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Abstract: In response to the need for multiple complete bearing degradation datasets in traditional
deep learning networks to predict the impact on individual bearings, a novel deep learning-based
rolling bearing remaining life prediction method is proposed in the absence of fully degraded bearng
data. This method involves processing the raw vibration data through Channel-wise Attention
Encoder (CAE) from the Encoder-Channel Attention (ECA), extracting features related to mutual
correlation and relevance, selecting the desired characteristics, and incorporating the selected features
into the constructed Autoformer-based time prediction model to forecast the degradation trend of
bearings’ remaining time. The feature extraction method proposed in this approach outperforms CAE
and multilayer perceptual-Attention Encoder in terms of feature extraction capabilities, resulting
in reductions of 0.0059 and 0.0402 in mean square error, respectively. Additionally, the indirect
prediction approach for the degradation trend of the target bearing demonstrates higher accuracy
compared to Informer and Transformer models, with mean square error reductions of 0.3352 and
0.1174, respectively. This suggests that the combined deep learning model proposed in this paper
for predicting rolling bearing life may be a more effective life prediction method deserving further
research and application.

Keywords: deep learning; rolling bearings; Autoformer

1. Introduction

The complexity and sophistication of the structure of modern mechanical operating
equipment has been further enhanced by the progress and continuous improvement of
the level of technology and production processes. However, due to the combined effect of
external environment and internal equipment, the actual performance and health condition
of rotating equipment will inevitably show a tendency of decline. If this tendency of
degradation reaches a certain threshold, the equipment will not be able to complete the
tasks and functions it is responsible for, and if it continues to operate, it will lead to the
damage of its neighbouring parts and paralysis of the equipment, causing immeasurable
property damage and threatening the staff. Life safety Rolling bearings, as important
components of rotating equipment, are subject to wear, deformation and dislodgement
during continuous operation. Research results show that bearings cause more than 30% of
rotating equipment failures [1–3]. Therefore, predictive maintenance of rotating equipment
can be achieved by studying rolling bearings. In recent years, life prediction techniques
have developed rapidly. The existing life prediction methods can be broadly classified
into physical failure model-based methods and data-driven methods [4–7]. For complex,
obtaining the physical failure mechanism of highly reliable equipment is time-consuming
and difficult. In contrast, data-driven prediction methods do not rely on the failure mecha-
nism of the equipment, but they require monitoring the operation of the equipment and
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collecting valid failure data or performance degradation data [8–10]. However, it requires
monitoring of the equipment operation and collecting valid failure data or performance
degradation data. Data-driven approaches generally include those based on statistically
driven models and reliability functions, as well as those based on machine learning and
deep learning models are the main directions of current life prediction research [11–14].
For rolling bearings, the main prediction steps include: (1) extracting failure characteristics
and degradation curves using signal processing or machine learning; (2) constructing
health indicators using deep learning or degradation function models to characterize life
thresholds; (3) using the trained deep learning degradation models for life prediction
or model fitting the obtained degradation curves to finally obtain the RUL [15–17]. Li
Hailang et al. combined the trend consistency constraint and parallel variance constraint
to extract features from convolutional self-coding to reduce the individual differences of
bearings with the same tag features, which improved the bearing prediction accuracy to
a certain extent [18,19]. Zhang Guangyu used convolutional autoencoders to learn deep
features from data and solve the problem of lack of labeled data in the actual operation of
mechanical equipment. The optimized deep feature data is fused with the original data
and input into the gated recurrent unit for temporal feature extraction, addressing issues
such as insufficient utilization of temporal features in the data and achieving remaining
useful life prediction [20].

She Daoming proposed a novel method combining deep autoencoders and minimum
quantization error to accurately describe the dynamic degradation process of rolling bear-
ings. The results showed that the trend value, monotonicity value, robustness value, and
fusion evaluation criterion value of the health indicators constructed using this method
were all higher than those of single-layer autoencoder models and traditional Principal
Component Analysis dimensionality reduction methods [21].

These researchers applied convolutional autoencoder techniques to address the issues
of unlabeled data and utilization of temporal features, effectively improving the accuracy
of remaining useful life prediction for bearings. Their proposed methods outperformed
traditional methods in terms of accuracy and evaluation criteria.

