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Abstract: Reinforcement learning (RL)-based controllers have been applied to the high-speed move-
ment of quadruped robots on uneven terrains. The external disturbances increase as the robot
moves faster on such terrains, affecting the stability of the robot. Many existing RL-based methods
adopt higher control frequencies to respond quickly to the disturbance, which requires a significant
computational cost. We propose a control framework that consists of an RL-based control policy
updating at a low frequency and a model-based joint controller updating at a high frequency. Unlike
previous methods, our policy outputs the control law for each joint, executed by the corresponding
high-frequency joint controller to reduce the impact of external disturbances on the robot. We evalu-
ated our method on various simulated terrains with height differences of up to 6 cm. We achieved a
running motion of 1.8 m/s in the simulation using the Unitree A1 quadruped. The RL-based control
policy updates at 50 Hz with a latency of 20 ms, while the model-based joint controller runs at 1000 Hz.
The experimental results show that the proposed framework can overcome the latency caused by
low-frequency updates, making it applicable for real-robot deployment.

Keywords: reinforcement learning; quadrupedal robot; high-speed locomotion

1. Introduction
1.1. Background

The locomotion control of quadrupedal robots has become a research focus in recent
years. Quadrupedal robots are believed to be capable of traversing more challenging
terrains and performing more agile motions than wheeled robots. However, controlling a
quadruped is also more challenging. Traditional model-based control contains algorithms
such as model-predictive control [1,2] and whole-body control [3], which require manually
decided structures and empirically tuned parameters for the best performance.

Reinforcement learning has been widely applied in locomotion control. Benefiting
from the universal approximation ability of the neuron network policy model and the
offline optimization of the reinforcement learning algorithm, the control policy optimized
by reinforcement learning can capture complex robot dynamics. Reinforcement learning
has been employed to control low-speed quadrupedal walking on uneven terrains [4–7], or
high-speed running on flat ground [8,9]. RL is also implemented in bipedal locomotion
controllers, resulting in a better performance regarding dynamic model uncertainty [10],
fast yet robust maneuvers [11,12], and the precise control of stepping point [13] or gait [14].

Most of the existing RL-based control policy gives target joint or foot positions as
output, which are tracked by a PD controller with fixed gains [6,15–18]. These methods
introduce a constant impedance to the joints. Such an impedance will surpass the distur-
bance forces exerted by the ground to the robot. When the robot runs over uneven ground
at high speed, the disturbance will severely decrease the stability. In Jin et al. [9], Choi
et al. [19], the policy is updated with a high frequency and low latency to respond to such
disturbances in a timely manner. In these methods, the control policies applied in agile
locomotion control have an update rate of from 100 to 500 Hz and a latency of less than
10 ms.
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1.2. Motivation

In contrast to legged robots, their animal counterparts cannot respond to external
stimulation in such a short time. Nevertheless, they demonstrate a fast locomotion ability
on complex natural terrains. When animals move a joint, a group of antagonistic muscles
driving that joint will contract simultaneously [20]. As the contraction of these muscles will
change their force–length relation and force–velocity relation [21], the stiffness and damping
factor of the joint will change during motion. Having joints with adjustable impedance
has advantages in resisting different types of disturbances. As qualitative examples, a leg
following a swinging trajectory with low joint impedance will pass little disturbance force
onto the torso if it collides with an obstacle. Supporting legs with high-impedance joints
can stabilize the torso when they encounter external pushing forces.

Inspired by the variable impedance joints of animals, we designed a control framework
consisting of a state estimator, a reference trajectory generator, an RL-based control policy
with a low update rate, and joint controllers running at a high frequency. In this framework,
the reference trajectory generator provides target joint trajectories for joint controllers to
track. The control policy outputs each joint’s control law, including stiffness, damping, and
feed-forward torque. The joint controllers then execute that control law so that the joint can
follow the reference trajectory and stabilize the torso under external disturbances.

