showed a mean
lateral error of 0.01070 m, a variance of 0.006663 m, and a maximum lateral error of
0.019443 m. In comparison with the PP algorithm, the A-PP algorithm achieved faster
convergence of deviations, enhanced lateral errors in turning sections, and heightened
driving smoothness, all while maintaining low computational time.

This research shows that the A-PP algorithm has the advantages of adaptive control,
accurate tracking, fast computation speed, and excellent robustness. However, there
are some limitations, such as inaccurate tracking under high-speed motion and large
localization deviation of UWB, etc. In future work, further improvement and optimization
will be conducted to address these limitations. As road conditions become increasingly
complex, the exploration and further refinement of such algorithms will be instrumental in
ensuring safe and precise vehicle operations in the future.
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