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Abstract: Automated guided vehicles (AGVs) are vital for optimizing the transport of material
in modern industry. AGVs have been widely used in production, logistics, transportation, and
commerce, enhancing productivity, lowering labor costs, improving energy efficiency, and ensuring
safety. However, path planning for AGVs in complex and dynamic environments remains challenging
due to the computation of obstacle avoidance and efficient transport. This study proposes a novel
approach that combines multi-objective particle swarm optimization (MOPSO) and the dynamic-
window approach (DWA) to enhance AGV path planning. Optimal AGV trajectories considering
energy consumption, travel time, and collision avoidance were used to model the multi-objective
functions for dealing with the outcome-feasible optimal solution. Empirical findings and results
demonstrate the approach’s effectiveness and efficiency, highlighting its potential for improving AGV
navigation in real-world scenarios.

Keywords: automated guided vehicles; path planning; multi-object PSO; dynamic-window approach;
collision avoidance; energy consumption; travel time

1. Introduction

Automated guided vehicles (AGVs) have emerged as pivotal assets across diverse
industries, particularly in settings (e.g., warehouses and manufacturing facilities) where
their prowess in efficiently transporting goods within controlled environments is highly
valued [1]. AGVs operate by adhering to predefined routes or employing navigation algo-
rithms to delineate their trajectories [2]. However, in intricate and dynamic surroundings,
path planning for AGVs becomes a formidable undertaking [3], necessitating the simul-
taneous optimization of multiple objectives, notably encompassing energy conservation,
travel duration, and collision avoidance [4].

Path planning for AGVs has been the subject of extensive inquiry within the academic
literature [5]. Various algorithms [6] including A* search [7], Dijkstra’s algorithm [8], and
rapidly-exploring random trees (RRT) [9] have been harnessed to ascertain the optimal
routes for AGVs. Nevertheless, these conventional methodologies may fall short in ad-
dressing the dynamic nature of environments and the multifaceted objectives associated
with AGV operations.
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The contemporary state-of-the-art in AGV path planning embodies a multifaceted
landscape that integrates cutting-edge technologies and methodologies [10]. One notable
trajectory in AGV path planning encompasses combining traditional algorithms with
modern machine learning techniques. Combining established algorithms like A* search [11]
with reinforcement learning (RL) [12], hybrid approaches enable AGVs to navigate static
and dynamic terrains with remarkable adaptability. Deep reinforcement learning (DRL) [13],
in particular, has garnered considerable attention, permitting AGVs to learn and optimize
paths through iterative interactions with their environment [14].

Meta-heuristic algorithms are a class of optimization algorithms inspired by natural
phenomena such as genetic algorithms [15,16], differential evolution (DE) [17,18], swarm
intelligence [19,20] (ant [21] and bee [22] colonies, wolf optimization [23]), and simulated
annealing (SA) [24] that have been applied to various optimization problems including
path planning for AGVs. Meta-heuristic algorithms can handle high-dimensional and
nonlinear optimization problems with multiple objectives and constraints. Meta-heuristic
algorithms can also provide robust and adaptive solutions that can deal with environmental
uncertainties and disturbances.

Table 1 compares the advantages and disadvantages of contemporary state-of-the-art
AGV path planning.

Table 1. Contemporary state-of-the-art AGV path planning with their advantages and disadvantages.

Approach Applications Advantages Disadvantages

A* algorithm [7,11] Robotics, AGV navigation,
path planning Optimal path, widely used Not suitable for dynamic

environments

Dijkstra’s algorithm [8,25] Robotics, AGV navigation,
graph search

Optimal path, simple
implementation

High computational
complexity

Genetic algorithm [15,26,27] AGV routing, optimization,
logistics planning

Robust optimization,
handling uncertainties

Slow convergence, parameter
tuning required

Particle swarm optimization
[19,28]

AGV path planning,
optimization, multi-objective

Multi-objective optimization,
adaptability

Lack of global search
capability

Dynamic programming [29] AGV navigation, optimal
control, robotics

Optimal path, efficient
computation

Limited scalability for large
environments

Reinforcement learning [30] AGV path planning, adaptive
navigation, robotics

Adaptive path planning,
learning from experience

High training time, potential
for suboptimal paths

Differential evolution [17,18] Optimal path planning for
mobile robots

Single-objective optimization,
adaptability Not adaptable environments

Simulated Annealing [24,31]
A single optimization

objective for optimal robot
path planning

Use polylines, pline
interpolated, and Bézier

curves for modeling fitness
function.

Inadaptable global search
capability

Optimal path planning using
hybrid PSO-SA [20]

Multi-objective optimization
for optimal control, robotics

Factors of the minimized path
length and smooth path for
modeling fitness function

Insufficient extent for
significant search capability

Ant colony optimization [32]
and its variants [21,33]

Mobile shortest path with
obstacle avoidance

Using adaptive fuzzy control,
angle guidance factor

Limited enlargeable
environments with scalability

search development.
Combination of ABC [22] with

Evolutionary programming
for path planning [34]

AGV navigation, optimal
control, robotics

Adaptive path planning,
learning from experience

Execution time, potential for
suboptimal paths

Grey wolf optimization
[23,35,36]

Optimal mobile robot path
planning

Single-objective optimization,
adaptability model

Limited scalability, executing
time, potential long

Furthermore, integrating real-time sensor data has become a hallmark of advanced
AGV path planning [37]. Equipped with sensors such as LiDAR [38], cameras, and ul-
trasonics [39], AGVs have acquired an enhanced perception of their surroundings. This
heightened situational awareness empowers AGVs to implement precise collision avoid-
ance strategies and dynamic path planning. Machine learning algorithms, trained on sensor
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data, contribute to interpreting and predicting environmental changes, further reinforcing
the AGV navigation capabilities in complex scenarios [40].