Statistically driven model and reliability function are applied for RUL prediction,
such as Li NaiPeng et al. [22]. A general Wiener process model included the multi-source
observation function and mapping function is used to describe the causal and correlation
relationships between the state and the data, and a particle filtering algorithm is also
applied to dynamically match the multi-sensor data with the model to predict the RUL.
This method disposes the problems of deep learning algorithms over-relying on training
data and lacking necessary empirical guidelines, but further discussion is needed due to the
large amount of data required and the weight assignment of multi-sensor data. Machine
learning SVM was first proposed by Cortes and Vapnik in 1995 to solve classification
and regression problems for analyzing small samples and multi-dimensional data [23].
Chen et al. [24] used SVM to predict the RUL of an aero-engine and to predict the RUL of
an operating equipment based on the improved similarity theory combined with the RUL
results of the engine. This method has a high degree of process visualization, but is more
complex, containing a priori knowledge of data processing, feature screening, parameter
optimization, etc., and also requires a large amount of data for training, which makes it
difficult to achieve prediction in a practical working environment.

Wang et al. [25] proposed a health indicator generation network model based on
spatial convolutional long and short term memory neural network (ConvLSTM), which
directly mines the features reflecting the degradation degree from the collected raw signals
to construct health indicators and achieve the output of RUL expectancy results. The health
indicators constructed by this method have better trending, monotonicity and robustness,
while the accuracy of RUL prediction is higher. However, the model aims to stack the
network and improve the feature extraction capability, but no specific explanation can be
made as well as a large amount of data is required as the training set, and different training
sets and training processes can cause large fluctuations in the model. Qiao Xiandong
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and others used the Autoformer model to train temperature data. Compared to other
Transformer models, Autoformer has a lower error rate and higher efficiency, which
improves the accuracy of temperature forecasting [26]. Wu Haixu and others addressed
the long-term prediction problem of time series by designing Autoformer as a novel
decomposition architecture with autocorrelation mechanism. As a result, Autoformer
achieved state-of-the-art accuracy on six benchmarks [27].

The essence of both deep learning and machine learning is feature extraction. The
difference is that deep learning is feature extraction from multiple levels and angles of
the original data through neural nodes, while machine learning is data decomposition
through functions, which explains why deep learning has weaker interpretability but
relatively better results. The main challenges of current bearing life prediction research
can be summarized as follows: 1. Scarcity and imbalance of bearing fault data: traditional
deep learning requires a large amount of complete degraded bearing data for model
training. 2. Characteristic selection and extraction: the feature extraction method needs to
be improved, and specific explanations cannot be made. In order to increase the number of
samples, Yanfang Fu et al. [28] trained an improved deep residual network (SE-ResNet18)
fault diagnosis model based on channel attention mechanism on the basis of the existing
fault samples by using Wavelet Packet Decomposition (WPD) denoising and Conditional
Variational Autoencoder (CVAE), and the enhanced fault samples improved the accuracy
of fault diagnosis. Dominik Łuczak et al. [29,30] solved the multi-classification problem
by converting the acquired one-dimensional signal into RGB image data and training a
convolutional neural network with the image based on the problem of feature selection and
extraction, and Min Su Kim [31] efficiently extracted the feature map of each X, Y, and Z axis
from the three-axis vibration signal by grouping the one-dimensional convolutions, and the
feature map extracted from each axis consisted of a specific frequency of each axis without
domain transformation to train the end-to-end model. The model classifies faults based on
the frequency characteristics of each axis. Liang et al. [32] used a one-dimensional dilated
convolutional neural network to realize the feature extraction and fault mode classification
of the excitation current, and further used the Score-CAM activation mapping algorithm
to analyze the diagnostic mechanism of the model, taking into account the accuracy and
interpretability of the model.

