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Abstract: With the wide application of mobile robots, mobile robot path planning (MRPP) has
attracted the attention of scholars, and many metaheuristic algorithms have been used to solve MRPP.
Swarm-based algorithms are suitable for solving MRPP due to their population-based computational
approach. Hence, this paper utilizes the Whale Optimization Algorithm (WOA) to address the
problem, aiming to improve the solution accuracy. Whale optimization algorithm (WOA) is an
algorithm that imitates whale foraging behavior, and the firefly algorithm (FA) is an algorithm
that imitates firefly behavior. This paper proposes a hybrid firefly-whale optimization algorithm
(FWOA) based on multi-population and opposite-based learning using the above algorithms. This
algorithm can quickly find the optimal path in the complex mobile robot working environment and
can balance exploitation and exploration. In order to verify the FWOA’s performance, 23 benchmark
functions have been used to test the FWOA, and they are used to optimize the MRPP. The FWOA
is compared with ten other classical metaheuristic algorithms. The results clearly highlight the
remarkable performance of the Whale Optimization Algorithm (WOA) in terms of convergence speed
and exploration capability, surpassing other algorithms. Consequently, when compared to the most
advanced metaheuristic algorithm, FWOA proves to be a strong competitor.

Keywords: whale optimization algorithm; firefly algorithm; opposite-based learning; mobile robot
path planning; multi-population; hybrid metaheuristic algorithm

1. Introduction

Mobile robots are widely used in aerospace, entertainment, agriculture, the military,
mining, and rescue operations [1]. They have attracted the attention of many scholars.
Meltem Eyuboglu [2] proposed a novel collaborative path planning algorithm for a 3-wheel
omnidirectional Autonomous Mobile Robot, Arash Marashian [3] proposed a method for
solving mobile robots’ path-planning and path-tracking in static and dynamic environ-
ments. Nina Majer [4] proposed a Game-Theoretic Trajectory Planning of Mobile Robots
in Unstructured Intersection Scenarios, Guangxin Li [5] solved the path planning of a
mobile robot by mixing the algorithms of ACO and ABC. Zhiheng Yu [6] proposed a
path planning algorithm for mobile robots based on the water flow potential field method
and the beetle antennae search algorithm. De Zhang [7] proposed Multi-objective path
planning for mobile robots in nuclear accident environments based on improved ant colony
optimization with modified A*, Patrick F. and Charles P. [8] proposed the kinematic model-
ing of wheeled mobile robots, and Junlin Ou proposed a hybrid path planning based on
adaptive visibility graph initialization and edge computing for mobile robots [9]. In many
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fields of its application, path planning is the most important part. Path planning aims to
find a collision-free, optimally safe path from the starting point to the target point in the
environment with obstacles according to certain performance indicators, such as planning
time, path smoothness, and walking convenience.

Many methods have been applied to mobile robot path planning (MRPP), such as
those of Guodong Zhu and Peng Wei, who use dynamic geofencing to solve the path
planning problem [10]. Elie Hermand [11] proposes a constrained control scheme to steer
an UAV to the desired position while ensuring constraint satisfaction at all times. Joseph
Kim and Ella Atkins [12] use airspace Geofencing to solve path planning problems. With
the development of research, the swarm-based algorithm has been applied to the MRPP.
Unlike traditional algorithms, swarm-based algorithms can perform many intelligent tasks
accurately and robustly, which is due to the inspiration of biological intelligence. Therefore,
the swarm-based algorithm improves the accuracy of the solution, and lots of scholars use
the swarm-based algorithm to solve the MRPP. V. Sathiya [13] proposed a FIMOPSO to
solve mobile robot path planning. A. Lazarowska [14] uses the Discrete Artificial Potential
Field algorithm (DAPF) to solve the MRPP. Zhang Chungang [15] solved the mobile robot
rolling path planning problem. Guangsheng Li [16] uses self-adaptive learning particle
swarm optimization to solve the MRPP. These optimization methods show that MRPP has
attracted the attention of many scholars (See Table 1).

Table 1. Various MRPP solving methods.

Document Method

[2] collaborative path planning algorithm
[3] static and dynamic environments
[6] water flow potential field method and beetle antennae search algorithm
[7] ant colony optimization
[9] water flow potential field method and beetle antennae search algorithm
[11] optimization and reinforcement learning
[12] new approach based on Bezier curves
[13] FIMOPSO
[16] self-adaptive learning particle swarm optimization

A swarm-based algorithm is a kind of metaheuristic algorithm. Other metaheuris-
tic optimization algorithms include biological evolution-based, Swarm-based, physical-
and chemistry-based, and human-based algorithms. Swarm-based algorithm is a kind of
classical algorithm, such as the Hunting search algorithm (HSA) [17], the Grasshopper
optimisation Algorithm (GOA) [18], Cat Swarm Optimization (CSA) [19], particle swarm op-
timization (PSO) [20], Firefly algorithm (FA) [21], Salp Swarm Algorithm (SSA) [22], Whale
optimization algorithm (WOA) [23], and gray wolf optimization algorithm (GWO) [24].
Because of its simple concept and remarkable performance, this kind of algorithm is widely
studied and applied. Whale optimization algorithm (WOA) [23] is a famous swarm-based
algorithm proposed by Mirjalili in 2016. The algorithm solves the problem by simulating
the hunting behavior of whales. The hunting process is the optimization process. Because
of its remarkable performance in solving problems, the algorithm has been widely studied
in the academic community.

The main contributions of this paper are as follows: In order to improve the accuracy
of MRPP and WOA’s performance and broaden the application of WOA, a hybrid whale-
firefly optimization algorithm based on multi-population and Opposition-Based Learning
is proposed in this paper. Firstly, to improve the exploration ability and balance exploitation
and exploration, the multiple population mechanism is introduced for the division of labor
and cooperation. Secondly, aim to solve the problem of poor accuracy of the algorithm
by introducing the Opposition-Based Learning (OBL) and improving the optimization
ability of the algorithm through symmetric mapping. The performance of the algorithm
is improved by the above two methods. On this basis, in order to better conform to the
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biological mechanism, the Perception of the food population of whales is introduced to
expand the search space and further improve the exploration ability.

The rest of this paper is set as follows: Section 2 introduces the classical whale opti-
mization algorithm. Section 3 introduces the FWOA. Section 4 introduces the verification
of FWOA, and Section 5 introduces the MRPP model. Section 6 describes the simulation
results and analysis. Section 7 contains conclusions and future work.

2. Whale Optimization Algorithm

Whale optimization algorithm (WOA) is based on the hunting behavior of humpback
whales. It mainly includes three phases: Encircling prey, Bubble-net attacking method
(exploitation phase), and Search for prey.

2.1. Encircling Prey

Humpback whales can locate their prey and encircle them. The WOA defines the
current best candidate solution as the best solution [23]. The other search agents will update
the position toward the leader whales (the best solution defined); the equations of this
behavior are expressed as follows:

⇀
D =

∣∣∣∣⇀C•⇀X∗(t)−⇀
X(t)

∣∣∣∣ (1)

⇀
X(t + 1) =

⇀
X
∗
(t)−

⇀
A•

⇀
D (2)

where t is the current iteration,
⇀
A and

⇀
C are coefficient vectors,

⇀
X
∗

indicates the position

vector of the best solution obtained so far,
⇀
X is the position vector, | | is the absolute value,

and • is an element-by-element multiplication. Notes that
⇀
X
∗

should be updated in each
iteration if there is a better solution.

The vectors
⇀
A and

⇀
C are calculated as follows:

⇀
A = 2

⇀
a •⇀r −⇀

a (3)

⇀
C = 2•⇀r (4)

The
⇀
a is linearly decreased from 2 to 0 over the course of iterations and

⇀
r is a random

vector in [0,1].

2.2. Bubble-Net Attacking Method (Exploitation Phase)

Bubble-net attacking method includes the shrinking encircling mechanism and the
spiral updating position method. The search agents will choose a method to update
their position.

Shrinking encircling mechanism: By decreasing the value of
⇀
a in Equation (3), whales

can shrink and encircle prey [23]. Spiral updating position: This mechanism firstly calcu-
lates the distance between the whale position and the prey position, then, by establishing
an equation between the search agents and the prey, the update of position is achieved. To
mimic this method, the equations are as follows:

⇀

D′ =
∣∣∣∣⇀C•⇀X∗(t)−⇀

X(t)
∣∣∣∣ (5)

⇀
X(t + 1) =

⇀

D′•ebl• cos(2πl) +
⇀
X
∗
(t) (6)

The
⇀

D′ is the distance of the ith whale to the prey, b is a constant for defining the
shape of the logarithmic spiral, l is a random number in [−1, 1], and • is an element-by-
element multiplication.



