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Abstract: Visual perception equips unmanned aerial vehicles (UAVs) with increasingly compre-
hensive and instant environmental perception, rendering it a crucial technology in intelligent UAV
obstacle avoidance. However, the rapid movements of UAVs cause significant changes in the field
of view, affecting the algorithms’ ability to extract the visual features of collisions accurately. As a
result, algorithms suffer from a high rate of false alarms and a delay in warning time. During the
study of visual field angle curves of different orders, it was found that the peak times of the curves
of higher-order information on the angular size of looming objects are linearly related to the time
to collision (TTC) and occur before collisions. This discovery implies that encoding higher-order
information on the angular size could resolve the issue of response lag. Furthermore, the fact that the
image of a looming object adjusts to meet several looming visual cues compared to the background
interference implies that integrating various field-of-view characteristics will likely enhance the
model’s resistance to motion interference. Therefore, this paper presents a concise A-LGMD model
for detecting looming objects. The model is based on image angular acceleration and addresses
problems related to imprecise feature extraction and insufficient time series modeling to enhance
the model’s ability to rapidly and precisely detect looming objects during the rapid self-motion of
UAVs. The model draws inspiration from the lobula giant movement detector (LGMD), which shows
high sensitivity to acceleration information. In the proposed model, higher-order information on the
angular size is abstracted by the network and fused with multiple visual field angle characteristics
to promote the selective response to looming objects. Experiments carried out on synthetic and
real-world datasets reveal that the model can efficiently detect the angular acceleration of an image,
filter out insignificant background motion, and provide early warnings. These findings indicate
that the model could have significant potential in embedded collision detection systems of micro or
small UAVs.

Keywords: Bio-inspired Neural Networks; collision detection; dynamic vision; LGMD; UAV

1. Introduction

Real-time robust collision detection provides critical environment sensing and deci-
sion support for animal and robot behaviors and tasks. However, the current mainstream
collision detection algorithms based on distance and image trends have proven inadequate
for meeting UAVs’ low-power sensitive collision detection requirements. This limitation
significantly impairs the performance and applicability of UAVs in tasks such as collision
avoidance and navigation. For instance, the technique of utilizing laser [1], ultrasonic [2],
and other sensors to measure the relative distance trend between the UAV and the obstacle
to caution against collisions is inadequate in presenting adequate information about the
obstacle’s position, shape, and boundary. This shortfall will impede the UAVs’s accuracy
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and flexibility in avoidance maneuvers. Methods that use visual sensing capture rich
information about the natural world (including the obstacle shape, position, and boundary
information) and combine it with deep learning [3] to analyze the relationship between
the position of the calibrated obstacle in the pre-collision image and the TTC, as well as
the relative distance, to warn of collisions. However, this method does not clarify the rela-
tionship between the looming result and the image. Its interpretability and environmental
adaptability are poor, and it performs poorly in the face of new background environments
and obstacles. On the other hand, if we can quickly extract the critical looming cues from
image changes during looming to predict collisions like insects [4], combined with the rich
object information given to us by vision, We then have the potential to create a low-power,
real-time, robust looming detection algorithm.

A substantial amount of biobehavioral experiments have demonstrated that looming-
sensitive neurons in insects [4–6], which are responsible for alerting them of potential
collisions, can detect and react to various looming visual stimuli. It is thought that the
neural computations that encode these diverse looming visual characteristics and generate
avoidance commands are crucial for developing efficient looming perception in insects.
LGMD neurons are particularly useful in constructing looming-sensing systems due to
their maximum response to looming [4,7] and continuously increasing visual stimuli [8],
their transient response to retreating objects [9], and their resistance to interference from
random motion backgrounds [10]. However, the implementation of these bionic algorithms
in fast-moving UAVs is impeded by changes in images caused by the UAV’s motion. This
affects the model’s ability to accurately extract collision visual features, resulting in a high
false alarm rate and warning time lag.