The primary quandary in AGV path planning resides in achieving equilibrium amid
the optimization of numerous objectives while circumventing collisions and flexibly adapt-
ing to ever-changing environments [41]. This necessitates identifying an approach that
efficaciously navigates the intricacies of multi-objective optimization [42] and seamlessly
integrates real-time environmental information [43].

The aims of this study are listed as follows: to develop a path planning system
for AGVs that successfully optimizes various goals including energy use, travel time,
and collision avoidance. Incorporating real-time environmental data into their trajectory
planning improves the flexibility of AGVs in dynamic contexts [44] and enhances the
effectiveness and efficiency of AGV path planning in complex and dynamic environments.
This study introduces a pioneering approach amalgamating multi-objective particle swarm
optimization (MOPSO) and the dynamic-window approach (DWA) [45] for AGV path
planning. The MOPSO algorithm facilitates the optimization of multiple objectives [46],
while the DWA technique [47] imparts real-time adaptability to changing environmental
conditions. The salient contributions of this paper encompass the following.

• The integration of MOPSO and DWA enables the efficient management of multi-
objective optimization challenges and dynamic environmental dynamics in AGV path
planning.

• Empirical assessments of the proposed approach across diverse scenarios, substantiat-
ing its effectiveness in optimizing objectives, averting collisions, and accommodating
environmental fluctuations.

• Comparative analyses against extant methodologies to demonstrate the superiority of
the proposed method in terms of efficiency, effectiveness, and adaptability.

The proposed approach promises to significantly enhance the AGV path planning
capabilities significantly, fostering heightened operational efficiency and safety within
industrial domains.

The rest of this paper’s structure unfolds as follows. Section 2 delves into related work,
providing comprehensive reviews of AGVs, particle swarm optimization (PSO), and the
dynamic-window approach (DWA). Section 3 expounds upon the methodology employed
in this research. Section 4 outlines the experimental setup and presents the results and
discussion. Finally, Section 5 encapsulates the conclusions drawn from this study.

2. Related Work

This section reviews the relevant literature regarding automated guided vehicles
(AGVs) and presents the particle swarm optimization (PSO).

2.1. Automated Guided Vehicles

Automated guided vehicles (AGVs) are autonomous vehicles that transport goods
within industrial facilities [1,48]. In recent years, significant advancements have been made
in AGVs, revolutionizing how goods are transported in various industries [11]. Researchers
have focused on improving the efficiency, safety, and adaptability of AGVs to meet the
evolving demands of modern production systems, logistics, and transportation. Integrating
cutting-edge sensing technology like LiDAR [38] and computer vision is one noteworthy
advancement that has made it possible for AGVs to perceive and navigate complicated
situations with greater accuracy and dependability.

Previous work has opened the door for more effective path-planning algorithms that
optimize AGV trajectories while considering various factors including energy consumption,
travel duration, and collision avoidance. AGVs are equipped with sensors such as laser
scanners and vision systems to perceive their environment and navigate safely. AGVs
have gained popularity due to their ability to improve efficiency, reduce labor costs, and
enhance safety in material handling operations. Path planning techniques for AGVs have
been proposed for AGVs that can be broadly categorized into traditional and intelligent
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optimization algorithms [48]. Standard algorithms include A* search, Dijkstra’s algorithm,
and RRT, which rely on predefined maps and graph-based planning methods. Intelligent
optimization algorithms, on the other hand, employ optimization techniques to find optimal
paths based on various objectives [49].

Figure 1 illustrates a typical automated guided vehicle (AGV) and wheel angles in
arc path planning tracking, where (a) shows the AGV and wheel angle calculation in CRC
path planning.
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Figure 1. Illustration of a typical automated guided vehicle (AGV) and the wheel angles in arc path
planning tracking. (a) Automated Guided Vehicle (AGV); (b) AGV driving wheels angles in tracking
arc path.

The AGV is responsible for transporting items within a given space, moving from
the starting point to the desired destination [50]. To ensure efficient and obstacle-free
movement, the AGV must be able to navigate around static obstacles while maintaining the
shortest possible path and minimizing the steering angles. This requirement is necessary
to meet multiple objectives simultaneously. The AGV workspace is defined as a physical
area represented by RxR, where obstacle mapping is undertaken of the workspace section
that is free from collisions and allows for movement between the AGV and obstacle. It is
assumed that the AGV has access to environmental information about its workspace [48]. In
Figure 1b, let α and θ be the angle between the vehicle body and the X-axis, respectively, the
steering wheel angle with the assumed two wheels are parallel and satisfy the Ackermann
steering geometry, and L is the wheelbase [1]. A moving AGV distance in the static
obstacle at adjusted speed represents the shortest path between points, which follows
the given formula.

dist = min∑n
i=1

√
(xi+1 − xi)

2 + (yi+1 − yi)
2,

s.t.


a = vtanθ

L ,
x = vsinα − ycosα,

y = xsin(θ + α)− ycos(θ + α)− Lacosθ,
x = vsinα
y = vcosα

(1)

where α and θ are the vehicle body and the X-axis angle and the steering wheel angles,
respectively; horizontal x and vertical y present the velocity components of the axis, respec-
tively; dist is a distance path between points; n is the number of steering angles in total.