Biomimetics 2024, 9, 39 4 of 35

A parameter p is introduced to control the switch between the shrink encircling
mechanism and the spiral updating position method. The equation is as follows:

⇀
X(t + 1) =


⇀
X
∗
(t)−

→
A•

⇀
D

⇀

D′•ebl• cos(2πl) +
⇀
X
∗
(t)

i f p < 0.5
i f p ≥ 0.5

(7)

The p is a random number in [0,1].

2.3. Search for Prey

For the exploration phase, agents update the position by randomly selecting whales.
The random value of A that is greater than 1 or less than −1 can let them move far away
from the prey. This mechanism and |A| < 1 together let the algorithm perform a global
search. The equations are expressed as follows:

⇀
D =

∣∣∣∣⇀C•⇀Xrand −
⇀
X
∣∣∣∣ (8)

⇀
X(t + 1) =

⇀
Xrand(t)−

⇀
A•

⇀
D (9)

where
⇀
Xrand(t) indicated a random position vector chosen from the current population.

The WOA algorithm starts with a random population and then updates the solution
at each iteration. While the condition is satisfied, the algorithm concludes that the solution
is the best solution.

3. The Proposed FWOA

Based on classical WOA, this section proposes a hybrid whale-firefly optimization
algorithm based on multi-populations and Opposition-Based Learning. The FWOA has
three improvements: multi-populations, hybrids with the firefly algorithm (FA), and the
perception of food.

3.1. The Multi-Populations

Like primitive humans, all social creatures will divide and cooperate according to the
task type. The division and cooperation of ants ensure the stability of their society, and the
division and cooperation of wolves ensure the efficiency of hunting prey. Research shows
that the whale will also carry out division and cooperation, dividing the total population
into several subpopulations. Each subpopulation has its own task, and the entire whale
population will predate in this way.

In order to make the algorithm more consistent with the natural mechanism and
improve its performance while balancing its exploitation and exploration, this paper
divides the initial whale population into two subpopulations: (1) the Search Population
(SP) and (2) the Hunt Population (HP). The number of whales in each population accounts
for half of the total population. Assign different tasks to different populations to achieve
the goal of division of labor and cooperation.

The main task of the search population (SP) is to search (exploration). Through its
fast exploration of the search space, it can find the region that is most likely to have
the optimal solution. After each search, it will continue to look for other possible loca-
tions for the best solution. Through this mechanism, the exploration ability of the algo-
rithm is greatly improved, which enables the algorithm to quickly find the location of the
optimal solution.

The main task of the hunt population (HP) is to hunt (exploitation). After the search
population has locked down the optimal value area, the hunt population will be exploited
in this area to find the optimal value. This mechanism ensures the exploitation ability
of the classic WOA. Furthermore, different tasks make the two populations focus on
different aspects at the same time. The hunt population focuses on exploitation, and the
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search population focuses on exploration, realizing the balance between exploitation and
exploration. The tasks of the hunt population and search population in different phases are
described as follows:

3.1.1. Search Prey

In the search for prey phase, in order to reflect the independence between populations,
two populations randomly select a leader whale from their own populations and update
the position according to the position of their own leader whale. The position update
method for the search population is as follows:

⇀
Ds =

∣∣∣∣⇀C•⇀Xr,s −
⇀
Xs

∣∣∣∣ (10)

⇀
Xs(t + 1) =

⇀
Xr,s(t)−

⇀
A•

⇀
Ds (11)

where
⇀
Ds is the distance between the current whale and the leader whale randomly selected

in the search population,
⇀
Xr,s is the leader whale selected in the search population, and

⇀
Xs

is the position of the whale in the search population.
The position update method for the hunt population is as follows:

⇀
Dh =

∣∣∣∣⇀C•⇀Xr,h −
⇀
Xh

∣∣∣∣ (12)

⇀
Xs(t + 1) =

⇀
Xr,h(t)−

⇀
A•

⇀
Dh (13)

where
⇀
Dh is the distance between the current whale and the leader whale randomly selected

in the hunt population,
⇀
Xr,h is the leader whale selected in the hunt population, and

⇀
Xr,h is

the position of the whale in the hunt population.

3.1.2. Encircling Prey

In the encircling prey phase, in order to reflect the cooperation of the population and
to improve the efficiency of the algorithm, the search population and the hunt population
in this phase are merged to form a combined population (CP). The search method for
combined population (CP) is according to the phase of Encircling prey in classic WOA. In
this phase, the combination of populations is realized, thus improving the computational
efficiency of the algorithm. The position update method for the population is as follows:

⇀
Dc =

∣∣∣∣⇀C•⇀X∗(t)−⇀
Xc(t)

∣∣∣∣ (14)

⇀
Xc(t + 1) =

⇀
X
∗
(t)−

⇀
A•

⇀
Dc (15)

where
⇀
Dc is the distance between the current whale and the best whale in the com-

bined population,
⇀
X
∗

is the position of the leader whale, and
⇀
Xc is the position of the

current whale.

3.1.3. Bubble-Net Attacking Method (Exploitation Phase)

In contrast to the above phases, in the bubble-net attacking method, the two popu-
lations were assigned different tasks. To emphasize the exploration behavior, the search
population first randomly selects a leader whale from the search population, and other
whales in the population update the position of the whale to perform a search behavior to
improve the exploration ability of the algorithm. The method is expressed as Equation (10).
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The hunt population uses the position update method of classical WOA, and it is
as follows:

⇀
Dh =

∣∣∣∣⇀X∗(t)−⇀
Xh(t)

∣∣∣∣ (16)

⇀
Xh(t + 1) =

⇀
Dh•ebl• cos(2πl) +

⇀
X
∗
(t) (17)

where
⇀
Dh is the distance between the current whale and the best whale,

⇀
X
∗
(t) is the best

whale position, and
⇀
Xh(t + 1) is the position of the hunt population.

3.2. Bubble-Net Attacking Method
3.2.1. The Perception of Food

Nature is full of magic. Spider sensing can help spiders avoid danger. Like spiders,
studies have found that whales also have a perception, but it is the perception of food,
which may be based on smell or temperature. This perception allows whales to quickly
explore areas where food may exist when hunting, improve hunting efficiency, and provide
more food for the whales. Compared with the excellent exploitation ability of classical
WOA, its exploration ability is slightly inferior. Due to its unique exploration mechanism,
WOA does not have a good search direction during exploration but randomly selects
the direction. Although this exploration mechanism provides good randomness for the
algorithm, it shows a relatively inferior ability in terms of efficiency. To improve this
weakness, this section applies the whale’s perception ability to classical WOA to improve
the exploration ability and efficiency of classic WOA.

The focus of food perception is to guide whales in the direction of predation, so
after each iteration of the algorithm, the entire population will conduct a food perception.
Through this perception, the optimal population search direction will be found. At the
same time, in order to ensure the randomness of the algorithm and avoid getting stuck at
local optimal, the perception direction of the optimal population will be compared with
the current optimal searcher after each perception, and the best one of the two will be
found, and this direction will become the position update direction of the entire population,
so as to improve the exploration ability and enable the algorithm to quickly find the
optimal value.

3.2.2. Firefly Algorithm (FA)

The Firefly algorithm (FA) [21] was proposed by Xin She Yang in 2008. It is an idealized
behavior based on the flicker characteristics of fireflies [25]. There are several important
parameters in the firefly algorithm: (1) Light intensity and attraction β; (2) Firefly in
horizontal position x; (3) Firefly in vertical position yi; (4) Distance between firefly i and j
rij; (5) Intensity of light source Is.

The brightness of the firefly at a certain position or position x (represented by I) can
be calculated as follows:

I(x)α f (x) (18)

The attraction must be adjusted as a function of absorption. Thus, the change in light
intensity I(r) follows the inverse square law:

I(r) =
Is

r2 (19)

Meanwhile, consider the static light absorption coefficient γ; the intensity I of light
varies with position or distance r, thus:

I = I0e−γr (20)

where I0 indicates the actual intensity of light.



Biomimetics 2024, 9, 39 7 of 35

The attraction of fireflies β can be approximated as:

β =
β0

(1 + γr2)
(21)

where β0 is the attractiveness level when r = 0.
Then, the distance between two fireflies can be calculated. Let firefly i and firefly j be

xi and xj on the horizontal axis, and on the vertical yi yj axis, the distance between them
can be calculated as:

ri,j =
√
(xi − xj)

2 + (yi − yj)
2 (22)

As mentioned above, the navigation of firefly i is attracted by another highly attrac-
tive firefly j, and the movement of firefly i towards firefly j is expressed mathematically
as follows:

xi = xi + β0e−γr2
i,j(xj − xi) + α(rand− 1

2
) (23)

where rand is a random number in the interval [0,1], α. The coefficient of the random
displacement vector, γ the light absorption coefficient of the environment, ri,j and the
Euclidean distance between two fireflies.