Therefore, we must identify a prominent visual cue that is not affected by the angular
velocity of the image to counteract the interference caused by the observer’s motion and
advance the warning time. Before the collision, it was observed that peaks emerged in the
higher-order field of view curves (second order and above) while plotting the curves for
each order. The time of the peaks appeared to be linearly related to l/v. Additionally, the
higher the field of view curves, the earlier the peaks occurred (for example, the second-
order derivative of Equation (A5), where tspike = 0.577l/v, and the third-order derivative,
where tspike = l/v). This indicates that encoding higher-order field-of-view data from
the image and issuing an early warning when the peaks in the higher-order field-of-view
curves manifest would theoretically grant the controller ample time to evade. In Figure 1,
objective observation is that, unlike other higher-order field-of-view curves, the second-
order field-of-view curve (field-of-view angular acceleration) consistently has a numerical
value greater than zero. This implies an uninterrupted increase in the field-of-view angular
velocity and angle. On the other hand, organisms can sense displacement (visual field
angle) through photoreceptors and then indirectly sense changes in velocity (visual field
angular velocity) based on the passage of time, and there are also peaks in the true potential
curves in locust LGMD neurons. It is probable that biological neurons sensitive to looming
encode angular acceleration through the angle and velocity and utilize peaks in the angular
acceleration curve as collision warnings.

Inspired by this, we propose the A-LGMD model, which can extract acceleration
information and combine the angular size and angular velocity information in real-time
to accomplish the task of collision detection in a motion scene. Specifically, we propose
a two-channel distributed synaptic structure to filter two sets of image angular velocity
information with a time delay. We then activate and aggregate the two sets of angular
velocity information in the local spatiotemporal domain to obtain the image angular
acceleration information. Finally, we fuse multiple looming visual cues and adopt the
“peak” triggering method to warn the image of a significant collision. The model serves to
warn of substantial looming objects within the image. A systematic evaluation of the model
is conducted, encompassing the retrieval of angular acceleration information from the
picture, as well as a comparison with other bionic looming detection models in simulated
and real UAV flight videos. The study’s main contributions comprise several facets.
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Figure 1. Visual field angle curves of different orders based on Equations (A1)–(A3) (only plotting
the segments where the curves are greater than 0). Here, length/velocity(l/v) = 0.5. The dθ/dt and
θ curves monotonically increase until a collision occurs. For second-order and higher visual field
angle curves, there will be a peak, exhibiting a linear relationship with l/v.

1. We deduce that there exist peaks in the curves of the high-order (≥2) differentials of
the angular size of a looming object. In particular, the peaks of these curves occur
earlier as the differential order increases. This suggests that it is worth increasing the
alarming TTC of a looming detection model by introducing higher-order information
on the angular size.

2. Based on the D-LGMD model, which is an angular velocity-focused algorithm, we
introduce the angular acceleration cues, intending to increase sensibility and acquire
an earlier alarm time before a collision.

3. We have conducted a systematic analysis and comparison of the performance of the
proposed A-LGMD model with various other bionic looming detection models in
different scenarios. The experimental results demonstrate that the proposed model
has a distinct tendency toward looming objects in the observer’s motion and is capable
of fulfilling the collision detection task of UAVs.

This paper is organized into several sections.Section 2 outlines the related research.
Section 3 provides a comprehensive explanation of the A-LGMD model. Section 4 presents
the results of experiments that demonstrate that the algorithm proposed in this paper
surpasses other bionic looming algorithms in identifying looming objects amidst camera
self-motion. Lastly, our conclusions are drawn in Section 5.

2. Related Work

In this section, we review the bionic looming detection algorithms based on motion
vision, followed by an introduction to the properties of LGMD neurons and their bionic
looming detection models, which are relatively well-researched, and finally a summary of
the related research on looming visual cues.
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2.1. Looming Visual Cues

Looming detection is a scientifically inspired principle for identifying potential colli-
sion risks by observing the visual processes of approaching objects [11]. Animals have been
observed to be able to predictively perceive collisions through different sensitive neurons.
For instance, in pigeons, certain neurons, namely τ, η, and ρ [12], respond to the time to
collision (TTC) at distance [13]. In locusts, LGMD neurons are sensitive to image angles and
angular velocities, while in Drosophila, lobula plate/lobula columnar type II (LPLC2) [4] is
sensitive to radially symmetric motion.