1.3. Contributions

Our main contributions are as follows:

1. We propose a new control framework for quadruped locomotion, which uses a low-
frequency RL-based policy to provide a control law allowing for high-frequency
model-based joint controllers to resist disturbances.

2. We realized high-speed locomotion on challenging terrains with a relatively low com-
putational cost. Our method succeeds in controlling the quadruped to traverse uneven
terrains at the speed of 1.8 m/s and frequency of 50 Hz, with a latency of 20 ms.

The rest of this paper is arranged as follows. Section 2 will describe the control
framework and the control policy’s training progress in detail. Section 3 will provide
the results of simulation experiments, including the behavior of the robot on multiple
terrains and the evaluation of our method’s ability to allow for running on uneven terrains.
Section 4 contains conclusions and discussions for future works.

2. Methods
2.1. Control Framework

Our control framework consists of a state estimator, a reference trajectory generator,
an RL-based control policy running at a low frequency, and joint controllers running at a
high frequency. The control policy will be described in detail in Section 2.2.

Figure 1 shows our control framework. The red part is the RL-based control policy
with an update rate of 50 Hz. The rest of the control framework and the physics simulation
update at 1 kHz. A 20 ms latency is applied to the control policy to simulate the computation
time of the policy model.

Figure 1. The proposed control framework. The input of the control policy is sampled at 50 Hz.
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As we employ the adjustable joint control law, the impedance characteristics of joints
can be modified to suit different situations during locomotion, such as foot contact or leg
swinging. With the control law optimized by the RL algorithm, our framework can achieve
a better performance compared with controllers with fixed PD gains.

The reference trajectory of the robot can be used to regulate robot behavior and narrow
the exploration space of the RL-based policy. While many prior approaches use dynamics
models to generate physically feasible reference trajectories for bipedal locomotion [11,12],
using fixed reference trajectories proved to be feasible for quadrupedal locomotion [4]
as the control policy is capable of modifying the trajectory to stabilize the robot. In our
framework, we use a reference trajectory generator to build trajectory, regardless of the
robot’s current state. This is because the robot’s state changes violently during high-speed
locomotion, making it unsuitable for generating a stable reference trajectory.

The reference trajectory generator provides a periodic reference joint trajectory based
on velocity command vxy,cmd, target torso height htorso,ref, period length T, stance phase
ratio µ, foot raise height hraise, and foot nominal position xfoot,0, yfoot,0. For the three
joints[q3k−2,ref, q3k−1,ref, q3k,ref] of leg k, their reference position can be expressed as a func-
tion of phase ϕk:

[q3k−2,ref, q3k−1,ref, q3k,ref]
T = JTGk(ϕk) (1)

where JTGk is the joint trajectory generator for leg k; phase ϕk is a periodic function of
time t: ϕk = (t/T + ϕk,0) mod 1. ϕk,0 represents the phase offset for leg k’s motion. In
this paper, we used trotting gait as a reference trajectory. The phase offset for FR, FL, RR,
and RL leg (k = 1, 2, 3, 4, respectively) was 0, 0.5, 0.5, 0. As the reference trajectory was
independent of feedback information, it can be computed offline, reducing the burden
of real-time computing. The reference joint velocity was obtained by differentiating the
reference joint position.

In this paper, we used manually designed function JTGk. The function generates
stance phase joint trajectory by computing inverse kinematics (IK) from the foot reference
trajectory, which moves backwards in the torso frame. During the beginning and end of
the swinging phase, IK is also used to plan lifting and landing trajectory. The function
uses joint space interpolation as a reference trajectory in the middle part of the swinging
phase. All parameters of the function JTGk were manually designed, with the purpose
of generating a joint trajectory for a command velocity up to 3 m/s while keeping joint
velocity under 40 rad/s and foot-raise height under 12 cm.

Figure 2 is a sampled foot trajectory in X-Z plane at the command forward velocity of
2 m/s. This foot trajectory is converted from the joint trajectory generated by the function
JTGk. The maximum joint velocity of the joint trajectory is 21.2 rad/s.