For the maximization problem, the brightness can be simply proportional to the
objective function. Other forms of brightness can be defined in a way similar to the
fitness function in a genetic algorithm or bacterial foraging algorithm (BFA) (Algorithm 1).

Algorithm 1 Pseudocode of the Firefly Algorithm

Define target function which is presented as: f (x) : x = (x1, x2, . . . , xd)
Generate or develop preliminary or pilot population of fireflies: xi(i = 1, 2, . . . , n)
Define expression for intensity of light (1) so that it is linked with I = f (x)
Define the light adsorption, represented by y
While (t < maximum generation of light)

For i = 1 : n (for all fireflies in the sample space)
For j = 1 : n (for all fireflies in the sample space)

If (Ij > II)
Firefly i move towards firefly j

End if
Express attractiveness of firefly based on the separation point (r) distance exp(−yr2)
Estimate original value and present the final value in terms of light intensity

End for
End for
Find the best possible firefly

End while

3.2.3. The Hybrid of WOA and FA

Similar to fireflies’ perception of light, food perception is a whale’s ability, so in the
food perception phase, let the search agent perceive according to the FA method to find
the optimal food direction. At the beginning of perception, everyone in the population
randomly generates a positional perception of food. Position food is not perceived according
to the current position of the individual, which is set to ensure the randomness of the
individual population. In order to improve the performance of the algorithm, a probability
selection is made during food perception to make the algorithm targeted. Therefore, a
random number q is generated after the random food location is generated. If the value of
the random number q is less than 0.5, the food perception is updated as follows:

x f = x f + β0e−γr2
i,j(x f ,j − x f ,i) + α(q− 1

2
) i f q < 0.5 (24)
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where ri,j is the Euclidean distance between food perception location i and food perception
location j, and other parameters are as shown above.

If the value of q is greater than 0.5, a random position perception is performed to
regenerate a new food position, so as to greatly improve the randomness of the algo-
rithm while ensuring performance improvement and keeping the algorithm in a steadily
improving state.

3.3. Opposition-Based Learning

Opposition-Based Learning is a strategy proposed by Hamid R. tizhoosh in 2005 [26].
The main idea of this strategy is: when people are solving the solution x of a given problem,
they usually need to estimate a solution x̃

In many cases, learning starts at random points (initialization of the population). In
algorithms, it starts with a random population and moves the solution towards the optimal
solution. Based on this thinking, it is beneficial to improve the efficiency of the algorithm if
the opposite number x̃ is calculated when searching for x

Suppose x ∈ R, x ∈ [a, b]. The opposite number x̃ of x is calculated as follows:

x̃ = a + b− x (25)

The formula is extended to the multi-dimensional case. xi ∈ R, xi ∈ [ai, bi]. Defined,
the equation is as follows:

x̃i = ai + bi − xi i = 1, 2, . . . , n (26)

When it comes to FWOA, ai which bi is the lower bound and the upper bound of the
problem, and xi the search agents, the equation is as follows::

x̃p = lb + ubi − xi i = 1, 2, . . . , n (27)

where x̃p is the opposite population of search agents.
Figure 1 shows the computer system for antisymmetric learning. Based on this mecha-

nism, the detection ability of the algorithm can be improved, and the traversal of the search
space by the algorithm can be increased.

Figure 1. Opposition-based learning.

The Pseudocode of the FWOA is as follow (Algorithm 2):
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Algorithm 2 Pseudocode of the FWOA

Initialize the whale populations: The search population xs and The hunt population: xh
Calculate the fitness of each search agent
X∗ = the best search agent
while (t < maximum number of iterations)

for each search agent
Update a, A, C, l,p

if1 (p < 0.5)
if2 (|A|< 1 )

The combined population xc updates the position of the current search agent by the
Equation (15).

else if2 (|A|≥ 1 )
Search population xs selects a random search agent xr,s by Equation (10)
Search population xs updates the position of the current search agent by the

Equation (11).
Hunt population xh selects a random search agent xr,h by Equation (12)
Hunt population xh updates the position of the current search agent by the

Equation (13)
end if2

else if1 (p ≥ 0.5)
Search population xs selects a random search agent xr,s by Equation (10)
Search population xs updates the position of the current search agent by the Equation (11)
Hunt population xh updates the position of the current search agent by the Equation (17)

end if1
end for

Initialize the perception of food population x f
Update q

If3 (p < 0.5)
The combined population xc updates the perception of food position by Equation (24)

Else if3 (p ≥ 0.5)
Initialize a new position of food

end if3
Find the opposite population x̃p by Equation (27)
Check if any search agent goes beyond the search space and amend it
Calculate the fitness of each search agent
Update X∗ if there is a better solution

t = t + 1
End while
Return X∗

4. Verification of FWOA

In this section, the FWOA algorithm has been tested on 23 benchmark functions. The
23 benchmark functions are classical functions used by many researchers [27–31]. Although
these functions are simple, we chose them to compare our algorithm with the current
metaheuristic method to verify the performance of FWOA. Tables 2–4 list these benchmark
functions. Generally speaking, the reference functions used can be divided into three
groups: Uni-modal functions, Multi-modal functions, and Fixed-dimension multi-modal
functions. Tables 2–4 show these groups of functions, respectively. Different types of
functions place different emphasis on performance. Dimension in the table represents the
dimension of the function, Range is the boundary of the function search space and fmin is
the best value.

4.1. Experiment Setting

The maximum number of iterations of the algorithm is 1000, and the number of search
agents is 100. Each algorithm runs independently on each benchmark function 30 times. In
order to verify the results, the FWOA algorithm is compared with classic PSO [20], SSA [22],
WOA [23], GWO [24], STOA [32], and SOA [33]. The statistical results (average, minimum,



Biomimetics 2024, 9, 39 10 of 35

maximum, and standard deviation) are shown in Tables 5–7. The function graphs and
algorithm convergence graphs are shown in Figure 2.

Table 2. Uni-modal functions.

Function Dimension Range f min

f1 =
n
∑

i=1
xi

2 30 [−100,100] 0

f2 =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | 30 [−10,10] 0

f3 =
n
∑

i=1
(

i
∑

j=1
xj)

2 30 [−100,100] 0

f4 = max{|xi |, 1 ≤ i ≤ n} 30 [−100,100] 0

f5 =
n−1
∑

i=1

[
100(xi+1−xi

2)
2
+ (xi − 1)2

]
30 [−30,30] 0

f6 =
n
∑

i=1
(xi + 0.5)2 30 [−100,100] 0

f7 =
n
∑

i=1
ixi

4 + Random [0, 1) 30 [−1.28,1.28] 0

Table 3. Multi-modal functions.

Function Dimension Range f min

f8 =
n
∑

i=1
−xisin

√
|xi | 30 [−500,500] −418.9829× 5

f9 =
n
∑

i=1

[
xi

2 − 10cos(2πxi) + 10
] 30 [−5.12,5.12] 0

f10 = −20exp(−0.2

√
1
n

n
∑

j=1
xj)− exp( 1

n cos(2πxj)) + 20 + e 30 [−32,32] 0

f11 = 1
4000

n
∑

i=1
xi

2 −
n
∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600,600] 0

f12 = π
n

{
10sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10sin2(πyi+1)

]
+ (yi − 1)2

}
+

n
∑

i=1
u(xi , 10, 100, 4)

yi = 1 + xi+1
4

u(xi , a, k, m) =

{
k(xi − a)m xi > a

0 −a < xi < a
k(−xi − a)m xi < −a

30 [−50,50] 0

f13 = 0.1
{

10sin2(3πx1) +
n
∑

i=1
(xi − 1)2

[
1 + sin2(3πxi + 1)

]
+ (xn − 1)2

[
1 + sin2(2πxn)

]}
+

n
∑

i=1
u(xi, 5100.4)

30 [−50,50] 0

Table 4. Fixed-dimension multi-modal functions.