In investigating looming processes, numerous scholars have examined the correlation
between the looming bias of responsive neurons and changes in obstacle images whilst
looming. For instance, Rind and Zhao contend that the angular size of obstacles on the
retina and the angular velocity consistently increase during looming. Rind utilized the
LGMD model [14] to extract the fast-moving edges of the looming objects and set the
angular size threshold for collision identification. Zhao, on the other hand, extracted
the image angular velocity using the D-LGMD model [15] and established the angular
velocity threshold for collision identification. Both approaches were employed for colli-
sion detection. Baohuazhou and John Stowers conducted a study on the Drosophila visual
system and proposed that during the looming process, the motion of an obstacle on the ob-
server’s retina creates locally symmetric information. Based on the Drosophila’s opponency
ultra-selectivity [16], Baohuazhou developed a shallow neural network model [17] that is
constrained anatomically to recognize the looming signal. Similarly, Zhao asserted that
Drosophila determine collisions based on the radial symmetry of objects and developed the
opponency model [18]. John Stowers utilized the dispersion of optical flow vectors at the
focus of expansion to determine the approximate position of looming objects, based on the
characteristic that Drosophila strongly avoid the focus of the optical flow expansion when
moving toward an object [19]. This allowed for achieving the obstacle avoidance function
of UAVs.

These bionic algorithms accurately depict the pre-collision process by analyzing the
characteristics of the looming object in the image, which is superior to distance-based
collision detection algorithms.

2.2. Bionic Looming Detection Algorithms

Researchers have harnessed the biological mechanism of looming neurons to develop
multiple bionic proximity detection algorithms, which utilize the image difference principle.
These algorithms aim to effectively detect looming by encoding visual cues in the differences
between consecutive frames and establishing early warnings based on different visual cues.

Rind put forward the concept of excitatory-inhibitory critical competition, drawing on
the preference of locust LGMD neurons for visual stimuli that are looming and continuously
increasing. Rind developed a computational model of LGMD1 which aligns with the locust
LGMD neuron characteristics, such as transient excitation due to changes in light [14],
lateral inhibition [4], and global inhibition [20]. LGMD1 extracts the velocity and number
of object motion edges from differential images to indicate the degree of approaching and
enable selectivity for approaching objects. Scholars have made various improvements
and refinements to the LGMD model due to biologists’ deeper exploration of LGMD
properties and the challenges encountered by the LGMD model in robotic applications.
These include the following. To enhance the resilience of the LGMD model to ambient light
interference, Fu and Yue [21] constructed the LGMD2 model based on its characteristic
persecution selectivity for changes between light and dark. This was achieved by including
on and off channels in the photoreceptor layer of the LGMD2 model, which separates the
image’s brightness changes into on and off channels (on meaning from dark to light and
off meaning from light to dark). Lei [22] proposed a new model for LGMD1 that relies on
neural competition between the on and off pathways to discern fast translational motion
objects. The model is not receptive to paired on-off responses triggered by translational
motion, hence improving collision selectivity. To adapt the LGMD1 model for UAV flight
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scenarios, Zhao proposed a distributed presynaptic connectivity structure [15] grounded in
LGMD1. The structure effectively removes background motion noise by precisely extracting
the image’s angular velocities.

Inspired by the ultra-selective, looming-sensitive neuron LPLC2 in the Drosophila
visual system, Zhao [18] proposed a definition for radially symmetric motion, utilizing
the lateral inhibition mechanism to extract the motion velocity and radial symmetry in
four directions. This generates a map of the self-attention mechanism. The opponency-
based looming detector (OppLoD) model, as proposed by Zhao, integrates the D-LGMD
output with the map to extract radially symmetrical motion information that contains faster
motion speeds.