In summary, in order to minimize the impact of limited degraded bearing data on
the accuracy of life prediction, this paper proposes a new deep learning network model
framework. This framework processes the extracted features with higher interpretability,
introduces a new feature extraction method called ECA-CAE, and selects features with
better linear and exponential trends. This method has better feature extraction capabilities
than CAE and MLP-AE. The Autoformer model is used for degradation trend prediction
and combined with a double exponential model for RUL prediction [33]. Furthermore, in
terms of deep learning, a single bearing prediction approach is adopted, where the first
half is used for training and the second half is for prediction. Compared with traditional
deep learning methods that require a large amount of complete degraded bearing data
for model training, this method only uses the first half of the current bearing degradation
features to predict future degradation trends. This solves the problem of non-optimal
model parameters due to insufficient data volume. By comparing with the latest Informer
and Transformer models [34,35], the advantages of the proposed method are validated.
Additionally, this model is suitable for predicting the life of bearings under the same
operating conditions. Based on this, the next degradation trend can be predicted, and
corresponding measures can be formulated to mitigate degradation.

2. Principle Introduction
2.1. CAE Model

Auto-encoders are neural networks designed to replicate their input to the output.
They work by compressing the input into a latent-space representation and then reconstruct-
ing the output of this representation, the more the output converges to the input, the more
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the features extracted by the network represent the internal features of the input data. This
network consists of two parts, Encoder and Decoder. Figure 1 shows the implementation
process of this network.
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Figure 1. The working principle of the CAE model.

Convolutional auto-encoder is a convolutional network that replaces the fully-connected
layer. The encoder consists of convolutional and pooling layers, and the decoder consists
of an inverse convolutional layer.

In the encoder, k convolutional kernels (W) are initialized, and each convolutional
kernel is paired with a bias b to generate k features h after convolution with the input x.
The activation function is sigmoid. equation is as follows:

hk = σ(x × Wk + bk) (1)

Pooling operation (Max Pooling): When pooling the features generated above, the
matrix of the position relationship at the time of pooling should be retained to facilitate the
operation of inverse pooling later.

In the decoder, the inverse pooling operation is performed on the features generated
above, and a matrix that preserves the positional relationships at the time of pooling is
used to restore the data to the corresponding positions of the matrix of the original size.

The transpose of each feature h with its corresponding convolution kernel The convo-
lution operation is performed and the result is summed, then the bias c is added and the
activation function remains sigmoid. equation is as follows:

y = σ(∑k hk × W∼k + c) (2)

In order to make the network better, the weights are updated and the minimum mean
squared error (MSE) function is used, i.e.,: the target value minus the squared sum of the
actual values and then the mean value, 2n is used to simplify the derivation. The formula
is as follows:

E(θ) =
1

2n∑n
i=1 (xi − yi)

2 (3)

2.2. ECANet

To cope with the problem of weight assignment among different channels, scholars
have proposed ECANet, ECA can assign different weights to multiple channels of the input
without changing the input feature size, and the structure of ECA is as shown in Figure 2:
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The flow of the ECA model is as follows.

(1) Features with input dimensions H × W × C;
(2) Compressing the input features using global average pooling to obtain 1 × 1 × C features;
(3) The resulting features are subjected to channel learning using 1 × 1 convolution to

learn the importance between different channels and to assign weights;
(4) Finally, the feature map 1 × 1 × C with weights is combined with the input features

H × W × C to obtain the output features with channel attention.

In doing the convolution process, dynamic convolution kernels are used to effectively
extract features under different sensory fields and learn the weights between different
channels. Dynamic convolution kernel means using an adaptive function to decide the
convolution kernel size; the size of the convolution kernel is determined by the number
of channels; the larger the number of channels, the larger the convolution kernel and the
stronger the cross-channel interaction; on the contrary, in layers with smaller number
of channels, smaller convolution kernels are used and less cross-channel interaction is
performed; the adaptive function is as follows:

k = Ψ(C) =
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd

(4)

where k represents the size of the convolution kernel; C represents the number of channels;
indicates that k can only take odd numbers; and b is set to 2 and 1, which is used to change
the ratio between the number of channels C and the convolution kernel.

2.3. Autoformer Model

With the good performance of Transformer models on natural language (NLP) pro-
cessing, researchers have turned their attention to temporal processing, however, temporal
processing suffers from the following problems: as the prediction time lengthens, it is
difficult to find reliable temporal dependencies from complex temporal patterns by directly
using the self-attention mechanism; secondly, due to the self-attention secondary com-
plexity problem, the model has to use its sparse version, but it will limit the information
utilization efficiency and affect the prediction effect.