The direction of motion of the AGV vehicle body is influenced by various physical
factors such as gravitational acceleration, running velocity, and vehicle mass [51]. Addi-
tionally, in a dynamic environment of obstacles in the working space, the speed of the AGV
is limited by factors like curvature, turning radius, maximum steering speed, static friction
coefficient, and minimum radius. The AGV steering is subject to the following procedure
with the motion constraints. Therefore, the AGV running velocity is subject to the following
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formula with an acceleration with a limiting minimum radius of the speed.

vmax =
√

u·g·
√
(1 + L2.k2)

√
R2 − L2,

s.t.


ξmin ≥ m. v2

max
R ,

vi ≤ vmax,
k = (1

R) ,

(2)

where vi and vmax are the running velocity and maximize running velocity, respectively; u
and g are static friction coefficient and gravitational acceleration parameters, respectively;
vi and m are the running velocity and vehicle mass variables, respectively; R and k are the
deployed area measured length, curvature turning radius, and maximum steering speed
variables, respectively.

2.2. Particle Swarm Optimization (PSO)

A population-based optimization system called particle swarm optimization (PSO)
was inspired by the cooperative behavior of fish schools and bird flocks [19]. In the PSO, a
collection of particles stands in for potential solutions, and these particles search a search
space for the best possible answers: a particle’s individual best-known solution and the
swarm’s overall most prominent solution impact how it moves [52]. There are several
phases of the PSO running process—initialize a swarm population, update the particle’s
position and velocity, evaluate the objective function of the particle’s new position, update
personal and global bests, and check termination conditions are some examples of the PSO
process optimization.

The initialization phase is implemented to initialize a swarm of particles with random
locations or positions and velocities within the search space. In this phase, the personal
best position is also set, and the fitness of the objective function for each particle to its initial
position and fitness. 

S = uni f rnd(Ub, Lb, d),
V = zeros(d),

Fitness = CostFunction(S),
(3)

where S and V are initialized for the location as the position and velocity of the PSO
particles, respectively; Fitness is evaluated as the fitness value for particle position based
on cost function or objective function; Ub and Lb are the problem area searching space
boundaries; uni f rnd is a random generating function; d is dimension. The particle with the
best fitness is identified as the global best position and fitness.

The updating phase for the particle’s velocity and position is carried out with each
particle in the whole population.

V(t+1)
id = ω.Vt

id + α.λ1

(
pbestt

id − St
id

)
+ β.λ2

(
gbestt

d − St
id

)
, (4)

where λ1 and λ2 are the generating randoms in arrangement [0, 1]; ω presents the inertia
weight; d is the dimension; pbestt

id and gbestt
d are variable vectors for presenting the

personal and global best positions of the particle’s with the current generation, respectively;
α and β present the acceleration coefficients. Particle positions S are updated using the
following formula.

S(t+1)
id = Vt

id + St
id, (5)

where St
id and V(t+1)

id present the particles’ position and velocity at t, which is the current
generation or iteration and index of particle id-the.

The evaluation phase: Using the fitness function unique to the problem being solved,
the assessment phase is carried out by assessing the fitness of each particle’s new position.
After that, the personal and global bests can be updated, for instance, by comparing the
fitness of each particle to its personal best fitness and updating the personal best position
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and fitness if the current fitness is higher. If necessary, the particle’s fitness is compared
to the global best fitness, updating the global best position and fitness. The termination
condition phase determines whether the termination condition has been satisfied such as
reaching the required fitness level or the maximum number of iterations. The algorithm is
stopped if the termination condition is satisfied; else, return to the updating phase.

Algorithm 1 illustrates a particle swarm algorithm optimization as its pseudo-code PSO.

Algorithm 1: A pseudo-code PSO

Input: particles V, S, Np, and fitness function
Output: Solution as global best position S
1. Start

Initializing particles: Equation (3)
2. Initializing global best position and fitness

3. While termination condition is not met
4. For each particle
5. Updating particle ’s velocity: Equation (4)

6. Updating particle ’s position: Equation (5)

7. Evaluating fitness of the particle ’s new position

8. Updating personal best position and fitness
9. Updating global best position and fitness

10. End

Moreover, there have been various improvements in PSO versions, and several related
strategies in multi-objective optimization represent different strategies for enhancing the
performance of MOPSO in solving multi-objective optimization problems. These aim to
improve the search space exploration, prevent premature convergence, and adapt the
algorithm’s parameters to the situation. Each approach has advantages and may be more
suitable for different optimization problems. The parallel MOPSO approach [53] involves
running multiple instances of MOPSO simultaneously on different processors or cores
to solve a single optimization problem. Each instance operates independently, combin-
ing their results to find an overall solution. This approach can significantly reduce the
computational time required for optimization. Multi-swarm PSO [54] uses the particles’
population divided into multiple subgroups or swarms, each with its own leader. The
swarms interact and exchange information to explore the search space more effectively and
prevent premature convergence to suboptimal solutions.

Adaptive PSO involves dynamically adjusting the parameters of the MOPSO algorithm
based on the performance of the particles during the optimization process [55]. This can
help improve the convergence speed and the quality of the solutions. In MOPSO, with the
improved strategy of selecting the global particle guides used, the selection of international
guides for the particles is improved to enhance the exploration and exploitation capabilities
of the algorithm, which can lead to better convergence and more accurate solutions.

3. Results of MOPSO-DWA for Enhancing AGV Path Planning

This section presents a suggested integration of MOPSO and DWA for enhancing
AGV path planning via several subsections (e.g., reviewing the dynamic-window approach
(DWA), stating multi-objective PSO with modeling objective function, and combining the
schemes of integration MOPSO and DWA).