Function Dimension Range f min

f14 = ( 1
500 +

25
∑

j=1

1
j+∑2

i=1 (xi−aij)
6 )
−1

2 [−65,65] 1

sf15 = ∑11
i=1

[
ai − x1(bi

2+bix2)

bi
2+bix3+x4

]2 4 [−5,5] 0.00030

f16 = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5,5] −1.0316

f17 = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10

(
1− 1

8π

)
cosx1 + 10 2 [−5,5] 0.398

f18 =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]
×[

30 + (2x1 − 3x2)
2 × (18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)
] 2 [−2,2] 3

f19 = −
4
∑

i=1
ciexp(−

3
∑

j=1
aij(xj − pij)

2) 3 [1,3] −3.86

f20 = −
4
∑

i=1
ciexp(−

6
∑

j=1
aij(xj − pij)

2) 6 [0,1] −3.32

f21 = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci)
]−1 4 [0,10] −10.1532

f22 = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci)
]−1 4 [0,10] −10.4028

f23 = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci)
]−1 4 [0,10] −10.4028
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Table 5. The result of Uni-modal functions.

FWOA WOA SOA PSO GWO STOA SSA

f1

Min 0 8.430261 × 10−210 1.555097 × 10−36 2.810415 × 10−84 6.393086 × 10−89 1.635800 × 10−23 4.769387 × 10−09

Max 5.273753 × 10−171 7.652315 × 10−32 7.652315 × 10−32 4.526335 × 10−76 1.821216 × 10−84 2.765344 × 10−20 9.360340 × 10−09

Ave 2.854804 × 10−172 9.126593 × 10194 3.559156 × 10−33 4.031582 × 10−77 2.397316 × 10−85 4.012824 × 10−21 7.021318 × 10−09

Std. 0 1.956124 × 10−64 1.956124 × 10−64 1.292897 × 10−152 2.043497 × 10−169 4.681402 × 10−41 1.419605 × 10−18

f2

Min 0 3.336010 × 10−123 1.228525 × 10−21 1.047446 × 10−12 1.465409 × 10−50 2.186051 × 10−15 4.064451 × 10−05

Max 9.873765 × 10−104 5.406626 × 10−20 5.406626 × 10−20 3.829112 × 10−06 2.796488 × 10−48 4.621727 × 10−13 2.059145 × 10+00

Ave 5.485366 × 10−105 5.434907 × 10−112 1.048486 × 10−20 2.593201 × 10−07 3.096340 × 10−49 8.820698 × 10−14 2.282708 × 10−01

Std. 4.020400 × 10−208 1.286922 × 10−40 1.286922 × 10−40 5.202686 × 10−13 2.706440 × 10−97 1.466744 × 10−26 2.252014 × 10−01

f3

Min 0 4.745790 × 10+01 1.042476 × 10−23 2.851281 × 10−04 3.116347 × 10−32 5.942626 × 10−14 5.760246 × 10−02

Max 5.961890 × 10+00 3.403934 × 10−17 3.403934 × 10−17 8.574375 × 10−03 4.108705 × 10−24 3.588812 × 10−10 8.382606 × 10+00

Ave 2.101297 × 10−01 4.010754 × 10+03 2.264491 × 10−18 2.048678 × 10−03 1.416761 × 10−25 2.915104 × 10−11 8.969260 × 10−01

Std. 1.181940 × 10+00 5.174733 × 10−35 5.174733 × 10−35 3.242489 × 10−06 5.616559 × 10−49 5.133289 × 10−21 2.658013 × 10+00

f4

Min 0 4.299918 × 10−07 4.505221 × 10−13 1.229180 × 10−03 4.800334 × 10−23 1.128292 × 10−07 4.350890 × 10−04

Max 1.117087 × 10−03 3.594542 × 10−08 3.594542 × 10−08 2.791385 × 10−02 1.432535 × 10−20 4.542304 × 10−06 4.277223 × 10+00

Ave 3.777352 × 10−05 1.715458 × 10+01 1.323292 × 10−09 7.525940 × 10−03 1.617966 × 10−21 6.961723 × 10−07 5.554818 × 10−01

Std. 4.155907 × 10−08 4.291170 × 10−17 4.291170 × 10−17 3.887478 × 10−05 8.220771 × 10−42 7.019692 × 10−13 6.972356 × 10−01

f5

Min 1.660556 × 10−02 2.544580 × 10+01 2.596043 × 10+01 3.548720 × 10−01 2.487610 × 10+01 2.620052 × 10+01 2.152424 × 10+01

Max 2.695590 × 10+01 2.861168 × 10+01 2.861168 × 10+01 7.741710 × 10+01 2.712737 × 10+01 2.873763 × 10+01 5.826600 × 10+02

Ave 2.050639 × 10+01 2.591175 × 10+01 2.753575 × 10+01 4.015986 × 10+01 2.633584 × 10+01 2.751388 × 10+01 9.092186 × 10+01

Std. 1.082212 × 10+02 3.846561 × 10−01 3.846561 × 10−01 7.837989 × 10+02 4.753373 × 10−01 4.483316 × 10−01 1.561153 × 10+04

f6

Min 1.306296 × 10−04 1.480551 × 10−04 1.633545 × 10+00 0 5.460670 × 10−06 7.128582 × 10−01 3.853132 × 10−09

Max 5.012690 × 10−04 3.248522 × 10+00 3.248522 × 10+00 2.899680 × 10−29 5.060667 × 10−01 2.508231 × 10+00 8.553629 × 10−09

Ave 3.071433 × 10−04 3.234442 × 10−04 2.462839 × 10+00 1.416252 × 10−30 1.159188 × 10−01 1.500161 × 10+00 6.730791 × 10−09

Std. 8.797922 × 10−09 1.861930 × 10−01 1.861930 × 10−01 2.971108 × 10−59 2.452040 × 10−02 1.996132 × 10−01 1.571142 × 10−18

f7

Min 9.352327 × 10−07 2.738278 × 10−05 3.030240 × 10−05 2.342989 × 10−03 8.511159 × 10−05 1.283198 × 10−04 9.841093 × 10−03

Max 8.370940 × 10−04 6.483309 × 10−04 6.483309 × 10−04 7.825572 × 10−03 4.966548 × 10−04 3.612736 × 10−03 5.114226 × 10−02

Ave 1.123975 × 10−04 5.837796 × 10−04 2.616332 × 10−04 5.040257 × 10−03 2.489494 × 10−04 8.743143 × 10−04 2.689375 × 10−02

Std. 4.441664 × 10−08 3.626657 × 10−08 3.626657 × 10−08 2.025908 × 10−06 1.153306 × 10−08 5.463082 × 10−07 1.042387 × 10−04
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Table 6. The result of Multi-modal functions.

FWOA WOA SOA PSO GWO STOA SSA

f8

Min −1.256946 × 10+04 −1.256945 × 10+04 −7.887318 × 10+03 −8.423960 × 10+03 −7.457098 × 10+03 −7.580349 × 10+03 −9.210553 × 10+03

Max −9.862899 × 10+03 −5.030709 × 10+03 −5.030709 × 10+03 −5.561062 × 10+03 −3.605024 × 10+03 −5.132615 × 10+03 −5.633845 × 10+03

Ave −1.208077 × 10+04 −1.179017 × 10+04 −6.157293 × 10+03 −6.743667 × 10+03 −6.337316 × 10+03 −5.889671 × 10+03 −7.647054 × 10+03

Std. 5.006503 × 10+05 6.502353 × 10+05 6.502353 × 10+05; 5.045922 × 10+05 6.460060 × 10+05 3.280557 × 10+05 9.304187 × 10+05

f9

Min 0 0 0 2.089413 × 10+01 0 0 1.492438 × 10+01

Max 0 5.684342 × 10−14 5.684342 × 10−14 8.457133 × 10+01 5.684342 × 10−14 1.260584 × 10+01 9.949549 × 10+01

Ave 0 3.789561 × 10−15 1.894781 × 10−15 4.424245 × 10+01 3.789561 × 10−15 7.857429 × 10−01 4.092592 × 10+01

Std. 0 1.077058 × 10−28 1.077058 × 10−28 2.612571 × 10+02 2.079836 × 10−28 6.245225 × 10+00 3.038580 × 10+02

f10

Min 8.881784 × 10−16 8.881784 × 10−16 1.509903 × 10−14 7.993606 × 10−15 7.993606 × 10−15 1.995507 × 10+01 1.575264 × 10−05

Max 4.440892 × 10−15 1.996086 × 10+01 1.996086 × 10+01 1.899744 × 10+00 1.509903 × 10−14 1.995985 × 10+01 3.158812 × 10+00

Ave 1.125026 × 10−15 4.440892 × 10−15 1.929332 × 10+01 3.073540 × 10−01 1.036208 × 10−14 1.995836 × 10+01 1.237668 × 10+00

Std. 8.124361 × 10−31 1.327821 × 10+01 1.327821 × 10+01 3.497835 × 10−01 8.994828 × 10−30 1.435757 × 10−06 1.132933 × 10+00

f11

Min 0 0 0 0 0 0 3.676968 × 10−02

Max 0 2.077809 × 10−02 2.077809 × 10−02 4.672941 × 10−02 2.022412 × 10−02 8.989056 × 10−02 1.286951 × 10−08