2.3. LGMD Neuron Properties and Model Applications

The LGMD is a visual neuron specializing in collision detection in the locust visual
system. Its characteristic looming selectivity derives from its dendritic fan [23]. This area
responds maximally to visual stimuli that are looming [4] and consistently increasing
in magnitude [8]. It responds only briefly to retreating objects [9] and is also resistant
to interference from random motion backgrounds [10,24], and it is closely linked to
downstream motor neurons and the downstream contralateral motion detector (DCMD) [4]
to initiate an escape response [25].

In robotics experiments, Yue and Rind included group excitation and attenuation
processing layers in the LGMD1 model [26] to increase the robustness and adaptability
to dynamic backgrounds [11]. For UAV applications, Zhao et al. suggested an LGMD1
model built on distributed presynaptic connectivity (D-LGMD1) [15], which employs
spatiotemporal filters in lateral inhibition and is useful in situations involving high-speed
camera movement. Lei et al. exhibited an improved LGMD1 model featuring on and off
dual paths [22]. By assessing the outcome of the fusion of both routes, the model proficiently
subdued the reaction to translational movement.

3. Method

In this section, we present an acceleration looming motion detector (A-LGMD) that
is based on the D-LGMD model. To extract acceleration information from the velocity
space, the model introduces a dual-channel distributed synaptic front-end connection
for encoding two sets of angular velocity information. Afterward, the model undergoes
spatiotemporal delay activation aggregation for the angular velocity information to obtain
angular acceleration information from the image. Considering the continuity of neural
processes, the model has been transformed into a continuous integration form. Additionally,
the threshold processing has been optimized and adjusted to improve its performance and
stability while maintaining the model’s proximity detection selectivity in the presence of
complex background motion, as shown in Table 1.

Table 1. Constant parameters.

Parameter Description Value

r1 Slow inhibitory kernel‘s radius in Equation (8) 1

r2 Fast inhibitory kernel‘s radius in Equation (8) 2

k1 Activation function‘s threshold in Equation (12) 0.03

k2 Activation function‘s threshold in Equation (12) 0.1

k3 Activation function‘s threshold in Equation (10) 0.1

a Izhikevich model‘s constants in Equation (14) 0.02

b Izhikevich model‘s constantsl in Equation (14) 0.2

c Izhikevich model‘s constants in Equation (15) −65

d Izhikevich model‘s constants in Equation (16) 2
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3.1. Mechanism and Schematic

From the previous analyses, it is evident that the image of the ideal looming object
displays a sharp, nonlinear expansion prior to a collision. The angular velocity and ac-
celeration of the image both exhibit nonlinear increases, with the moment of the sharp
peak of the angular acceleration curve being linearly linked to l/v, as displayed in Figure 1.
Although the angular acceleration and angular velocity present information differently, the
acceleration information is considered to be of a higher order than the velocity information.
To perceive the angular acceleration, algorithms that encode the angular velocity can be
used as inspiration. We have developed a method of excitation inspired by the D-LGMD
model which competes with excitation and inhibition to filter and retain different velocity
information [20]. Subsequently, delayed activation and aggregation of various velocity
information are executed to generate data on the image’s angular acceleration. Furthermore,
the field of view, image angular velocity, and image angular acceleration are nonlinearly
coupled and taken as inputs to the Izhikevich neuron model [27]. A “peak” triggering
mechanism is utilized to indicate the existence of noteworthy looming objects in the frame.

Through the above design, the A-LGMD model presents several advantages, such as
improved accuracy in recognizing looming objects, faster response to looming objects, and
better resistance to interference from background motion. The structure of the A-LGMD
model is explained in detail in Figure 2. This model consists of three image-processing
steps.

Figure 2. Model schematic. P: photo-receptor; DDC: distribution dual channel; USTC: ultra-
spatiotemporal connection. The Output comprises two layers: the Soma layer and the Axon layer.
The Soma layer integrates the looming information from the USTC layer, while the Izhikevich impulse
neurons in the Axon layer generate the impulse information. This model extracts potential danger
from image sequences and produces a sequence of pulses that warn of obstacles.