3.1. Dynamic-Window Approach (DWA)

The dynamic-window approach (DWA) is the reactive navigation method within the
proposed path-planning approach [47] that allows the AGV to reactively navigate in real-
time, considering the current state of the environment and the AGV’s capabilities [56]. It
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involves the following steps. (1) Generate a dynamic window of allowable velocities based
on the AGV’s maximum and minimum velocities. (2) Sample a set of potential velocities
from the dynamic window. (3) For each velocity sample, simulate the AGV’s trajectory over
a short time horizon. (4) Calculate a score for each trajectory based on predefined criteria
such as collision avoidance, proximity to the goal, and smoothness of motion. (5) Select
the highest-scoring trajectory as the following action for the AGV. (6) Execute the selected
action and update the AGV’s state. Step (7) is repeatedly undertaking the following action.
The DWA is a reactive navigation method developed for mobile robots [57]. It works by
sampling a set of potential velocities and computing their corresponding trajectories to
assess their quality based on predefined criteria such as collision avoidance and proximity
to the goal. The highest-scoring trajectory within a dynamically changing window is
selected as the following action. DWA allows robots including AGVs to reactively navigate
in real-time, considering the current state of the environment and the robot’s abilities.
Figure 2 shows a flowchart of the DWA method of the local path-planning algorithm.
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Here are the detailed steps of the DWA algorithm:
Step 1—Sensing and localization: Obtain sensor readings to perceive the environment

and estimate the robot’s current position and orientation.
Step 2—Motion prediction: Predict the future motion of the robot based on its current

state and dynamics model. Consider the robot’s velocity, acceleration, and steering capabilities.
Step 3—Dynamic-window generation: Define a dynamic window representing the

robot’s feasible velocity and steering combinations. Set the maximum and minimum limits
for linear and angular velocities based on the robot’s capabilities.

Step 4—Trajectory evaluation: Generate a set of candidate trajectories by sampling
velocities within the dynamic window. Evaluate each trajectory based on different criteria
such as proximity to obstacles, proximity to the goal, and smoothness of motion. Assign a
score or cost to each course based on the evaluation criteria.

Step 5—Trajectory selection: Select the trajectory with the lowest cost or highest score
as the desired trajectory for the robot. Ensure that the selected trajectory is collision-free
and satisfies the dynamic constraints of the robot.

Step 6—Motion execution: Convert the desired trajectory into control commands
for the robot’s actuators. Execute the control commands to move the robot along the
desired trajectory.

Step 7—Loop: Continuously repeat Steps 1 to 6 to update the robot’s motion plan
based on the changing environment and robot state. Adjust the dynamic window and
re-evaluate trajectories to adapt to the dynamic nature of the domain.

The DWA algorithm enables the robot to navigate safely and efficiently in dynamic
environments by iteratively generating and evaluating trajectories within a dynamic win-
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dow. It accounts for the robot’s dynamic constraints, obstacle avoidance, and goal-reaching
objectives to generate appropriate motion plans.

3.2. Multi-Object Particle Swarm Optimization (MOPSO)

The optimal AGV path planning is applied via the MOPSO in the dynamic-window
approach technique. In managing multiple objectives of the MOPSO, a swarm of particles
with different positions and velocities indicates potential solutions [46]. The particles
traverse the search space for the best answers that optimize the specified objectives [42]. The
following phases comprise the MOPSO algorithm [46]: initialization randomly initializes
the particle locations and velocities, evaluation for the goals established for AGV path
planning, assessment of each particle’s fitness, update personal best and global best based
on the individual best locations of each particle, update the global best position using the
individual and collective best agent solutions, update the velocities and positions of the
particles, and whether the termination criterion is satisfied.

Multi-objectives consist of two objective functions: the shortest path objective function
and the maximum smoothness objective function. The shortest path objective function is
modeled by calculating the distances along identified points to guide the AGV forward or
backward, turning or moving, as path planning. The first objective function of the shortest
path is expressed as follows.

F1(n(ta), Pi(xi, yi), Pi+1(xi+1, yi+1)) = min∑n(ta)
i=1

√
(xi+1 − xi)

2 + (yi+1 − yi)
2, (6)

where F1 is the objective function of the shortest path; Pi is the location in the working area
space of i-the point; n(ta) is the total number of steering angles of moving AGV; xi and yi
are the axis of the i-the point of velocity of the AGV horizontal and vertical present.

The second objective function is the aim of the maximum smoothness function, which
is presented as follows.

F2(n(ta), Pi(xi, yi), Pi+1(xi+1, yi+1)) =

min∑
n(ta)
i=1 (P i−1(xi−1, yi−1), Pi(xi, yi), Pi+1(xi+1, yi+1)

)
.
∣∣∣arctan

(
yi+1−y1
xi+1−xi

)
− arctan

(
yi−yi−1
xi−xi−1

)∣∣∣, (7)

where F2 is the objective function of the shortest path; xi and yi are the axis of i-the point
of velocity of the AGV horizontal and vertical with the arctan calculation for Pi and Pi+1
in the working area space of the moving AGV. As arctan angles are used as the basis
for steering, they are thus determined by the path’s smoothness, which has a similar
meaning to curvature. Shorter pathways and more minor alterations result from increased
smoothness correlated with reduced curvature.

Several methods can establish multi-objectives, for example, by using the weighting
parameter and Pareto optimal solution.

The weighting parameter with multi-objective function is expressed as follows.

F = ω × F1 + (1 − ω)× F2, (8)

where F is a multi-objective function with F1 and F2; ω is a parameter of weighting for
balancing objectives.