Ave 0 8.562736 × 10−04 6.926030 × 10−04 9.768366 × 10−03 9.371244 × 10−04 8.318053 × 10−03 7.221352 × 10−03

Std. 0 1.439097 × 10−05 1.439097 × 10−05; 1.087677 × 10−04 1.534190 × 10−05 4.163995 × 10−04 7.826887 × 10−05

f13

Min 2.108763 × 10−05 2.380328 × 10−05 1.107146 × 10−01 1.578612 × 10−32 4.409217 × 10−07 5.906150 × 10−02 2.240856 × 10−11

Max 8.51455 7 × 10−05 3.001715 × 10−01 3.001715 × 10−01 5.182541 × 10−01 3.571543 × 10−02 2.162930 × 10−01 5.905217 × 10+00

Ave 4.197168 × 10−05 4.948684 × 10−04 1.978382 × 10−01 4.491879 × 10−02 1.304051 × 10−02 1.144425 × 10−01 1.942916 × 10+00

Std. 2.311110 × 10−10 3.789442 × 10−03 3.789442 × 10−03 1.162089 × 10−02 5.920125 × 10−05 2.306902 × 10−03 2.686687 × 10+00

f14

Min 2.905554 × 10−04 3.394113 × 10−04 1.178007 × 10+00 1.473043 × 10−32 6.291644 × 10−06 6.834331 × 10−01 2.353540 × 10−10

Max 2.905554 × 10−04 2.114193 × 10+00 2.114193 × 10+00 9.737116 × 10−02 4.123093 × 10−01 1.969527 × 10+00 4.394886 × 10−02

Ave 4.052124 × 10−03 3.628557 × 10−03 1.677016 × 10+00 6.510216 × 10−03 1.609783 × 10−01 1.293502 × 10+00 6.560701 × 10−03

Std. 1.334761 × 10−02 4.883671 × 10−02 4.883671 × 10−02 3.274727 × 10−04 1.209685 × 10−02 6.628387 × 10−02 8.727186 × 10−05
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Table 7. The result of Fixed-dimension multi-modal functions.

FWOA WOA SOA PSO GWO STOA SSA

f14

Min 9.980038 × 10−01 9.980038 × 10−01 9.980038 × 10−01 9.980038 × 10−01 9.980038 × 10−01 9.980038 × 10−01 9.980038 × 10−01

Max 9.980038 × 10−01 2.982105 × 10+00 2.982105 × 10+00 1.992031 × 10+00 1.076318 × 10+01 9.980038 × 10−01 9.980038 × 10−01

Ave 9.980038 × 10−01 1.064141 × 10+00 1.064141 × 10+00 1.229943 × 10+00 2.117150 × 10+00 9.980038 × 10−01 9.980038 × 10−01

Std. 1.166008 × 10−23 1.312219 × 10−01 1.312219 × 10−01 1.828534 × 10−01 3.621514 × 10+00 2.062775 × 10−18 3.995308 × 10−32

f15

Min 3.074875 × 10−04 3.075390 × 10−04 3.076348 × 10−04 3.074860 × 10−04 3.074864 × 10−04 3.078072 × 10−04 3.074860 × 10−04

Max 1.223604 × 10−03 1.256914 × 10−03 1.256914 × 10−03 1.594050 × 10−03 2.036334 × 10−02 1.595878 × 10−03 1.594901 × 10−03

Ave 3.417386 × 10−04 5.549406 × 10−04 1.194463 × 10−03 4.361424 × 10−04 2.343596 × 10−03 1.205608 × 10−03 9.405784 × 10−04

Std. 2.796709 × 10−08 2.809383 × 10−08 2.809383 × 10−08 1.541092 × 10−07 3.735096 × 10−05 3.336449 × 10−08 1.403797 × 10−07

f16

Min −1.031628 × 10+00 −1.031628 × 10+00 −1.031628 × 10+00 −1.031628 × 10+00 −1.031628 × 10+00 −1.031628 × 10+00 −1.031628 × 10+00

Max −1.031628 × 10+00 −1.031628 × 10+00 −1.031628 × 10+00 −1.031628 × 10+00 −1.031628 × 10+00 −1.031627 × 10+00 −1.031628 × 10+00

Ave −1.031628 × 10+00 −1.031628 × 10+00 −1.031628 × 10+00 −1.031628 × 10+00 −1.031628 × 10+00 −1.031628 × 10+00 −1.031628 × 10+00

Std. 1.046047 × 10−21 1.456520 × 10−14 1.456520 × 10−14 4.590354 × 10−31 1.514620 × 10−18 6.415465 × 10−14 8.614565 × 10−30

f17

Min 3.978874 × 10−01 3.978874 × 10−01 3.978877 × 10−01 3.978874 × 10−01 3.978874 × 10−01 3.978877 × 10−01 3.978874 × 10−01

Max 3.978878 × 10−01 3.980685 × 10−01 3.980685 × 10−01 3.978874 × 10−01 3.978884 × 10−01 3.980266 × 10−01 3.978874 × 10−01

Ave 3.978874 × 10−01 3.978874 × 10−01 3.979114 × 10−01 3.978874 × 10−01 3.978875 × 10−01 3.979088 × 10−01 3.978874 × 10−01

Std. 8.514675 × 10−15 1.349701 × 10−09 1.349701 × 10−09 0.000000 × 10+00 3.859782 × 10−14 9.203009 × 10−10 1.178905 × 10−28

f18

Min 3.000000 × 10+00 3.000000 × 10+00 3.000000 × 10+00 3.000000 × 10+00 3.000000 × 10+00 3.000000 × 10+00 3.000000 × 10+00

Max 3.000004 × 10+00 3.000005 × 10+00 3.000005 × 10+00 3.000000 × 10+00 3.000008 × 10+00 3.000020 × 10+00 3.000000 × 10+00

Ave 3.000000 × 10+00 3.000000 × 10+00 3.000001 × 10+00 3.000000 × 10+00 3.000001 × 10+00 3.000002 × 10+00 3.000000 × 10+00

Std. 5.635206 × 10−13 2.210026 × 10−12 2.210026 × 10−12 1.740934 × 10−30 2.567861 × 10−12 1.625908 × 10−11 8.357709 × 10−28

f19

Min −3.862782 × 10+00 −3.862782 × 10+00 −3.862767 × 10+00 −3.862782 × 10+00 −3.862782 × 10+00 −3.862773 × 10+00 −3.862782 × 10+00

Max −3.862762 × 10+00 −3.854857 × 10+00 −3.854857 × 10+00 −3.862782 × 10+00 −3.856489 × 10+00 −3.854856 × 10+00 −3.862782 × 10+00

Ave −3.862778 × 10+00 −3.862627 × 10+00 −3.855427 × 10+00 −3.862782 × 10+00 −3.862571 × 10+00 −3.855671 × 10+00 −3.862782 × 10+00

Std. 2.805649 × 10−11 3.958128 × 10−06 3.958128 × 10−06 7.344567 × 10−30 1.319696 × 10−06 5.734189 × 10−06 2.305378 × 10−29

f20

Min −3.321995 × 10+00 −3.321993 × 10+00 −3.200659 × 10+00 −3.321995 × 10+00 −3.321994 × 10+00 −3.321919 × 10+00 −3.321995 × 10+00

Max −3.321938 × 10+00 −2.840363 × 10+00 −2.840363 × 10+00 −3.203102 × 10+00 −3.134100 × 10+00 −3.015514 × 10+00 −3.202625 × 10+00

Ave −3.321976 × 10+00 −3.257065 × 10+00 −3.056846 × 10+00 −3.262549 × 10+00 −3.249134 × 10+00 −3.069592 × 10+00 −3.214881 × 10+00

Std. 2.390144 × 10−10 5.765841 × 10−03 5.765841 × 10−03 3.655752 × 10−03 4.467225 × 10−03 5.893752 × 10−03 1.318810 × 10−03

f21

Min −1.015320 × 10+01 −1.015320 × 10+01 −1.014653 × 10+01 −1.015320 × 10+01 −1.015317 × 10+01 −1.014820 × 10+01 −1.015320 × 10+01

Max −1.015288 × 10+01 −4.965276 × 10−01 −4.965276 × 10−01 −2.630472 × 10+00 −5.100549 × 10+00 −4.982139 × 10−01 −5.055198 × 10+00

Ave −1.015312 × 10+01 −1.015317 × 10+01 −5.785824 × 10+00 −5.968921 × 10+00 −9.984578 × 10+00 −5.944664 × 10+00 −8.971262 × 10+00

Std. 5.716151 × 10−09 1.600742 × 10+01 1.600742 × 10+01 1.007418 × 10+01 8.509064 × 10−01 1.798099 × 10+01 4.748450 × 10+00
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Table 7. Cont.