A joint controller tracks reference joint trajectory with the stiffness kp,i, damping kd,i,
and feed-forward torque τi,ff parameters given by the control policy described in the next
section. For joint controller i, the control law can be expressed as:

τi = kp,i(qi,ref − qi,real) + kd,i(q̇i,ref − q̇i,real) + τi,ff (2)

With simple control laws, the joint controller can run at a high frequency.
We used an extended Kalman filter (EKF)-based state estimator for the quadruped,

similar to Agarwal et al. [22]. As the orientation estimation noise grows too large during
highly dynamic locomotion, we used the orientation integration readout from the Inertial
Measurement Unit (IMU) as the estimated orientation of the torso state.
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Figure 2. Top Left: Reference foot trajectory in hip frame. Hip frame is a frame fixed to torso frame.
Its origin is at the hip joint, while its axis is parallel to the axis of torso frame. Top Right: Reference
foot trajectory relative to the ground. Bottom: The scale of reference foot trajectory in the global
frame, compared with the robot.

2.2. Reinforcement Learning Control Policy
2.2.1. Observation Space and Action Space

The control policy model’s input is a 67-dimension vector, including torso state,
command, reference joint trajectory, joint tracking error, and two stance phase indicators
stance1, stance2. stancek is the stance phase indicator, which is set to 1 when the reference
motion of leg k is in stance phase. Since we used a trotting gait where diagonal feet step
synchronously, only two indicators are required as input. A detailed description of these
inputs is listed in Table 1.

Table 1. List of control policy inputs.

Observation Size

Torso state
torso linear velocity vtorso 3

torso angular velocity ωtorso 3
gravity direction 3

Commands

linear velocity command vxy,cmd 2
angular velocity command ωz 1

yaw difference 1 2
gait period T 1

stance phase ratio µ 1
ref. torso height htorso,ref 1

Reference traj ref. joint position qref 12
ref. joint velocity q̇ref 12

Tracking error joint position error qref − qreal 12
joint velocity error q̇ref − q̇real 12

stance1, stance2 2
1 Expressed with sin(∆yaw) and cos(∆yaw).
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The policy model’s output is a 72D vector, which needs further processing to obtain
joints’ control law parameters. The output vector can be divided into 6 parts; each part
contains 12 scalars corresponding to 12 joints. The 6 parts are the scaled stiffness, damping,
and feed-forward torque parameters for stance phases (k̂p,stance, k̂d,stance, τ̂ f f ,stance ∈ R12),
and that set of parameters for swing phase (k̂p,swing, k̂d,swing, τ̂ f f ,swing ∈ R12), which are
limited to the range of [−1, 1]. For joint i, belonging to leg k, its control parameters can be
computed as:

 kp,i
kd,i
τi, f f

 =




kp,0 exp

(
αp k̂p,stance,i

)
kd,0 exp

(
αd k̂d,stance,i

)
τ0τ̂f f ,stance,

 i f stancek = 1


kp,0 exp

(
αp k̂p,swing,i

)
kd,0 exp

(
αd k̂d,swing,i

)
τ0τ̂f f ,swing,

 i f stancek = 0

(3)

In the equation above, kp,0, αp, kd,0, αd, τ0 are empirically set parameters. In our experiments,
the values of these parameters are set as kp,0 = 12 Nm/rad, αp = 1.5, kd,0 = 1 Nms/rad,
αd = 1, τ0 = 15 Nm.

This set of parameters allows for a large range of stiffness and damping coefficients,
covering the values presented in some prior works [5,8,9,19]. The large range of PD control
laws allow for the robot to exhibit different characteristics under disturbances.