The Autoformer model proposes a progressive sequence decomposition and autocor-
relation mechanism to solve the above problems, and the model is shown in Figure 3, in
which the encoding and decoding parts include an autocorrelation module, a sequence
decomposition module, and a feedforward neural network. The feed-forward temporal
network acts as a deeper feature extraction.
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The series decomposition module (series decomposition) is based on the idea of sliding
average, smoothing the periodic terms and highlighting the trend terms:

χt = AvgPool(Padding(χ)) (5)

χs = χ − χt (6)

where χ is the hidden variable to be decomposed, χt and χs are the trend and period terms.
In the Encoder part, a stepwise elimination of the trend term is taken to obtain the

periodic terms Sl,1
en , Sl,2

en . And based on this periodicity, an autocorrelation mechanism is
used to aggregate similar sub processes of different periods:

Sl,1
en , _ = SeriesDecomp(AutoCorrelation(χl−1

en ) + χl−1
en ) (7)

Sl,2
en , _ = SeriesDecomp(FeedForward(Sl,1

en ) + Sl,1
en ) (8)

In the Decoder section, the trend term and the period term are modeled separately. In
which, for the period term, the autocorrelation mechanism uses the periodic nature of the
sequence to aggregate subsequences with similar processes in different cycles; for the trend
term T, the trend information is gradually extracted from the predicted hidden variables
using a cumulative approach.

Sl,1
de , Tl,1

de = SeriesDecomp(AutoCorrelation(χl−1
de ) + χl−1

de ) (9)

Sl,2
de , Tl,2

de = SeriesDecomp(AutoCorrelation(Sl,1
de , χN

en) + Sl,1
de ) (10)

Sl,3
de , Tl,3

de = SeriesDecomp(FeedForward(Sl,2
de ) + Sl,2

de ) (11)

Tl
de = Tl−1

de + Wl,1 × Tl,1
de + Wl,2 × Tl,2

de + Wl,3 × Tl,3
de (12)

Based on the above progressive decomposition architecture, the model can gradually
decompose the hidden variables in the forecasting process and obtain the forecasting results
of cycle and trend components respectively through the autocorrelation mechanism and
accumulation, so as to realize the alternate and mutual promotion of decomposition and
optimization of forecasting results.

3. Feature Extraction Method and Remaining Useful Life Prediction Algorithm
3.1. ECA-CAE

Combining the advantages of different levels and fields of view of convolutional
networks and the weighting mechanism of channel attention mechanism, this paper-
proposes a new feature extraction method: ECA-CAE. the specific network structure is
shown in Figure 4. Table 1 describes the parameter settings of the feature extraction model.
The channel attention mechanism introduces the weights into each channel.
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Table 1. Parameters of ECA-CAE model.

Parameter Convolution Kernel Size The Number of Convolution Kernels

Convolutional layer 1 1 × 8 1
Convolutional layer 2 1 × 4 16
Convolutional layer 3 1 × 2 64

Deconvolutional layer 1 1 × 2 64
Deconvolutional layer 2 1 × 4 16
Deconvolutional layer 3 1 × 8 1

In order to verify the effectiveness of the ECA-CAE method proposed in this chapter,
the proposed method is compared with the ECA encoder MLP and the convolutional
self-encoder CAE to verify the effectiveness of the ECA-CAE based method proposed in
this chapter, Table 2 shows the comparison of the encoder effect of the three methods, the
smaller the MSE and MAE, the lower the loss of new data generated by the encoder and
the closer to the actual data.

Table 2. Comparison of losses of different encoders.

Name MSE MAE

MLP-AE 0.1013 0.2044
CAE 0.0670 0.1871

ECA-CAE 0.0611 0.1626

In order to verify the effectiveness of the extracted features, bearings 1-1 and 1-2
(the degradation curve of this bearing is basically the same, and the prediction effect is
better under single-bearing training) are taken, and three one-dimensional convolutional
networks (32@8 × 1), (64@4 × 1), (128@4 × 1) and a fully connected layer are constructed.
The 200 × 1 features proposed in this chapter and the features proposed in the CAE network
are used to predict the remaining life, where the training and prediction data are both
in the failure stage, and the experiment is repeated 100 times to take the average value.
The prediction results are shown in Figure 5. The right panel shows the prediction results
under CAE network, and the left panel shows the results of the proposed method in this
chapter. In 100 replicate experiments, the fluctuations of the prediction results are smaller
compared to CAE, i.e., the prediction interval is smaller, while Table 3 shows that the
proposed method is smaller in terms of the error with the true lifetime.
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Table 3. Life prediction loss values.