FWOA WOA SOA PSO GWO STOA SSA

f22

Min −1.040294 × 10+01 −1.040294 × 10+01 −1.039981 × 10+01 −1.040294 × 10+01 −1.040287 × 10+01 −1.039889 × 10+01 −1.040294 × 10+01

Max −1.040269 × 10+01 −9.080722 × 10−01 −9.080722 × 10−01 −1.837593 × 10+00 −1.040245 × 10+01 −9.080713 × 10−01 −5.087672 × 10+00

Ave −1.040288 × 10+01 −9.516997 × 10+00 −7.709851 × 10+00 −8.028456 × 10+00 −1.040271 × 10+01 −8.729593 × 10+00 −1.022576 × 10+01

Std. 3.938498 × 10−09 1.272529 × 10+01 1.272529×e+01 1.219797 × 10+01 1.193802 × 10−08 1.032487 × 10+01 9.417361 × 10−01

f23

Min −1.053641 × 10+01 −1.053641 × 10+01 −1.053479 × 10+01 −1.053641 × 10+01 −1.053639 × 10+01 −1.053488 × 10+01 −1.053641 × 10+01

Max −1.053611 × 10+01 −9.488805 × 10−01 −9.488805 × 10−01 −2.421734 × 10+00 −2.421726 × 10+00 −9.488816 × 10−01 −5.175647 × 10+00

Ave −1.053635 × 10+01 −1.010588 × 10+01 −9.842207 × 10+00 −8.675884 × 10+00 −1.026572 × 10+01 −9.480819 × 10+00 −9.821641 × 10+00

Std. 3.456077 × 10−09 4.688671 × 10+00 4.688671 × 10+00 1.028709 × 10+01 2.194825 × 10+00 6.051566 × 10+00 3.435321 × 10+00
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Figure 2. Test functions convergence curves.

4.2. Exploitation Analysis

According to the results in Table 5, FWOA can provide very competitive results. This
algorithm is superior to other algorithms in f1 − f7. It should be noted that unimodal
functions focus on benchmark exploitation. Therefore, these results show that FWOA has
better performance in finding the optimal value of the function. This is due to the food
perception mechanism discussed earlier.
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4.3. Exploration Analysis

Compared with unimodal functions, multi-modal functions have many local optimal
values, and their complexity grows exponentially with the dimension, so the requirements
for algorithm performance of multi-modal functions are stricter. Therefore, they are suitable
for benchmarking the exploration abilities of algorithms.

According to the results in Table 6, FWOA can also provide very competitive results
on Fixed-dimension multi-modal functions. The FWOA is superior to other algorithms
in most functions f8 − f12, f14 − f16, f20 − f23. This phenomenon is reflected in the fact
that FWOA can find the best value smaller than the results of all test algorithms, and
the maximum value found by FWOA is also the smallest of all algorithms. In addition,
compared with GWO and PSO, which have good exploration capabilities, FWOA shows
remarkable performance and can often surpass them. These results show that the FWOA
algorithm has certain research value.

4.4. The Standard Deviation Analysis

The standard deviation is the arithmetic square root of the variance. The standard
deviation can reflect the degree of dispersion of a data set. It is most commonly used in
probability statistics as a measure of the degree of statistical distribution. A large standard
deviation represents a large difference between most values and their average values; a
small standard deviation means that these values are close to the average value, so the
difference between the data are small. The smaller the standard deviation in algorithm
analysis, the better the stability and robustness of the algorithm.

According to the results in Tables 5–7, the standard deviation of FWOA is the smallest
in most cases, which means that FWOA has strong stability and can provide a relatively
stable calculation. This is due to the multi-population mechanism of the algorithm. The di-
vision and cooperation of different populations enable the algorithm to achieve the balance
between development and detection, so it can also ensure its stability while maintaining
good performance.

4.5. The Convergence Analysis

This section shows the convergence of the FWOA. According to Digalakis [28], in
the initial step of optimization, the movement of search agents should undergo muta-
tion, which helps metaheuristics widely explore the search space. Then, these changes
should be reduced to emphasize exploitation at the end of optimization. To observe the
convergence behavior of the FWOA algorithm, the convergence graph of the algorithm
is shown in Figure 2. In most cases, FWOA converges first, due to the search population
discussed before.

To sum up, compared with the well-known metaheuristic algorithm, the experimental
results verify the performance of the FWOA algorithm in solving various benchmark
functions. In order to further study the performance of the proposed algorithm, a practical
problem (two different problem environments) is used in the following section.

The algorithm is compared with different well-known algorithms to verify its effectiveness.

5. Using FWOA to Solve the Mobile Robot Path Planning Problem

The mobile robot path planning problem (MRPP) is a famous research problem. There
are lots of different methods to solve it, such as Zhang Z [34] who proposed a method based
on A-star and Dijkstra Algorithm, Z Cen [35] who proposed a method based on genetic
algorithms and the A* algorithm; Y Lü [36] who proposed a method based on a directional
relationship with uncertain environmental information; and Y Cheng [37] who proposed
a distributed snake algorithm for mobile robot path planning with curvature constraints.
Kurihara K [38] proposed a mobile robot path planning method with the existence of
moving obstacles; Msg A [39] proposed an intelligent approach for autonomous mobile
robot path planning based on an adaptive neuro-fuzzy inference system; and Zhang Z [40]
proposed a method based on the dynamic movement primitives library.
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The experimental environment of this study is divided into two parts: (1) The irregular
obstacle environment with no influence range; (2) The regular obstacle environment with
influence range The irregular obstacle environment with no influence range simulates
the shapes of different obstacles in the real environment, and the robot searches for the
optimal path to avoid collision in this environment. The obstacle of the regular obstacle
environment experiment with influence range is circular. This environment simulates the
real environment in which objects of different shapes will produce an influence range. When
the robot approaches, there may be different degrees of collision, resulting in different
motion conditions. (1: Do not affect the robot’s motion. 2: Slightly affect the motion.
3: Collision to immovable). The influence range of obstacles in this environment is subject
to the center of the circle. The influence decreases linearly with the distance between the
robot position and the center of the circle, so as to simulate the real environment. The
method of solving MRPP by FWOA is introduced as follows:

5.1. Irregular Obstacles Environment with None Influence Range

Mobile robot path planning is an important task of intelligent robot research. The first
step is to model the environment. In an obstacle-free environment, this paper uses the grid
method to model. The grid method decouples the workspace into several simple areas to
establish an environment model that is convenient for compute path planning; in this way,
the physical space is mapped into an abstract space. The free grid point is represented by
0, and the obstacle point is represented by 1. Through this mechanism, the modeling of
irregular obstacles can be realized, and it is also convenient for computation.

On the two-dimensional map, as shown in Figure 3. in order to solve the path planning
problem, we make the following assumptions: (1) The mobile robot only moves in the set
search space; (2) There are n different-shape static irregular obstacles in the robot motion
space, which are described by the grid method. The obstacles have no influence range, and
the path is unavailable when the robot hits the obstacles. (3) Mobile robot is regarded as a
particle [41], and its size is ignored. According to the above assumptions, the obstacles are
expanded to Rs. This Rs is obtained by:

Rs = R + σ (28)

where σ is the safe distance, which is artificially selected to prevent the mobile robot from
contacting obstacles.

Figure 3. Mobile robot size.

The robot moves in eight directions, as shown in Figure 4. Through different moving
directions, we can realize the path planning of the mobile robot when moving to any grid
point in the search space [41]. The cost function of this model is the motion distance of the
robot in two-dimensional space.
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Figure 4. The directions of mobile robot.

5.2. Regular Obstacle Environment with Influence Range

Due to the irregular shape of obstacles, their influence ranges are different. When a
robot encounters an obstacle while moving in the environment, three situations may occur:
(1) stop moving; (2) affect but do not stop moving; and (3) do not affect moving. Based on
these situations, this section introduces the obstacle environment with a regular influence
range that is more realistic.

The path planning problem in this environment is to find a connection between the
starting point and the target point with the least threat, as shown in Figure 3. The point S is
the starting point, and the point t is the target point. In order to simplify the problem, the
general problem is divided into several sub-problems by using the deconstruction method.
Thus, the starting point and the target point are connected by a line, and the connection is
divided into m segments. The path planning is carried out for each segment, and the path
length is the sum of the subpaths.