In our control framework, the control policy updates much more slowly than the
trajectory generator. As a result, when a leg experiences a phase shift between swing
and stance phases, the control policy may not be ready to update. As swinging legs and
supporting legs have different dynamics characteristics, the optimal control law should be
different. To change the control law at the phase shift without updating the control policy,
our policy provides two sets of parameters for each joint, for stance and swing phases,
respectively. In addition, we used exponential scaling for stiffness and damping parameters,
which allows for the policy model to control these two parameters more precisely when the
parameters are small. This design is based on an observation that a low-impedance joint’s
dynamics characteristics change more than a high-impedance joint when the same amount
of modification is applied to their stiffness or damping coefficient.

2.2.2. Policy Training

We used proximal policy optimization [23] for training. Our policy model was imple-
mented by a fully connected neuron network of five layers. The sizes of the four hidden
layers are 256, 256, 128, and 128. The output of the last hidden layer was decoded to obtain
the mean and variance of the action, and the estimated state value. We used exponential
linear units (ELU) [24] as activation functions in the neuron network model; we applied a
running mean to the input and inverse running mean to the estimated state-value output
to boost training speed. The sampled action was clipped into the range of [−1, 1]. The
training algorithm was implemented in the rl_games [25] library.

2.2.3. Training Environment and Domain Randomization

We implemented our training environment using a Mujoco dynamics engine [26].
We set up an environment with multiple obstacles of 6cm in height and a terrain with a
changeable surface. To speed up the process of data collection, we maintained a group
of independently running environments and updated them simultaneously with parallel
computing. Figure 3 shows one of the training environments. The grey object is the terrain
and the red ones are obstacles with a fixed position and shape.
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Figure 3. Training environment.

We implemented the reference trajectory generator and joint controller described
above in the training environment (including the latency of policy updates). They updated
together with the physics simulator. A state estimator was not necessary as the state of
the robot can be acquired via the simulator’s API. As our control policy updates at a low
frequency, the physics simulator updates multiple times in one environment update step.
Here, we used Nsim to denote the number of physics simulator updates in one environment
step. For a variable X, we defined Xsub(j) to be a value of X at the jth physics simulator
update.

We applied domain randomization to increase the robustness of our control policy. We
randomize robot dynamics and environment parameters. All randomization was carried
out at the beginning of an episode. The randomized parameters are listed in Table 2.

The gravity direction is more heavily randomized around the Y axis (changes more
along the X axis), as we hope that the robot will have the ability to run up and down slopes
instead of resisting lateral tilts.

Table 2. Domain randomization applied to the environments.

Parameters Randomization Approach

Ground friction Set to U[0.3, 0.7]
Gravity direction Rotate by U[−0.1, 0.1] around X axis and U[−0.2, 0.2] around Y axis

Body mass Scaled by U[0.6, 1.4]

2.2.4. Reward Function Design

Our reward function is defined as:

r = max
(

wlinrlin + wrotrrot + wyawryaw + worirori + whrh
+wjposrjpos + wtorqrtorq + wjerkrjerk + wvjerkrvjerk

, 0
)

(4)

The detailed formula of each term is listed in Table 3. The terms are categorised into
five groups: task, stability, smoothness, tracking and limit. Task-related reward terms
include rlin, rrot, ryaw, which encourage the robot to follow the velocity and yaw command.
Stability reward terms include rori, rh, rtorq, which keep the robot from falling or making vi-
olent moves. Smoothness reward term rtorq penalizes the robot for violent moves. The task,
stability and smoothness terms are inspired by the reward settings of Margolis et al. [8].
The tracking term rjpos encourages the joints to follow the reference trajectory, similar to
the reward term in the work of Xie et al. [17]. jerk and vjerk are limit terms, which penalize
the joints when moving to infeasible positions or moving faster than their mechanical limit
during high-speed motion.

Parameter qi,max, qi,min, q̇i,max poses a soft limit on joint position and velocity. rjerk is
set to 1 if any of the joints reach the soft position limit; otherwise, it is set to 0. Similarly,
rvjerk is set to 1 if any of the joints reaches the soft velocity limit. The episode terminates if
the robot touches the ground with parts other than foot or shank.



Biomimetics 2024, 9, 37 7 of 14

Table 3. Elements of reward function.