Name MSE MAE

CAE + 1DCNN 0.1780 0.3504
ECA-CAE + 1DCNN 0.1654 0.3321

3.2. Remaining Useful Life Prediction Based on ECA-CAE and Autoformer Model

The problems encountered in traditional deep learning of multiple bearings to predict
single bearings include the unification of thresholds and the trend differences among
multiple bearings. During the training of the network model, due to the difference in the
failure criteria adopted by different bearings or the sampling time interval is too large,
there is easily too much difference in the vibration signals leading to the threshold value
cannot be unified; the trend difference problem is shown in Figure 6, if bearing 1,2 is used
as training, the model is unable to learn any degradation process about bearing 3, and the
RUL of bearing 3 is predicted on this basis, without deliberate tuning of the parameter
optimization, the theoretical accuracy is not high.
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Figure 6. Degradation trend of different bearings.

The RUL prediction among individual bearings proposed in this paper is a time
series prediction of the remaining degradation trend of the bearings, based on which a
double exponential model is fitted to achieve the life prediction. The processing is shown
with reference to Figure 7, and the model consists of two modules: signal processing and
life prediction.
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After the original vibration signal is processed by the encoder of the convolutional
self-encoder, the obtained data is 200 × 20. In order to preserve the spatial information
and minimize the loss of decoding, the global average pooling layer (GAP) is used outside
the encoder to obtain 200 × 1 data. Using GAP instead of fully connected layer (FC) will
reduce a lot of training time, reduce the spatial parameters to make the model more robust,
and at the same time anti-overfitting effect is better.
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The 200 dimensional signals obtained by ECA-CAE have similar features and useless
features with small variance, which need to do feature processing. Variance Threshold
is to filter out the features with no trend or relatively flat trend, which are not enough to
represent the degradation characteristics. threshold is the most important parameter in
variance filtering, the parameter will filter out the useful features, the parameter is taken as
0.1. F-test can be used to capture the linear relationship between features and rank them
according to the size of linear relationship. Similar to the F-test, the mutual information
method can capture the nonlinear relationships from among the features. The feature
filtering relationships are shown in Table 4.

Table 4. Summary of filtering methods.

Name Description Parameters

Variance filtering

Input the variance threshold and
return the new feature matrix

with variance greater than
the threshold

Pursue characteristics with
large variance

F-test Captures only linear correlations Characteristics pursuing p less
than the significance level

Mutual Information Can capture any correlation Pursuit of mutual information
greater than 0 characteristics

The Autoformer model used in this study for lifespan prediction is a type of time series
forecasting model. It achieves progressive decomposition of time series by embedding
sequence decomposition as an internal unit into the encoder-decoder architecture. In the
Autoformer model, there are some hyperparameters that can potentially impact model
performance: During the hyperparameter optimization process, choosing ‘Gelu’ as the acti-
vation function is preferred for better numerical stability compared to ‘Relu’ or ‘Sigmoid’.
The choice of the number of iterations takes into account the trade-off between training time
and training quality, and it was found that around 10 iterations yield better performance.
Different regularization parameter values were used to train multiple models, and their
performance was evaluated on the validation set. Eventually, the regularization parameter
value of 0.05, which performed best on the validation set, was selected. Furthermore, a
larger learning rate can accelerate training, while a smaller learning rate can make the
model more stable. The optimal learning rate is determined to be 0.0001.