In [42], an obstacle probability density model based on UAV movement is introduced.
The model describes that the influence range of obstacles will not have a boundary when
the UAV is moving but will decrease with the increase in distance between the UAV and
the obstacle center, but will never be zero. Based on this theory, the probability density
model is proposed as follows:

Cinfluence = exp(−∑n
i=1||di||

δ
) (29)

where δ is a parameter that controls the shape of the density function, ||di|| indicates the
distance from the moving object to the ith bstacle.

For the robot, it can be known that the impact of obstacles in the environment on the
robot also decreases with the distance from the center of the obstacle, so the model can be
used to model the robot path planning problem. However, collision has a great impact
on the robot to a certain extent, which is much greater than the impact of obstacles on the
UAV. But the probability density value drops too fast to truly simulate the environment. In
order to solve this problem, the probability model is improved as follows. Figure 5 shows
the improved probability density value, which is smoother than the original probability
density curve:

Cinflience =

√
exp(−∑n

i=1||di||
δ

) (30)

Figure 5. The method of solving.
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The descent speed of the improved probability model becomes slower, which is more
in line with the robot situation. Based on this probability density model and in combination
with the path planning model in article [3], let the parameter D be the length of the motion
path, the parameter S be the distance of the subproblem segment, and the parameter w be
the weight. The following model is proposed to find the shortest distance while considering
the influence range:

C = (Cinfluence•w +
D
S
•(1− w)) (31)

Based on this objective function, the path planning problem can be modeled to solve
this problem.

6. Simulation Results and Analysis

This section introduces the simulation experiment setting and the analysis of the
experiment. The algorithm is tested in ten different mobile robot working environments,
and the results show that FWOA is very competitive.

6.1. Experimental Setting

In order to evaluate the quality of the algorithm, FWOA is applied to various mobile
robot working environments. The experiment was divided into two groups: (1) Irregular
obstacles environment with no influence range; and (2) Regular obstacle environment with
influence range.

As shown in Figures 6–21, for the irregular obstacle environment with no influence
range, five working environments are established: Environment 1, Environment 2, Environ-
ment 3, Environment 4, and Environment 5. The size of the map is set to 20 × 20, and the
complexity of the map is gradual. The test is divided into three groups: (1) Environment 1
and Environment 2 are mainly used to test the existence of obstacles between the starting
point and the map; (2) Environment 3 is used to test the existence of obstacles in the whole
map; and (3) Environment 4 and Environment 5 are used to test the existence of obstacles
in the middle of the map and near the target point. Complex maps are a challenge for
mobile robots. Through the above tests, we can find the global optimal path and prove
the excellent performance of FWOA. The starting point of the map is (0,0), represented by
a red circle; the target point is (20,20), represented by a green square; and the outline of
the obstacle is represented by a red rectangle. The number of iterations is set to 500, the
number of population agents is set to 60, and the dimension is set to 30. The algorithm
runs independently 30 times in each environment. Meanwhile, the algorithm is tested for a
p-value to show the difference between the two algorithms.

As shown in Figures 22–31, five working environments are established for the regular
obstacle environments with influence range: Environment 6, Environment 7, Environment
8, Environment 9, and Environment 10, with the influence range of circular. The starting
point is (0,0) (represented by a black *), the target point is (500,0) (represented by a hollow
square), and the obstacle is represented by a circle. The influence of obstacles decreases
with an increase in radius. The number of iterations is set to 500, the dimension is set to 30,
and the population number is set to 60. The algorithm runs independently 30 times in each
environment. In order to show the difference between the algorithms, they are also tested
in an experimental environment.
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Figure 6. Modified Cin f luence.

Figure 7. The convergence graph of environment 1.

Figure 8. The Boxplot of Environment 1.

Figure 9. The convergence graph of environment 2.

Figure 10. The Boxplot of Environment 2.
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All simulations are implemented in MATLAB R2022a and run on an AMD Ryzen 9
5900HX with a Radeon Graphics CPU at 3.30 GHz and 16 GB of RAM under Windows 11.

6.2. Result Analysis

This section analyzes the results of the experiments. The experiments are divided
into two groups for analysis: (1) The experimental results of mobile robots in the irregular
obstacle environment with no influence range are shown in Tables 8–12; the algorithm con-
vergence graphs and algorithm box-plot graphs are shown in Figures 7–16; the path graphs
are shown in Figures 17–21; and the p-value is shown in Table 13; (2) The experimental
results of the mobile robot in the regular obstacle environments with influence range are
shown in Tables 14–18; the algorithm convergence graphs and algorithm box-plot graphs
are shown in Figures 22–31; the path graphs are shown in Figures 32–36; and the p-value is
shown in Table 18. Through the analysis of ten working environments in two groups of
experiments, we can know that FWOA has excellent performance and remarkable stability.

Table 8. The result of environment 1.

FWOA WOA PSO GWO STOA SSA SOA

Mean 28.4296 32.5538 31.0256 30.3024 30.4791 30.0335 30.3244
Best 27.5602 28.1236 27.7897 27.7897 27.7897 27.5602 27.5602
Worst 29.6515 48.1842 50.0459 34.3996 31.0189 31.0822 31.0189
Std. 0.579903 4.10306 5.23552 1.57175 0.920949 1.09488 0.948411

Table 9. The result of environment 2.

FWOA WOA PSO GWO STOA SSA SOA

Mean 29.372 45.4813 31.6773 30.5589 29.4531 29.8522 29.458
Best 28.464 28.7003 28.464 28.8269 29.4046 28.8269 28.8269
worst 30.8352 400 51.6065 39.563 29.9166 30.8587 30.3269
Std. 0.562282 67.0978 4.60077 2.40512 0.134563 0.36874 0.224772

Table 10. The result of environment 3.

FWOA WOA PSO GWO STOA SSA SOA

Mean 30.5562 45.7169 44.5951 31.0557 31.1485 31.3353 31.1643
Best 28.4268 29.8026 29.91 29.2198 30.8733 29.117 30.5405
Worst 34.6255 400 400 34.3996 31.575 32.1488 31.575
Std. 1.36528 66.9532 67.1539 0.923568 0.173375 0.542579 0.211504

Table 11. The result of environment 4.

FWOA WOA PSO GWO STOA SSA SOA

Mean 28.7738 29.6893 29.5183 29.2697 28.8092 29.015 28.8804
Best 28.3121 28.7729 28.5277 28.3121 28.4902 28.6611 28.4902
Worst 29.0248 35.6569 34.439 32.8926 28.9801 29.5592 29.3811
Std. 0.1384 1.80256 1.36026 1.27619 0.121089 0.204619 0.164828

Table 12. The result of environment 5.

FWOA WOA PSO GWO STOA SSA SOA

Mean 28.2203 29.4382 29.2153 29.0043 29.1479 29.2951 29.2025
Best 27.6813 27.7949 27.7949 27.6813 27.6813 27.9662 27.9662
Worst 29.6366 32.5697 31.8578 33.1142 29.6366 31.8174 29.7949
Std. 0.512914 1.09052 0.807675 0.972006 0.577413 0.793053 0.472232
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Table 13. The p-value of experiments.

Environment 1 Environment 2 Environment 3 Environment 4 Environment 5

WOA vs. FWOA 3.54595 × 10−154 1.23598 × 10−158 1.04784 × 10−154 1.09486 × 10−161 8.03319 × 10−99

PSO vs. FWOA 1.12188 × 10−107 1.06873 × 10−71 8.32723 × 10−30 7.92567 × 10−154 1.29799 × 10−54

GWO vs. FWOA 7.60116 × 10−127 1.25814 × 10−104 2.91533 × 10−154 4.87965 × 10−158 4.75254 × 10−60

STOA vs. FWOA 1.72411 × 10−123 4.22364 × 10−13 1.02367 × 10−50 2.64802 × 10−79 5.51899 × 10−98

SSA vs. FWOA 2.55839 × 10−105 4.28541 × 10−19 1.29613 × 10−52 1.63432 × 10−138 6.13455 × 10−82

SOA vs. FWOA 6.62596 × 10−126 3.5665 × 10−20 2.33206 × 10−57 6.97704 × 10−122 1.83984 × 10−107

Table 14. The result of environment 6.

FWOA PSO WOA HS FA MSA

Mean 5.2656 5.95772 6.54454 6.06448 5.93502 5.94622
Best 5.24577 5.73289 6.05951 5.77577 5.60869 5.80207
Worst 5.33313 6.16154 6.93088 6.23352 6.53488 6.07259
Std. 0.000463621 0.0139897 0.0595565 0.00850826 0.0418203 0.00479293

Table 15. The result of environment 7.

FWOA PSO WOA HS FA MSA

Mean 2.07199 2.74251 3.12788 2.85464 2.68428 2.5689
Best 2.07047 2.51704 2.70531 2.58145 2.31947 2.37212
Worst 2.07512 3.06511 3.47429 3.02096 3.08297 2.74311
Std. 1.26108 × 10−06 0.012969 0.0389334 0.0117401 0.0274849 0.00630382

Table 16. The result of environment 8.