Multi-objective optimization relies on the concept of Pareto print optimization to opti-
mize objectives simultaneously. Pareto dominance is a crucial concept in multi-objective
optimization, allowing for the simultaneous optimization of multiple goals. This involves
analyzing various aspects of the multi-objective model such as Pareto disaggregation
or optimal solutions, the solution set, and non-inferior solutions. A Pareto dominance
comparison is performed among the particles to determine dominance relationships. Addi-
tionally, each particle in each front is assigned a crowding distance to maintain diversity.
Finally, dominance ranks are assigned to the particles based on their Pareto dominance
relationships.
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Method multi-objective optimization is carried out by adapting multi-objective PSO
optimization (MOPSO), which is expressed in detailed steps as follows.

Step 1—Initialization: The positions and velocities of a swarm of particles are randomly
generated within the search space. The personal best position and fitness of each particle of
the initialized position are set as the initial values. The particle identifies the global best
position with its best fitness.

Step 2—Updating the particle’s velocity and position: The V velocity of each particle
is updated by using Equation (4). Solution S as the position is updated by the particle’s
position using Equation (5).

Step 3—Evaluation: The objective function of or fitness of each particle’s new position
is calculated by multiple objective functions: F1—Equation (6) and F2—Equation (7), each
representing a different objective for evaluation.

Step 4—Updating the personal and global bests: This is carried out by comparing the
fitness value with its personal best fitness for each particle objective. If the current fitness is
better for any objective, update that objective function’s personal best position and fitness
value. Furthermore, computation of the global best fitness for each objective is carried out
by comparing the fitness value of the particle with whether the current fitness is better for
any objective function and updating the global best position and fitness for that objective.

Step 5—Pareto dominance: Pareto dominance is performed by comparing the particles
to determine the dominance relationships. Assign dominance ranks to the particles based
on their Pareto dominance relationships. The weights are dynamically adjusted based
on the particles’ performance and the optimization problem characteristics based on the
distribution of solutions along the Pareto front.

Step 6—Non-dominated sorting: The particles into different non-dominated fronts are
sorted based on their dominance ranks, expressed as the following formula.

Li = ∑N
n=1

(
f i+1
n − f i−1

n
f max
n − f min

n

)
, i = 2, 3, . . . , k − 1, (9)

where f max
n and f min

n are the max and min values in the Pareto solution set of earcg objective
functions; N (here N is set to 2) is the total number of objective functions; k is the total
number of non-inferior solutions. A crowding distance to each particle is assigned in each
front to maintain diversity.

Step 7—Selection and reproduction: Particles from the non-dominated fronts are
selected based on their dominance ranks and crowding distances. Reproduce new particles
by combining the chosen particles through crossover and mutation operations.

Step 8—Termination condition: This is executed by checking if the termination condi-
tion is met (e.g., reaching a maximum number of iterations or reaching the desired target).
If the termination condition is met, stop the algorithm; otherwise, go back to Step 2.

3.3. Integration of MOPSO and DWA

The proposed approach integrates the MOPSO algorithm and DWA, enabling efficient
and effective path planning for AGVs. In combination with MOPSO and DWA for AGV
path planning, MOPSO is used to optimize the selection of velocities and trajectories within
the DWA framework, allowing for efficient and adequate decision-making in real-time—the
significance of AGV path planning and the various techniques employed to optimize the
selection of paths. Integrating MOPSO and DWA presents a promising approach to address
the challenges of AGV path planning in complex and dynamic environments.

The integration involves the following steps. Initialization: The MOPSO algorithm
with a swarm of particles is initialized in the desired area space, each representing a
potential solution for the AGV’s path. A dynamic window of velocities is generated
based on the AGV’s capabilities. For each particle in the swarm, the following steps are
performed: (a) Use the MOPSO algorithm to optimize the selection of velocities within the
dynamic window based on multiple objectives; (b) apply the DWA approach to select the
highest-scoring trajectory for the AGV based on the optimized velocities.
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The next step is to update the positions and velocities of the particles using the MOPSO
algorithm. Repeat generating new solutions and checking the fitness until the termination
criteria are met (e.g., a maximum number of iterations or convergence). The final step is to
select the best solution from the swarm as the optimal path for the AGV. Figure 3 illustrates
an overview of MOPSO-DWA for enhancing an AGV’s path-planning capabilities in a
dynamic environment.
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By integrating MOPSO and DWA, the proposed approach can optimize multiple
objectives and dynamically adapt to changing environments, leading to efficient and safe
path planning for AGVs in complex industrial environments. Figure 4 illustrates a flowchart
of the suggested MOPSO-DWA scheme for optimal path planning.
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The proposed path-planning approach for AGVs was applied to a design system
architecture that comprised several components (e.g., sensor module, map and localization
module, path planning module, control system, and AGV navigating platform). The
suggested architecture includes (1) the sensor system: sensors (e.g., laser scanners and
vision systems) can be used to perceive the environment and obtain real-time information;
(2) the map and localization module (e.g., a created map of the environment) and the AGV’s
position and orientation are determined using localization techniques; (3) the path planning
module, where the proposed optimization is applied (e.g., the module generates optimal
paths based on multiple objectives and real-time information); (4) the control system (e.g.,
the control module) converts the planned paths into control commands for the AGV’s
actuators; (5) the AGV platform execute the control commands to navigate through the
environment.

4. Experimental Results and Discussion

This section presents the simulation and experimental results through the subsections
(e.g., the environmental work settings, performance metrics of the experimental results) as
well as a discussion.