• Dual-channel extraction of angular velocity from images;
• The activation of angular velocity information is delayed, allowing for the aggregation

of angular acceleration information;
• Multiple cues for looming stimuli are fused, and warning signals are triggered by peaks.

In the P layer of photoreceptors, image motion information is extracted. Within the
DDC layer, motion information undergoes excitation and inhibition competition based on
the rind key competition concept, resulting in two distinct sets of image angular velocity
information. In the USTC layer, delay activation and aggregation are utilized on two
distinct velocity information sets to acquire insights into the angular acceleration of the
image. Various looming clues are combined and outputted in the Soma layer. Lastly, the
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axon layer adopts a “peak” triggering mechanism to signify objects of importance looming
in the scene.

3.2. Photoreceptor Layer

The initial layer of the model comprises the photoreceptor layer (P layer). Track
alterations are in the overall luminosity at every pixel point:

P(x, y, t) =
∣∣∣∣L(x, y, t)−

∫
L(x, y, s)δ(t− s− 1)ds

∣∣∣∣ (1)

δ(t) =

{
1 t = 0
0 otherwise

(2)

where δ is a unit impulse function, L(x, y, t) denotes the brightness alteration at a certain
time, and P(x, y, t) represents the overall brightness alteration of the pixel (x, y) over a time t.
Layer P embodies variations in the brightness of the image motion regardless of direction.

3.3. Distribution Dual-Channel Layer

In the DDC layer, two pathways are present: one with distributed excitatory properties
and the other with distributed inhibitory properties, which compete over time to extract two
distinct angular velocities and transmit them to the subsequent USTC layer. By employing a
mechanism of temporal competition between excitatory and inhibitory signals, two distinct
angular velocity representations, Vp1 and Vp2, can be obtained for each pixel point.

Vp1(x, y, t) =
∫

E(x, y, s)δ(t− s− 1)ds−
∫

I1(x, y, s)δ(t− s− 2)ds (3)

Vp2(x, y, t) =
∫

E(x, y, s)δ(t− s)ds−
∫

I2(x, y, s)δ(t− s− 1)ds (4)

where E(x, y, t) and I(x, y, t) represent the signals of excitation and inhibition for each pixel
extracted from the edge information of the image motion, respectively, and

E(x, y, t) =
∫

P(x, y, t)KE(x− u, y− v)dudv (5)

Ii(x, y, t) =
∫

P(x, y, t)KIi (x− u, y− v, t− s)dudvds (6)

where KE and KI are the distribution functions of excitation and inhibition, respectively,
and KI is distributed over time and space. Given the global and local inhibition properties
of LGMD neurons, it is physiologically inferred that the presynaptic neighbors transmit
inhibition. We have theorized that the dendritic inhibition strength of LGMD neurons
possesses a shape characteristic that gradually decreases from the tip of the branch crystal to
the root along its diameter [28,29]. This characteristic could account for the local inhibition
at the distal end [9]. Consequently, we have chosen to illustrate the spatial distribution
of KI by using an inverted Gaussian kernel with equivalent traits. The inverted Gaussian
kernel KI1 obstructs faraway motion information, therefore favoring low speeds. The
Gaussian kernel KI2 obstructs nearby motion information, thus opting for high speeds. The
low-speed and high-speed inhibitory as shown in Figure 3.{

KE = GσE(x, y)
KIi = GσI (x, y)δ(t− τi(x, y))

(7)

where σe and σi represent the standard deviation between the excitation and inhibition,
respectively, while τi(x, y) is the time-mapped function of the inhibition pathway. The
delay is determined by r and increases as the transmission distance increases as shown in
the subsequent equation:
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{
Gδ =

1
2πσ2 e−

x2+y2

σ2

τi(x, y, r) : x2 + y2 < r2
i

(8)

In the tao function, r denotes the spatial range of inhibition, which sets the lowest
speed of the inhibition channel during the competition with excitation. By adjusting the
width of tao for various inhibitory channels, it is viable to screen out data with velocities
exceeding r as depicted in Figure 4.