FWOA PSO WOA HS FA MSA

Mean 2.60248 3.32557 3.71071 3.35789 3.30654 3.27013
Best 2.28948 3.09882 3.27964 3.01973 2.88651 3.11258
Worst 2.62992 3.5623 4.19325 3.70561 3.76308 3.36859
Std. 0.00709538 0.013238 0.0484691 0.0347663 0.0423018 0.00482256

Table 17. The result of environment 9.

FWOA PSO WOA HS FA MSA

Mean 2.46952 2.66323 3.04348 3.03596 2.58713 3.38617
Best 2.55281 4.39728 2.83857 2.88402 2.49226 2.91938
Worst 2.81524 4.90177 3.52762 3.20579 2.85774 3.85635
Std. 0.00428103 0.010446 0.0204176 0.00886905 0.00533416 0.0688828

Table 18. The result of environment 10.

FWOA PSO WOA HS FA MSA

Mean 2.62072 3.3095 3.75894 3.31711 3.38436 3.58167
Best 2.59849 3.09663 3.34706 3.00046 3.09922 3.37216
Worst 2.72948 3.59165 4.23291 3.59857 3.66757 4.15024
Std. 0.00127214 0.0167968 0.0506245 0.0199517 0.0203131 0.0265063

6.2.1. Irregular Obstacles with None Influence Range

The selectable path of a robot is inversely proportional to the density of obstacles,
and obstacles at different positions have different effects on path selection. As shown in
Figures 17 and 18, because of the limitation of the robot’s moving direction, the irregular
obstacles near the starting point are the main influence on the path, which determines the
subsequent moving direction of the robot. However, because of the path-planning method
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of FWOA, this influence is reduced. Meanwhile, because of the balance between exploita-
tion and exploration, FWOA can always find the best moving path. Figure 19 shows the
working environment of global obstacles. In this environment, due to the dense obstacles,
robot path planning needs to focus on the judgment of path legitimacy. Figures 20 and 21
show the obstacle environment near the target point, which is relatively simple compared
with environments 1 and 3.

The experimental results are shown in Tables 8–12. For the path planning problem
of mobile robots, Zhang Zhen proposed a new neighborhood search strategy to improve
the fitness value of the global optimal individual. This paper found a search method
based on the search population through the inspiration of Ref. [43]. From the experimental
results, this method has a significant effect. The best mobile path can be found in each
mobile robot’s working environment. Meanwhile, after 30 independent experiments in five
working environments, the average moving path length of FWOA is the minimum, and the
optimal value found is also among the best. It can be seen from the standard deviation that
FWOA is also very stable and robust.

It can be seen from the convergence graphs that FWOA always converges the earliest
among the six algorithms, which means that FWOA has a strong exploration ability and can
quickly traverse the search space to find the optimal path. Compared with other algorithms,
FWOA converges faster than them. This is due to the food-perception mechanism of the
algorithm. While different populations of searchers search for the best, the perception of
the search space (neighborhood) improves the exploration ability of the algorithm. Thus,
the performance of FWOA is competitive in the algorithm. It can be seen from the standard
deviation graphs that the stability of FWOA is not inferior to that of other algorithms
and is on the same level as that of other algorithms. In general, the stability of FWOA is
remarkable. It can be seen from Table 13 that FWOA is significantly different from other
algorithms in the irregular obstacle environment without influence range and can maintain
its independence.

Figure 11. The convergence graph of environment 3.

Figure 12. The Boxplot of Environment 3.
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Figure 13. The convergence graph of environment 4.

Figure 14. The Boxplot of Environment 4.

Figure 15. The convergence graph of environment 5.

Figure 16. The Boxplot of Environment 5.
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Figure 17. The Path of Environment 1.

Figure 18. The Path of Environment 2.

Figure 19. The Path of Environment 3.

Figure 20. The Path of Environment 4.
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Figure 21. The Path of Environment 5.

To sum up, in the irregular obstacles with no influence range, FWOA has shown
remarkable performance, and it is also very competitive.

6.2.2. Regular Obstacle Environment with Influence Range

This section describes the performance of FWOA in a regular Obstacle environment
with an influence range. In order to study the efficiency of different algorithms and show
the performance of FWOA, this paper compares FWOA with classical Swarm Optimiza-
tion (PSO) [20], Firefly algorithm (FA) [21], WOA [23], Seagull Optimization Algorithm
(SOA) [33], Particle Sooty Tern Optimization Algorithm (STOA) [42], and Harmony Search
(HS) [44].

From the convergence graphs of the algorithm (Figures 22, 24, 26, 28 and 30), we can
know that the FWOA algorithm has a better convergence rate than other algorithms. Due
to its good exploration capability, FWOA can not only converge rapidly but also ensure
accuracy. Compared with the classical WOA, the exploration capability of the FWOA is
almost twice that of the classical WOA. Thus, we can know that the performance of FWOA
is very competitive.

From the boxplot (Figures 23, 25, 29 and 31), it can be seen that the length of the
optimal path found by FWOA after 30 independent operations changes very little, which
means that FWOA has remarkable stability, and the optimal value can be found in each
operation. Combined with the convergence graphs of the algorithm, FWOA has remarkable
accuracy, stability, and robustness compared with other algorithms, which is attributed
to the multi-population mechanism of the algorithm, which realizes the balance between
exploitation and exploration.

Figure 22. The convergence graph of environment 6.
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Figure 23. The Boxplot of Environment 6.

Figure 24. The convergence graph of environment 7.

Figure 25. The Boxplot of Environment 7.

Figure 26. The convergence graph of environment 8.
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Figure 27. The Boxplot of Environment 8.

Figure 28. The convergence graph of environment 9.

Figure 29. The Boxplot of Environment 9.

Figure 30. The convergence graph of environment 10.
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Figure 31. The Boxplot of Environment 10.

It can be seen from the path graphs (Figures 32–36) that the path found by FWOA
avoids all the obstacle-affected areas to a certain extent, especially in areas with dense
obstacles such as Environment 3. FWOA can avoid all the obstacle-affected areas and reach
the target point, which indicates that FWOA has strong optimization ability.

Figure 32. The Path of Environment 6.

Figure 33. The Path of Environment 7.

Figure 34. The Path of Environment 8.
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Figure 35. The Path of Environment 9.

Figure 36. The Path of Environment 10.

The experimental results (Tables 14–18) show that FWOA has won first place in each
experiment, and the path length is significantly smaller than other algorithms. Meanwhile,
the worst case of the experimental results of FWOA is also better than the best case of other
algorithms. It can be seen from Table 19 that FWOA is significantly different from other
algorithms in the regular obstacle environment with influence range and can maintain its
independence. The experimental results show that FWOA has remarkable performance.

Table 19. The p-value.

Environment 6 Environment 7 Environment 8 Environment 9 Environment 10

PSO vs. FWOA 4.81232 × 10−310 0 0 1.05172 × 10−252 2.49163 × 10−301

WOA vs. FWOA 9.88131 × 10−324 0 0 5.57775 × 10−315 0
HS vs. FWOA 1.60769 × 10−320 0 0 7.70742 × 10−322 1.84425 × 10−318

FA vs. FWOA 3.15265 × 10−318 0 0 2.30662 × 10−276 3.30036 × 10−321

MSA vs. FWOA 7.88286 × 10−308 1.15611 × 10−321 0 3.95253 × 10−323 1.22528 × 10−321

In conclusion, FWOA can balance exploitation and exploration and has strong stability.
It has demonstrated its competitiveness in experiments and has remarkable performance
in solving practical problems, which can be applied to more complex practical problems.

7. Conclusions and Future Work

This paper intends to verify the performance of FWOA and its ability to deal with
the MRPP by comparing it with other intelligent algorithms. In the MRPP, the traditional
algorithm has the weakness of easily falling into local optima and exhibits slow conver-
gence [45]. For the above reasons, this paper proposes FWOA to solve these problems.
FWOA has the characteristics of fast convergence, remarkable exploration, and strong
optimization ability. The algorithm is studied on 23 benchmark functions to analyze the
exploitation, exploration, and convergence behavior of the algorithm, and WOA is found
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to be sufficiently competitive with other metaheuristic algorithms. Meanwhile, this paper
experiments with the algorithm in two different environments and analyzes its ability
to solve practical problems. The experiment results show that the algorithm has made
significant progress, which indicates that FWOA has great advantages in solving MRPP.
In the future, applying FWOA to complex, large-scale practical application problems will
be meaningful.
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