Reward Term Weight Expression

rlin 3 e−∥vxy,cmd−vxy,real∥2
/0.02

rrot 1 e−(ωz,cmd−ωz,real)
2/0.01

ryaw 2 e−(yawcmd−yawreal)
2/0.01

rori 2 e−(roll2
real+pitch2

real)/0.02

rh 0.5 e−(htorso,ref−htorso,real)
2/0.05

rjpos 0.5 e−∑i (qi,ref−qi,real)
2/0.05

rtorq −0.001 ∑i ∑Nsim
j=1 τ2

i,sub(j)/Nsim

rjerk −0.5 1
{

∑Nsim
j=1 1

{
qi,sub(j) > qi,max or qi,sub(j) < qi,min

}
> 0

}
rvjerk −0.5 1

{
∑Nsim

j=1 1
{∣∣∣q̇i,sub(j)

∣∣∣ > q̇i,max

}
> 0

}
2.2.5. Continuous Adaptive Curriculum Learning

Curriculum learning has been shown to be able to improve the performance of the
policy, including the success rate when traversing uneven terrains [4] and the maximum
speed of the robot [8].

We present a new adaptive curriculum, which gradually tunes two parameters: the
terrain height and forward speed command. During training, we used three types of
terrain whose difficulty is relative to the terrain’s height. The three types of terrain are
shown in Figure 4. Different from some other methods [8], our curriculum changes each
environment’s difficulty independently, without the need to compute the overall difficulty
distribution.

Figure 4. Three types of terrain in training environment: left: stairs; middle: lateral stairs; right:
uneven terrain with random height. The obstacles are not displayed.

Similar to Lee et al. [4], we designed a score pj to evaluate the policy’s performance in
the jth environment. When an episode ends, pj is determined by the moving average of
the robot’s forward velocity v̄ and the length of the episode:

pj =


1 if episode_length > max_episode_length ∗ 0.9 and v̄ > vcmd,j − 0.2
−1 if episode_length < max_episode_length ∗ 0.5 or v̄ < vcmd,j − 0.5

0 otherwise
(5)

For the jth environment, we used vmax,j and hmax,j to denote its maximum difficulty.
Its terrain height hj and forward velocity vcmd,j are updated according to the following
curriculum at the end of an episode:

vcmd,j ← max
(

min
(

vcmd,j + U[−0.1, 0.1] + pj ∗ 0.3, vmax,j

)
, 0
)

hj ← max
(
min

(
hj + U[−0.005, 0.005] + pj ∗ 0.01, hmax,j

)
, 0
) (6)

The maximum difficulty parameters were assigned to each environment at the begin-
ning of the training. During training, these parameters limit the distribution of difficulty.
This limitation keeps a portion of easy environments, which prevents the policy from
overfitting with the hard evironments while behaving poorly in easy ones. The way we set
the maximum difficulty parameters is shown in Algorithm 1.
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Algorithm 1: Assigning maximum environment difficulty
Data: global maximum forward velocity command vmax, global maximum terrain

height hmax, number of simulation environments Nenv, proportion of
environments to be limited σ

Result: maximum forward velocity command of each environment
vmax,1, . . . , vmax,Nenv , maximum terrain height for each environment
hmax,1, . . . , hmax,Nenv

for j← 1 to Nenv do // Initialize all environments’ maximum difficulty
with global maximum difficulty

vmax,j ← vmax, hmax,j ← hmax

end
Nlimit ←

⌊(
1−
√

1− σ
)