Figure 3. Examples of the low-speed and high-speed inhibitory kernels KI1 and KI2 , respectively. The
left image shows the kernel grid of KI1 , while the right image displays the kernel grid of KI2 , where
σ1 = r1 = 1 and σ2 = r2 = 2.

Figure 4. A′ position from the previous time step is denoted. Pixels A, B, and C move at speeds of 1,
2, and 3 pixels/ms, respectively. The inhibition1 and inhibition2 radii indicate the inhibition ranges of
inhibition pathways 1 and 2. The inhibition values generated by A′, B′, and C′ are represented by red,
green, and blue colors, respectively. When the movement of the pixel generates a level of stimulation
beyond its inhibition threshold, the DDC layer will receive speed data above the threshold (resulting
in a purple output).

3.4. Ultra-Spatiotemporal Connection Layer

To extract information on the angular acceleration, the USTC layer receives angular
velocity data from the DDC layer at various points in time. This velocity data are then
delayed and compiled to form “acceleration information” in the local space, as shown in
Figure 5. In the USTC layer, the coordinates of the pixel with an angular velocity between v1
and v2 are determined by processing the two velocities at the same time using two opposite
polarity activations, as detailed in Equation (12). Next, the possible acceleration location of
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the pixel is aggregated within the DDC layer’s aggregation region and outputted to the A
layer as the weight of the pixel’s acceleration impact, as shown in Equation (9). Equation (9)
can also be interpreted as the pixel points where the image angular velocity jumps within a
specified velocity interval (v1–v2) over a given time interval. With this design, it is possible
to capture the information on accelerated motion in the image effectively. See the following
equation for more information:

A(x, y, t) =


∫∫

τ3(x,y,r3)

V3(x, y)dxdy V12(x, y, t) > 0

0 otherwise
(9)

Figure 5. Schematic for collecting acceleration data within the USTC layer. The USTC layer generates
acceleration information by aggregating data on high-speed moving pixels (blue pixels) near the
pre-accelerated pixels (red pixels).

Since the radius of r3(r3 = 2r2 − r1 + 1) is larger than r2, Equation (9) aggregates the
pixel points (V12) with velocities less than r2 at the previous moment within the radius of
r3 around the noteworthy pixel points (V3) with angular velocities greater than r2. Here,
V3 indicates the noteworthy pixel points, and V12 represents pixel points with angular
velocities between v1 and v2, as shown in Equations (10) and (11):

V3(x, y, t) = max(0, Vp2(x, y, t)− k3) (10)

V12(x, y, t) = V1(x, y, t)×V2(x, y, t) (11)

where V1 and V2 represent the angular velocity data for the pixel with varying velocity
limits at the preceding instant. V1 is used to exclude minor background movements, while
V2 signals the presence of a significant movement that merits attention:{

V1(x, y, t) = max(0, Vp1(x, y, t)− k1)
V2(x, y, t) = max(0,−Vp2(x, y, t− 1)− k2)

(12)

3.5. Soma Layer

To mitigate the impact of the robot’s motion on the encoded angular velocity, we
employed the image angular acceleration (higher-order information) to offset the image
angular velocity (lower-order information). This is akin to applying triple correlation to
eliminate variability in the second-order components and enhance the motion estimation
accuracy [30]. From Equation (A3), it is clear that the ttc estimation has a positive cor-
relation with the angular velocity and an inverse proportion to the field of view angle.
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Therefore, including both angular velocity and field of view angle information is essential
for warning about collisions earlier at TTC moments in the proximity detection model.
On the other hand, estimating the field of view angle significantly relies on the robot’s
motion. Consequently, we only combined the angular velocity (which includes motion
edge information (i.e., the field of view angle)) and angular acceleration into the output of
the Soma layer as illustrated in Equation (13):

Soma(t) =
∫∫

A(x, y)dxdy
∫∫

V3(x, y)dxdy (13)

This leads to a Soma output that is more attuned to objects with a wider field of view
angle and faster motion while being less responsive to extraneous objects and background
noise. Ultimately, the global acceleration motion information and velocity information in
the USTC layer are nonlinearly merged to form the output of the Axon layer.