As shown in Figure 8, the 200-dimensional data is obtained after global average
pooling, and the features with small variance are first filtered by variance filtering; then
the features with obvious exponential and linear trends are screened out; the correlation
between the features is analyzed, the features are grouped by correlation, and the features
with high robustness and monotonicity in each category are screened out. Finally, the
n-dimensional features with exponential and linear trends are obtained, which also best
represent the features extracted by the 200-dimensional CAE network.
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4. Experimental Validation
4.1. Data Sources

This paper uses the bearing data from Xi’an Jiaotong University as the original
data [25]. The dataset provides diverse types of working conditions and clearly lists
the fault location of each failed bearing with high frequency resolution on the basis of
giving the whole life cycle vibration data, which makes the application scenario of the
dataset broadened and can be widely used for health monitoring, fault diagnosis and RUL
prediction of mechanical equipment.

The experimental bearing accelerated life testing platform is shown in Figure 9. The
tested bearing is an LDK UER204 rolling bearing. Three types of operating conditions
were designed for the experiment, as shown in Table 5, with five bearings under each
operating condition. Table 6 provides detailed information for each test bearing, including
its corresponding operating condition, total number of data samples, basic rated life (L10),
actual life, and failure location.

Biomimetics 2024, 9, x FOR PEER REVIEW 11 of 21 
 

 

The experimental bearing accelerated life testing platform is shown in Figure 9. The 
tested bearing is an LDK UER204 rolling bearing. Three types of operating conditions 
were designed for the experiment, as shown in Table 5, with five bearings under each 
operating condition. Table 6 provides detailed information for each test bearing, including 
its corresponding operating condition, total number of data samples, basic rated life (L10), 
actual life, and failure location. 

Shaft

Motor Speed Controller

AC motor Support
bearings

Mathematical
Force Indicator

Test 
bearingsAccelerometer(vertical)

Accelerometer
(horizontal)

Hydraulic
loading system

 
Figure 9. Bearing acceleration life test bench. 

Table 5. Bearing acceleration life test condition. 

Condition Number 1 2 3 

rotate speed/(r/min) 2100 2250 2400 

Radial force/kN 12 11 10 

Table 6. List of XJTU-SY bearing dataset information. 

Working 
Conditions 

Data Set 
Total Number 

of Samples 
L10 Actual Lifespan 

Failure 
Location 

1 

Bearing1_1 123 

5.600~9.677 
h 

2 h 3 min Outer ring 

Bearing1_2 161 2 h 41 min Outer ring 

Bearing1_3 158 2 h 38 min Outer ring 

Bearing1_4 122 2 h 2 min Cage 

Bearing1_5 52 52 min Inner ring, Outer ring 

2 

Bearing2_1 491 

6.786~11.726 
h 

8 h 11 min Inner ring 

Bearing2_2 161 2 h 41 min Outer ring 

Bearing2_3 533 8 h 53 min Cage 

Bearing2_4 42 42 min Outer ring 

Figure 9. Bearing acceleration life test bench.

Table 5. Bearing acceleration life test condition.

Condition Number 1 2 3

rotate speed/(r/min) 2100 2250 2400

Radial force/kN 12 11 10

The sampling frequency of this experiment is 25.6 kHz, the sampling interval is 1 min,
the length of each sample is 1.28 s, and saved as a csv file, the number of samples N
represents the bearing life for N min. In this paper, take bearing 1 under working condition
three as an example, the number of samples is 2538, the horizontal vibration signal under
each sample is equally spaced out 1280 points, and the trend of the original vibration signal
is shown in Figure 10:
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Table 6. List of XJTU-SY bearing dataset information.

Working
Conditions Data Set Total Number

of Samples L10 Actual Lifespan Failure
Location

1

Bearing1_1 123

5.600~9.677 h

2 h 3 min Outer ring
Bearing1_2 161 2 h 41 min Outer ring
Bearing1_3 158 2 h 38 min Outer ring
Bearing1_4 122 2 h 2 min Cage
Bearing1_5 52 52 min Inner ring, Outer ring

2

Bearing2_1 491

6.786~11.726 h

8 h 11 min Inner ring
Bearing2_2 161 2 h 41 min Outer ring
Bearing2_3 533 8 h 53 min Cage
Bearing2_4 42 42 min Outer ring
Bearing2_5 339 5 h 39 min Outer ring

3

Bearing3_1 2538

8.468~14.632 h

42 h 18 min Outer ring

Bearing3_2 2496 41 h 36 min Inner ring, Rolling body,
Cage, Outer ring

Bearing3_3 371 6 h 11 min Inner ring
Bearing3_4 1515 25 h 15 min Inner ring
Bearing3_5 114 1 h 54 min Outer ring