4.1. System Environmental Settings

System environmental settings were used to test the proposed approach’s performance
at the same environment setting for a fair comparison. The results of the proposed approach
were compared with existing path-planning approaches for AGVs (e.g., A star algorithm,
genetic algorithm (GA) [26], particle swarm optimization (PSO) [19,28], multi-evolutionary
algorithm (SPEA-strength Pareto evolutionary algorithm) [41], and multi-objective genetic
algorithm (NSGA-II-Non-dominated sorting GA) [42,58]). The parameters were set for
the multi-objective optimization methods (e.g., Np, the population size, was set to 100, the
max_generations of iterations was 1000, the random learning factors were set to ω, c1, c2
for the PSO parameter settings, crossover, and mutation probability paraments were set
to 0.8 and 0.2 for the genetic algorithm and evolutionary algorithm respectively, and the
max steering velocity was set to 0.2 m/s. Two dimensions of MxL (M and L are unit length
metrics for length and width) environment raster maps of different complexity were built
in the environment, where the black part represents the known obstacles, the gray part
represents the access node area, and the white part represents the passable area. Table 2
displays the brief configuration parameters used in the environmental experiment.

Table 2. Parameter settings used in the conducted environmental experiment.

Algorithm Parameters Setting

GA [26] Mutation rate Pm = 0.1, crossover rate- Pc = 0.8, Np = 100, tournament size τ = 5, max_gen = 1000

NSGA-II [42,58] Crossover rate- Pc = 0.85, Np = 100, tournament size τ = 5, max_gen = 1000, mutation rate Pm = 0.1,

SPEA [41] Np = 100, Archive size Ar = 100, max_gen = 1000, mutation rate Pm = 0.1, crossover rate- Pc = 0.85

PSO [19,28] Vmax = 10, Vmin = −10, ω ∈ [0.9, 0.4], c1 = c2 = 1.469,
Swarm size Np = 100, maxIter = 1000

A star [11] Initial heuristic h = 0 estimates the distance to the goal, Open list Ol = ∅, Closed list Cl = ∅

MOPSO [46] c1 = c2 = 1.469, ω ∈ [0.9, 0.4], Swarm size Np = 100, maxIter = 1000, Vmax = 10, Vmin = −10,

DWA [45]
Robot max steering velocity ϑ = 0.2m/s; heading change rate ∂ = 0.45◦ s; time-to-collision ttc = 0.95 s;
distance to goal dgoal = 5.0 m; obstacle proximity dgoal = 0.8; safe velocity vsa f e = 0.1 m/s, and max
acceleration amax = 1.0 m/s

An involved system architecture of the proposed path-planning approach for AGVs
is described with several component modules [3] and is a high-level overview of the
suggested system architecture in the proposed AGV path-planning approach.
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(1) Sensor module: This component includes various sensors such as LiDAR [38], cameras,
and proximity sensors to perceive the environment and gather information about
obstacles, paths, and other relevant data.

(2) Localization module: Responsible for estimating and updating the AGV’s position
and orientation in real-time. Utilizes techniques like odometry, GPS, or simultaneous
localization and mapping to provide accurate localization information.

(3) Mapping module: Generates and maintains a map of the environment that includes
information like obstacles, paths, and other relevant features. It uses sensor and
localization module data to create and update the map.

(4) Path planning module: Determines the optimal path for the AGV to navigate from
its current position to the desired destination. It considers factors such as obstacle
avoidance, path smoothness, shortest distance, or time constraints by utilizing the
MOPSO algorithm.

(5) Trajectory planning module: The optimal planned path into a smooth and feasible
trajectory for the AGV to follow the obtained path. It considers the AGV’s dynamic
constraints such as acceleration, deceleration, and maximum velocity to generate a
safe and achievable trajectory.

(6) Control module: The trajectory planning module receives the trajectory and generates
control signals to actuate the AGV. Controls the AGV’s actuators such as motors or
steering mechanisms to execute the planned trajectory. Monitors and adjusts the
AGV’s motion based on sensor feedback and the environment.

(7) Communication module: Facilitates communication and coordination between the
AGV and other entities such as a central control system or other AGVs. Enables
exchanging information, commands, and status updates to ensure synchronized
operations and efficient coordination.

(8) Central control system: A centralized control and coordination mechanism is provided
for multiple AGVs in a fleet. Monitors and manages the overall operation of the AGVs,
assigns tasks, and optimizes resource allocation. Integrates with the communication
module to exchange information with individual AGVs.

The system architecture describes the components involved in the proposed AGV
path-planning approach.

4.2. Experimental Results

In comparison with existing approaches in this subsection, the results of the proposed
approach were compared with existing path-planning methods for AGVs (e.g., A* [11],
GA [26], PSO [28], SPEA [41], and NSGA-II [58] methods). Both single-objective and
multi-objective optimization methods aim to demonstrate the superiority of the proposed
approach in terms of efficiency, optimality, and adaptability to complex industrial environ-
ments. The comparison is conducted based on performance metrics such as convergence,
path length, execution time, collision rate, smoothness of motion, and goal-reaching rate.

Figure 5 shows the curve convergence rate of the proposed approach compared with
existing methods (e.g., A* [11], GA [26], PSO [28], SPEA [41], and NSGA-II [58]). The
metric of errors was used in the scenario with the single objective function to evaluate
the performance of the convergence test. It can be seen that the proposed approach of
MOPSO had a convergence rate in both the separated single objective functions that were
the smallest, which means that the proposed approach provides a fast converging speed.