Nenv
⌋
// Compute number of environments with

limited velocity (or with limited height)
for j← 1 to Nlimit do

vmax,Nenv−j+1 ← vmax ∗ j/Nlimit

end
Ncol ←

⌊√
Nenv

⌋
nrow ← 0, ncol ← 1
for j← 1 to Nlimit do

k← nrow ∗ Ncol + ncol
hmax,k ← hmax ∗ j/Nlimit
nrow ← nrow + 1
if nrow ∗ Ncol + ncol > Nenv then

nrow ← 0, ncol ← ncol + 1
end

end

3. Results
3.1. Training

We trained our policy on a desktop PC with 32-core Intel Xeon Gold 6234 CPU and
Nvidia GeForce RTX 2070 GPU. A total of 1024 simulations were computed in parallel by
the CPU, with 63 threads for data generation. The training took 9.5 h, corresponding to 58
days of simulation. The distribution of curriculum difficulty was examined at the end of
the training progress. During the training, 64% of the environments had limited difficulty.
As shown in Figure 5, most of the environments reached a relatively high level of difficulty,
yet a small portion of them remained easy due to the limitations.
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Figure 5. Environments’ difficulty distribution. Left: Maximum difficulty distribution. The large dot
in the top-right corner indicates all unlimited environments. Right: The distribution of environment
difficulty at the end of the training. Those who reached at least one of the limits are colored red; the
others are colored blue.
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3.2. Results of High-Speed Locomotion

We evaluated our control framework in Webots [27] 2021a simulation. In the ex-
periment, we built a series of obstacles and terrains that can be found in the real world,
including stairs (6 cm per step, 30 cm width), obstacles (6 cm height, 10 cm width), lateral
stairs (6 cm height difference), and an uneven terrain with random height (maximum
height 6 cm, horizontal sampling interval 4 cm). We also designed some dynamic terrains,
including two seesaws that can rotate when stepped on, and a floating blocks that will sink
when stepped on (each block weighs 2 kg, connected to the fixed environment by a vertical
slider joint with a stiffness of 2000 N/m and damping of 50 Ns/m). These terrains are lined
up in a row so that the robot can run past them in a single experiment.

We use a simulated Unitree A1 robot [28] to conduct all the experiments, as shown
in Figure 6. Video S1 contains a full record of running on different terrains. The Unitree
A1 robot is a 12 kg small quadrupedal robot with a standing height of 30 cm. During
simulation, we limited the torque output of each joint to match the capacity of the real robot
(20 Nm for hip joints; 55 Nm for others). However, the noise and latency of the sensors and
actuators were not modeled.

Stairs Obstacles Lateral stairs

Uneven terrain with random height Low-friction road Seesaw (0.15 rad)

Lateral seesaw (0.1 rad) Floating ground

Figure 6. Robot running on different types of terrain with only proprioceptive sensor inputs.

During all experiments in this paper, the update rate of the control policy was set to
50 Hz, while the other parts of the control framework updated at 1000 Hz. The simula-
tion timestep was 1 ms. The parameters for the reference trajectory were set as follows:
htorso,ref = 0.3 m, T = 0.25 s, µ = 0.3, hfoot = 12 cm, xfoot,0 = 0 m, yfoot,0 = 0.08 m. The lateral
velocity and rotational velocity command were set to zero. The command forward velocity
was 2.2 m/s when the robot traversed the environment. With a policy delay of 20 ms, the
robot can achieve a speed of over 1.8 m/s when running across different terrains while
only using proprioceptive sensors. The forward velocity during the experiment is shown
in Figure 7. Although the robot encountered ground disturbance that drastically slowed it
down, it maintained stability and recovered to normal speed in a short time.



Biomimetics 2024, 9, 37 10 of 14

0 5 10 15 20
Time (s)

0.0

0.5

1.0

1.5

2.0

Fo
rw

ar
d 

Ve
lo

cit
y 

(m
/s

)

st
ai

rs

ob
st

ac
le

s

la
te

ra
l s

ta
irs

sli
p

ra
nd

om

se
es

aw

la
te

ra
l s

ee
sa

w

flo
at

in
g

Forward Velocity in Test Environment

Figure 7. Robot forward velocity during the experiment.

During the experiment, the robot experienced slipping foot, blocked swinging foot,
and delayed contact. The policy succeeded in stabilizing the robot in these situations, as
shown in Figures 8–10.