4.2. Data Processing and Partitioning

Take bearing 1 as an example, using 2.1 signal processing process, after getting the
data of 2538 × 200, the data will be made T-SNE processing, the purpose is to separate the
fault stage and normal stage, the signal of normal stage is smooth, and it has no guiding
meaning to the actual prediction. In Figure 11, A and B are the data without CAE processing,
and C and D are the data after CAE processing, where B and D are part of the data of A
and C respectively taken out separately for T-SNE. the distribution of fault data points
in B is scattered and the trend is not obvious. the trend of the fault phase in D is more
obvious, which shows that the data processing method of this paper extracts the effective
degradation characteristics.

Since the signal distribution of the normal operation phase of the bearing is irregular,
the features related to the life time cannot be extracted, so the failure phase data is chosen
as the training and prediction data. After feature screening, five features representing
different degradation characteristics were finally obtained, and the correlation between
the features and the correlation with time (time) were calculated as shown in Figure 12.
The correlation coefficients among the screened features were less than 0.9, which verified
that the five features had different degradation curves, and proved that the classification
effect of the proposed method was good, and the screened features were used to represent
200 features.
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If the resulting features are considered for lifetime prediction at this point, the required
sequence length is not sufficient to support the training of the model, which leads to
overfitting. At the same time, if the period information is added, the prediction accuracy of
the sequences will be greatly increased. Therefore, a multi-dimensional sequence splicing
approach is proposed as shown in Figure 13 below:
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Figure 13. Sequence splicing.

In the figure, f1 to f5 are 5 features, each feature is 192 in length, and after feature
splicing, a sequence of length 192 × 5 is obtained. To achieve a smooth connection between
the points of the sequence, the sequence is uniformly increased to a length of 9600 using
cubic spline interpolation.

The first 70% of the failed data points are used as training data, 10% as validation, and
the remaining data as prediction. To avoid data leakage, the first 70% of the fault stage
data is first used as data input to the ECA-CAE model (the saved model), and after data
filtering and splicing, it is input to the Autoformer model as the training set; the validation
and prediction sets use the remaining 30% of the data, and this data set is input to the
saved CAE model to realize the prediction of the sequence in Model 2. See Figure 14 for
the specific process.
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4.3. Timing and Remaining Useful Life Prediction

The above-mentioned training set and prediction set are processed separately, mean-
while, the input length of Autoformer model is 200 and the prediction length is 50, and the
prediction result is used as the next input, the parameter settings of this model are shown
in Table 7, and the final results obtained are shown in Figure 15: If the prediction is taken to
the training set by fitting the double exponential model, the error exists between the fitted
curve and the actual degradation curve because the degradation trend at the later stage
is unknown, and the proposed method in this paper is the prediction of the degradation
process, and the prediction results tend to be close to the real life.

Table 7. List of Autoformer Model structure parameters.

Parameter Default

encoder input size 1
decoder input size 1

output size 1
seq_len 200

label_len 100
pred_len 50

dimension of model 512
num of heads 8

num of encoder layers 2
num of decoder layers 1
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Figure 16. Prediction curves of the three methods. 

Table 8 shows the comparison of the errors of different methods and the proposed 
method in this paper, and the results show that the proposed method has the smallest 
mean square error (MSE) and mean absolute error (MAE). 

Table 8. Comparison between the method proposed in this paper and Informer and Transformer. 

Name Informer Transformer Autoformer 
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In order to verify the effectiveness of the proposed method, it is compared with Trans-
former and Informer models respectively, and the data processing and model parameters
are taken to be consistent with the proposed method in this paper in order to ensure the
experimental results. Figure 16 shows the time series prediction curves and the results of
the double exponential fitting under different models.
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Table 8 shows the comparison of the errors of different methods and the proposed
method in this paper, and the results show that the proposed method has the smallest mean
square error (MSE) and mean absolute error (MAE).

Table 8. Comparison between the method proposed in this paper and Informer and Transformer.