Static obstacle avoidance is used to test scenarios with static obstacles placed in the
environment to evaluate the AGV’s ability to avoid collisions and find the optimal paths
around the obstacles. Dynamic obstacle avoidance tests scenarios where dynamic obstacles
are introduced into the environment, representing moving objects or other AGVs. These test
the AGV’s ability to dynamically react and adjust its path in real-time to avoid collisions.
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Figure 5. Comparison of the curve convergence rate of the proposed approach compared with
the existing methods of the GA, PSO [28], SPEA, A* [11], and NSGA-II [58] algorithms for single-
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(smoothness path).

The evaluation of multi-objective optimization was tested with the multi-objective op-
timization of MOPSO-DWA, which was made possible in AGV path planning by incorporat-
ing the MOPSO algorithm and DWA. The examination looked at the Pareto front produced
by the MOPSO optimization over functions F1 (Equation (6)) and F2 (Equation (7)). It also
illustrates the trade-off between goals such as the path length and motion smoothness as
Equation (8). Figure 6 displays the Pareto optimal front with the obtained result curves
of the multi-objective optimal AGV path planning from the MOPSO, SPEA, and NSGA-II
algorithms. Observing Figure 6, most of the acquired optimal result points were allocated
closer to optimizing the line of the Pareto optimal front than the other algorithms.
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Further experiments were conducted in different scenarios, and the proposed ap-
proach’s performance could be thoroughly evaluated and compared with other existing
path-planning methods, demonstrating its effectiveness and robustness in various in-
dustrial environments. Experimental scenarios can be used to evaluate the proposed
approach comprehensively, and various experimental scenarios were created. The scenar-
ios simulated different challenging situations and environmental conditions that AGVs
may encounter in real-world industrial environments. Experiment scenario 1 compares
the algorithm of the MOPSO-DWA approach with the environment with known static
obstacles and the parameter value of the DWA algorithm, while experiment scenario 2 is to
verify the obstacle avoidance performance of the MOPSO-DWA approach in an unknown
obstacle environment.
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Figure 7 shows a comparison of the obtained path planning graph result of the pro-
posed MOPSO-DWA approach with the A*-DWA method [11] for static environment
obstacle avoidance.
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The proposed approach of the integration of MOPSO-DWA for AGV path planning
was evaluated using a simulation environment. The simulation environment provides
a realistic representation of the industrial environment and allows for the testing and
validating of the path-planning algorithms. The simulation environment included the
following components: map, AGV, sensor, control simulations, and visualization. The
map representation is prepared with an environment map that includes obstacles, goal
locations, and other relevant features. The AGV simulation model is a model of the AGV
that is implemented including its shape, size, kinematics, and dynamics. Sensor simulation
is when the sensor system of the AGV such as laser scanners or cameras is simulated
to provide real-time perception of the environment. Control simulation uses the control
system of the AGV to execute the planned paths and generate control commands for the
actuators. Visualization provides visual feedback on the AGV’s movements including its
path, obstacles, and goal locations. Observing the obtained results from Figure 7, we can
see that the MOPSO approach can provide the optimal global static route planning and
successfully reach the goal point shorter than the A-star approach.

In the other scenario of obstacles in a dynamic environment, the ability of the proposed
approach to avoid obstacles in an environment with unknown obstacles was tested. The
environment conditions were set to include obstacles in a dynamic environment, and
anonymous blocks were added to the path to replicate these conditions. Figure 8 shows a
test of the proposed approach in a dynamic environment, where the small gray squares
represent these unidentified obstacles. This allows for real-time detection, avoidance, and
effective routing.

Performance metrics can be applied to evaluate the proposed approach’s performance.
Several metrics provide quantitative measures of the path-planning approach’s effective-
ness and efficiency for AGV path planning (e.g., the path length, execution time, collision
rate, smoothness of motion, and goal-reaching rate). A number of tests was conducted,
repeated N times (N was set to 20 in the experiment). The results were calculated with the
average of the obtained path length, execution time, collision rate, smoothness of motion,
and goal-reaching rate. Table 3 compares the average results of several measures over N
running times. The comparison with the existing path planning approaches for AGVs had
the goal to demonstrate the superiority of the proposed approach in terms of the efficiency,
optimality, and adaptability to complex industrial environments.
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Table 3. Comparison of the average value results of several measures over N running times.

AVG (Values) Metrics
Approaches

A* Algorithm-DWA NSGA-II-DWA SPEA-DWA MOPSO-DWA

Path length (m) 4.39 × 101 4.39 × 101 4.44 × 101 4.30 × 101

Path inflection 2 2 3 1
Collision rate 7% 9% 9% 6%

Goal-reaching rate 93% 95% 96% 97%
Smoothness of motion 42% 50% 59% 62%

Path nodes 325 325 301 260
Path planning time (s) 2.83 × 100 2.83 × 100 2.33 × 100 2.03 × 100

The values of the comparison of algorithms in Table 3 are displayed with statistics
analysis calculations (e.g., path length (m), path planning time (s), path node, and path
inflection point). The end of the table summarizes the effective rates. The comparison was
conducted based on the performance metrics. For example, the path length is a metric of
the length of the generated path from the start to the goal location. A shorter path indicates
a more efficient and direct route.

First, it achieved a shorter path length than the NSGA and SPEA methods, positioning
it as an efficient approach for optimizing the path length. It can be seen that the enhanced
method also reduced the planning path length, which was reduced around 5.76% with
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other approaches, and for the goal-reaching rate metrics, it increased to 97%. Interestingly,
it is on par with the A-star algorithm regarding the path length, indicating its competitive
performance in this aspect.