3.6. Axon Layer

Based on the evidence that the generation of action potentials in LGMD neurons
necessitates a prolonged period of high-potential pulse [20], an Izhikevich class 2 excitability
model [27] has been devised to produce high-potential pulse signals. This model produces
high-potential pulse signals, which we subsequently utilize as the present input to the
Izhikevich neuron model in the Soma layer. The pulse sequence generated by the Axon
layer is shown in Figure 6. The mathematical expression of the model is provided below:{ dv

dt = 0.04v2(t− 1) + 5v(t− 1) + 140− u(t− 1) + Soma(t− 1)
du
dt = a(bv(t− 1)− u(t− 1))

(14)

v(t) =

{
dv
dt ∆t + v(t− 1) V < 30mv
c otherwise

(15)

u(t) =

{
du
dt ∆t + u(t− 1) V < 30mv
u(t− 1) + d otherwise

(16)

where u is the membrane recovery variable, comprising activation of the K-ion current and
deactivation of the Na-ion current. v represents the membrane potential, and the expression
of 0.04v2(t− 1) + 5v(t− 1) + 140 was selected based on the behavioral characteristics of a
pulsed signal, which is a nonlinear activation, and the resulting magnitude to guarantee
that the membrane potential is measured in mV and that time is measured in ms. An early
warning signal is sent out when there is a spike in v. When the membrane potential v
exceeds the threshold value of 30 mV, the model emits a pulse and resets the potential v
as shown in Equation (15). Additionally, the model simulates the opening of a potassium
channel during a decrease in action potential as demonstrated in Equation (16). Table 1
presents the conventional parameters.

Figure 6. Soma layer input to the Izhikevich model produces an impulse sequence.
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4. Experiments and Results

Considering the complexity of real UAV flight environments, this paper focuses on the
collision warning capability of A-LGMD in scenarios with a high probability of collision.
This section presents a comprehensive evaluation of the A-LGMD model in various UAV
flight scenarios both indoors and outdoors. The evaluation concentrates on the model’s
capacity to extract visual cues, its sensitivity to background motion, and the warning
time. Quantitative analysis was conducted to compare its performance with other models,
demonstrating the efficiency of the proposed synaptic mapping and the robust real-time
warning capability of the model.

4.1. Experimental Set-up

The stimulus input to the neural network comprised a simulated simulation and an
actual first-person view (FPV) video of a drone in flight captured using OSMO Pocket (with
a recorded video frame rate of 30 fps). The neural network was executed on a computer
with a 2.1 GHz Intel Core i7 CPU and 16 GB of RAM.

4.2. Model Characteristic Analysis

For the performance of the A-LGMD model in synthetic looming scenarios, this
experiment aimed to validate the capability of the A-LGMD model to extract the image
velocity and acceleration in synthetic looming scenarios and its pre-collision warning
performance. We constructed an OpenMV4 model using Matlab and the following camera
parameters: a focal length of 2.8 mm, CMOS dimensions of 4.8 mm × 3.6 mm, a horizontal
field of view of 70.8°, a vertical field of view of 55.6°, a frame rate of 30 fps, and image
dimensions of 240 × 320 pixels.

In the experiment, a cube with a side length of 0.2 m was simulated. It was positioned
at a distance of 5 m from the camera and moved toward it at a speed of 2 m per second
until the cube’s edge reached the field of view’s edge as illustrated in Figure 7. According
to the results of the experiment, the A-LGMD model is capable of effectively extracting the
image motion velocity. Specifically, we extracted the values of velocities v1 and v2 from
frames 65 and 68, respectively. In frame 68, a change in velocity was detected when the
motion velocity of the image rapidly increased and exceeded v2’s threshold (120 pixels/s).