Figure 8. The rear-right leg slips on slippery ground (with the friction coefficient of 0.15). Its motion
is indicated by the red arrow. Multiple snapshots of the motion in 0.05 s are stacked together to
visualize the slipping. The duration of the slipping is about 66% of the stance phase.

t = 0 s t = 0.025 s t = 0.05 s

t = 0.075 s t = 0.1 s t = 0.125 s

Figure 9. The rear-left foot is struck by an obstacle. The robot managed to raise the blocked leg over
the obstacle. The torso state was not significantly disturbed and the robot could keep running. Video
S2 records multiple successful cases under the disturbance of an obstacle.
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t = 0 s t = 0.01 s t = 0.02 s

t = 0.03 s t = 0.04 s t = 0.05 s

Figure 10. The front-left foot makes contact with the ground after more than half of the stance phase
(at T = 0.02 s), then leaves the ground (at T = 0.04 s). This stance phase is less than 0.02 s (27% of
planned stance phase). Video S3 records the complete motion of the delayed contact.

3.3. Locomotion Performance on Uneven Terrain

We evaluated our method’s performance when running on an uneven terrain with
random height. The result is compared with a baseline, which is a policy with PD parame-
ters fixed to 28 Nm/rad and 0.7 Nms/rad, respectively. During this experiment, we trained
two versions of the policy for each method. The first version lacks a policy update latency
and the second one is trained and evaluated with 20 ms of latency.

Both methods have a high success rate when the commanded velocity is lower than
2.4 m/s and the terrain height is less than 0.08 m. However, as the velocity or terrain height
increases, our method outperforms the baseline, as shown in Figure 11. Also, our method
is less affected by control latency.
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Figure 11. Success rate when running on an uneven terrain with random height.

When running on a 6 cm high uneven terrain, both methods have a similar perfor-
mance in terms of velocity-tracking when the command velocity is lower than 2.5 m/s.
However, as the command velocity increases, our method can track the command with
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less variance and fewer tracking errors, as shown in Figure 12. The baseline experienced a
degradation in performance when there was a latency of 20 ms, while our method was less
affected.

The better performance obtained by our framework under the presence of latency may
be due to the utilization of the joint controllers running at a high frequency. Since the joint
controllers are not affected by the latency, they can react to disturbances in time. With a
properly set controller law, these controllers can keep the robot from falling until the policy
can respond to the disturbance.
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Figure 12. Achieved velocity against command velocity when running on uneven terrain with a
height of 0.06 m.

4. Conclusions and Discussion

We presented a control framework containing an RL-based control policy with a
low update rate and model-based joint controllers with a high update rate. This control
framework can achieve high-speed locomotion on uneven terrains. With a latency in
policy updates, our control policy stabilized the robot following various disturbances by
modifying joint control laws. By providing parameters for a control law, a high-level
controller can define the behavior of joints and how they respond to disturbances, as long
as the control law is simple enough to update at a high frequency. Since our framework
can withstand latency and does not require in-time updates, it can be deployed on robot
controllers with an inferior computational capacity.

Our method has the following points to be improved.

1. We only used proprioceptive sensors, which could be combined with exteroception in
the future for robots running over high obstacles, as was conducted in Miki et al. [18]
and Zhuang et al. [29].

2. The manually designed reference trajectory could be further optimized for higher speed.
3. The linear feedback control laws could be replaced by non-linear control laws in future

works.
4. The stability of the controller under sensor noise is not analysed. The stability of a

legged controller can be investigated via Poincare Map function [30], or by entropy-
based analysis [9].
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5. Our controller’s robustness under sensor or actuator faults could be investigated in
future works. The sensor fault could be detected [31] and the RL-based policy is
proven to be able to adapt to actuator failures [8].

6. The range of joint controller stiffnesses and damping parameters was empirically set.
How the range of these parameters affects the performance of our controller may be
investigated in future works.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biomimetics9010037/s1, Video S1: Running Pass different types of terrains;
Video S2: Running with a leg blocked by an obstacle. Video S3: Running up stairs with delayed contact.
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