Moreover, the proposed MOPSO method showcases the fastest path planning time
among the compared methods, highlighting its efficiency in generating optimal paths
in a timely manner. Additionally, it exhibited a superior collision rate and path node
performance, outperforming the other methods in these critical metrics. The execution
time is a metric of the time the AGV takes to navigate from the start to the goal location. A
shorter execution time indicates faster navigation.

Furthermore, the MOPSO method excels in the goal-reaching speed and smoothness
of motion, surpassing the other methods in these aspects. This suggests that the proposed
MOPSO-DWA method optimizes the path length and planning time and enhances the
overall quality of motion, leading to smoother and faster goal-reaching capabilities.

The collision rate is a metric of the percentage of collisions during path execution.
A lower collision rate indicates safer navigation. The smoothness of motion measures
the jerk or acceleration changes along the planned trajectory. The smoother motion
means better control and comfort. The goal-reaching rate is the percentage of success-
ful goal-reaching attempts. A higher goal-achieving rate indicates successful navigation.
The proposed approach’s performance can be thoroughly evaluated and compared with
other path-planning methods, demonstrating its effectiveness and robustness in various
industrial environments.

4.3. Discussion Results

The impact of multi-objective optimization is manifested with the Pareto front obtained
from the integration of MOPSO and DWA in AGV path planning, demonstrating the
proposed approach’s superiority in terms of efficiency, optimality, and adaptability to
complex industrial environments. The analysis examined the Pareto front obtained from the
MOPSO optimization, as shown in Figure 6, by representing the trade-off between different
objectives such as the path length and smoothness of motion. By analyzing the Pareto front,
insights can be gained into the impact of different objective weights on the AGV’s path
planning performance. The different objective weights affect the trade-off between the path
length and smoothness of motion, providing insights into the optimal objective weights
that lead to the desired balance between conflicting objectives. Integrating MOPSO with the
dynamic-window approach allows for multi-objective optimization in AGV path planning,
which helps determine the optimal objective weights that lead to the desired trade-off
between conflicting objectives, enhancing the optimality of the proposed approach.

The effectiveness of the DWA can be evaluated by the effectiveness and efficiency of
the DWA in selecting the highest-scoring trajectory for AGVs. The different window sizes
impact resolutions on the built map in path planning performance. Additionally, the ability
of the DWA to handle dynamic obstacles and adapt trajectory selection in real-time was
examined. The evaluation helps determine the optimal parameters for the DWA, ensuring
efficient and safe path planning for AGVs.

Performance metrics such as the path length, execution time, collision rate, smooth-
ness of motion, and goal-reaching rate were analyzed to assess the effectiveness of the
proposed approach. Each metric was examined individually to understand the improve-
ments achieved by the proposed approach compared to existing approaches. The analysis
highlights the significance of each metric in AGV path planning and how they contribute
to the overall efficiency, optimality, and adaptability in complex industrial environments.
The findings can be used to evaluate the proposed approach’s superiority over existing
approaches in AGV path planning and emphasize the improvements achieved in terms of
efficiency, optimality, and adaptability, supported by the analysis of performance metrics,
multi-objective optimization, and the effectiveness of the DWA.

Limitations and future research directions for this study: Although the proposed
approach shows promise, there are several areas for future research to enhance AGV path
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planning. One avenue is to explore advanced optimization algorithms such as GA, PSO,
NSGAII, and SPEA to improve the multi-objective optimization performance. Additionally,
accounting for environmental uncertainties such as sensor noise or incomplete information
can lead to the development of robust path-planning algorithms. Furthermore, integrating
machine learning techniques like reinforcement learning can enable AGVs to learn and
adapt their path-planning strategies in response to changing environmental conditions.
Finally, conducting real-world experiments and validations will provide practical insights
into the implementation and performance of the proposed approach.

The proposed approach makes several contributions to the field of AGV path planning.
First, the integration of multi-objective optimization enables AGVs to find the optimal
paths by considering multiple objectives simultaneously. It provides more flexibility and
adaptability in different industrial environments. Second, the dynamic-window approach
effectively handles dynamic obstacles and adjusts trajectories in real-time, ensuring safe
and efficient navigation.

5. Conclusions

This study introduced a pioneering approach for AGV path planning, integrating
the multi-objective PSO (MOSPO) and dynamic-window approach (DWA) to overcome
the limitations of traditional autonomous navigation methods for mobile AGVs. Our
modification strategies facilitated the calculation of the optimal speed and steering angles,
ensuring safe navigation. We effectively balanced conflicting objectives and improved
the overall performance by mathematically modeling a multi-objective function by using
the shortest path and maximum smoothness objective functions. Key factors such as the
heuristic function, search direction, path safety, and redundant path nodes contributed to
enhanced efficiency, optimized paths, and reduced inefficiencies. The dynamic-window ap-
proach successfully selected the highest-scoring trajectory, considering both the optimized
velocities and environmental obstacles. Through rigorous simulations and comparisons
with existing methods, we validated the effectiveness of our approach, demonstrating
advantages such as a shorter planning time, reduced path length, fewer turning points, and
increased route safety. Furthermore, our evaluation of the performance metrics provided
quantitative measures of the approach’s effectiveness and efficiency, enabling objective
comparisons with other AGV path-planning methods and addressing challenges related to
efficiency, optimality, adaptability, and safety.

Looking ahead, our future research will focus on exploring advanced optimization
algorithms to enhance multi-objective optimization performance, addressing environmental
uncertainties such as sensor noise or incomplete information to develop robust path-
planning algorithms, integrating machine learning techniques like reinforcement learning to
enable AGVs to adapt their path-planning strategies to changing environmental conditions,
and conducting real-world experiments and validations to gain practical insights into the
implementation and performance of our proposed approach.
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