Name Informer Transformer Autoformer

MSE 0.5990 0.3812 0.2638
MAE 0.5912 0.4247 0.3506

In order to verify the effectiveness of the proposed scheme, the scheme is compared
with the performance characterization index of SVR, DBN, CNN, Bi-LSTM, etc. The results
show that the performance of the proposed method is obviously due to the performance of
each lightweight architecture. Detailed numerical values are shown in Table 9.

Table 9. Comparison between the method proposed in this paper and SVR and DBN and CNN
and Bi-LSTM.

Name Proposed Method SVR DBN CNN Bi-LSTM

MSE 0.2638 1.4077 1.1755 0.8639 0.7641
MAE 0.3506 1.6880 1.0298 0.8064 0.7125

The main purpose of deep learning based network models, compared to machine
learning, is to build an environment with autonomous judgment and prediction. Although
the method proposed in this paper can make accurate prediction for a single bearing,
the ultimate goal is to predict the RUL for a certain equipment under the same working
condition or even different working conditions. For this reason, taking working condition
three as an example, the model parameters of bearing 1 signal processing and feature
screening are retained for the prediction of bearing 2 and bearing 5. Since the degradation
curve of each bearing is different, so each bearing does a separate Autoformer model
training, and the prediction results obtained are shown in Table 10, from which it can
be seen that the method proposed in this chapter is significantly better than the double
exponential model in terms of prediction accuracy. Figures 17 and 18 shows the prediction
results of the double exponential model for bearing 2 and bearing 5 and the ECA-CAE
+ Autoformer model proposed in this chapter.
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Table 10. Prediction results of the proposed model on different bearings.

Bearing MSE MAE Actual Life Proposed Method Double Index

2 0.3826 0.4128 2496 2508 2585
5 0.2319 0.2874 114 118 98
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5. Conclusions

To address the challenging problem of RUL (Remaining Useful Life) prediction for
rolling bearings, a novel solution has been proposed: automatic time series forecasting to
indirectly predict RUL based on degradation trends. The advantages of this method are
as follows:

A novel feature extraction method, ECA-CAE, has been introduced, which outper-
forms CAE and MLP-AE in terms of feature extraction capabilities.
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Under the premise of enhancing feature interpretability through Convolutional Au-
toencoders (CAE), this chapter presents a degradation trend prediction method based on
individual bearings. In contrast to traditional deep learning methods that require a large
amount of complete degradation bearing data for model training, this method only utilizes
the first half of the current bearing’s degradation features to predict future degradation
trends. Moreover, this model is suitable for predicting bearing life under the same operating
conditions. Based on this, it predicts the next degradation trend and formulates correspond-
ing measures to mitigate degradation. While ECA-CAE and Autoformer provide effective
methods for predicting rolling bearing life, their effectiveness depends on various factors
such as data quality, model complexity, interpretability, and generalization ability. When
applying these methods in practical industrial scenarios, it is essential to carefully consider
these limitations and strike a balance between model complexity and feasibility.

There is still significant research potential in the field of rolling bearing life prediction.
Future research directions should focus on improving model performance, generaliza-
tion ability, practicality, and interpretability. Research efforts should also explore how
to integrate these models into real-time monitoring systems to achieve real-time health
monitoring and maintenance of bearings. Additionally, considerations should be given
to how to implement online learning and transfer learning to adapt to changes and new
data in the bearing operating process, meeting the needs of predictive maintenance in the
industrial sector.
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Abbreviations

CAE Convolutional Auto-Encode
ECA Efficient Channel Attention
RUL remaining useful life
ConvLSTM convolutional long and short term memory
WPD Wavelet Packet Decomposition
CVAE Conditional Variational Autoencoder
MLP multilayer perceptual
NLP natural language processing
GAP global average pooling
FC fully connected
MSE mean square error
MAE mean absolute error
SVR Support Vector Regression
DBN Deep Belief Network
CNN Convolutional Neural Network
Bi-LSTM Bidirectional Long Short-Term Memory Network
SVM Support Vector Machine
xDCNN X dimension Convolutional Neural Network
hk /
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x /
xi /
yi /
H Height
W Width
C Channels
L10 /
γ /
γt /
γs /
k /
||odd /
b /
Fig Figure
seq_len Sequence length
label_len Laber length
pred_len Predict length
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