As the velocity of the cube surpassed v2 throughout the given timeframe, there was no
area for acceleration. As a result, the model extracted angular acceleration data, displaying
an abrupt peak within the angular velocity data from frames 67 to 70 and activating the
alarm mechanism of the model’s Axon layer.
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Figure 7. The capabilities of the A-LGMD model for extracting the angular speed and acceleration are
demonstrated. The number of hazardous pixels in the velocity and acceleration layers is represented
on the left y-axis, while the right y-axis displays the ideal magnitude of the angular velocity for a cube
looming at a ratio of 0.1 (l/v = 0.1) per frame. During the 64th and 67th frames, the ideal angular
velocities exceeded 60 and 120 pixels/s, respectively. Technical abbreviations are explained upon the
first usage. The position changes of the cube in the field of view, and the variation in acceleration
information extracted by the USTC layer of the model are illustrated in the diagram located in the
lower left corner. The small diagram in the upper right corner offers a local magnification of the
changing trend in the number of hazardous pixels in the velocity and acceleration layers of the
A-LGMD neural network between frames 64 and 70.

4.3. Real UAV Experiment

Finally, the model was tested on actual drone recordings, and indoor tests were carried
out to assess the model’s performance in different obstacle textures and real collision
scenarios. Several drone video sequences featuring collisions with various obstacles,
including static chairs, QR code boards, off-road vehicles, and basketball poles, were
collected, and the comprehensive information concerning the sequences can be found in
Table 2. These experiments aim to evaluate the real-world applicability of the model.



Biomimetics 2024, 9, 22 13 of 21

Table 2. Details of FPV image sequence.

Image Sequence Background Complexity Attitude Motion Object Texture Image Resolution Collision Frame Example of Frame Sequence

Compound Looming None None White pixel 240*320 72 None

Group 1 Cluttered Surroundings Pitch Accelerating Pure Color Chair 240*320 120 [3,104,107,111,115]

Group 2 Cluttered Surroundings Pitch Accelerating Gridding Pattern 240*320 134 [3,120,124,129,134]

Group 3 Simple Surroundings Static Moving SUV 240*320 32 [3,17,19,24,26]

Group 4 Cluttered Surroundings Low Speed Forward Basketball Stands 240*320 54 [3,24,26,40,54]

Group 5 Cluttered Surroundings High Speed Forward Flying UAV 240*320 42 [3,32,36,40,42]
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4.3.1. Indoor Simulated Collision Flight Experiments

The datasets for Group 1 and Group 2 were obtained through the use of an OSMO
Pocket camera while the drones were flown indoors. These experiments comprised five
stages for the drones: hovering, pitching, accelerating, looming obstacles (looming), and
program-controlled deceleration. Our experiments aimed to evaluate the performance of
the A-LGMD algorithm on drones and the ability of biomimetic algorithms to adjust to
varying obstacle textures. From Figure 8c,f, it is clear that the A-LGMD model efficiently
extracted obstacle motion edges without being affected by the obstacle features. Further-
more, a sensitivity comparison test was conducted on the A-LGMD and D-LGMD models
in response to the motion edges of a looming object during UAV motion. Sensitivity was
defined using the following equation:

Sensitivity(i) = Outputlooming(i)/Inputlooming(i) (17)

where Outputlooming represents the number of pixel points depicted on the model’s resulting
image within the looming region and Inputlooming corresponds to the number of pixel
points depicted in the initial difference image within the same region. In Figure 8g, we can
observe that the sensitivity of the A-LGMD model emerged earlier when compared with
the D-LGMD model. Therefore, the alarm event of A-LGMD will occur before D-LGMD’s.

(a)

(b)

(c)

(d)

(e) (f) (g)

Figure 8. Indoor looming detection experimental data were recorded using cameras, and the per-
formance of various looming detection models was evaluated. Grayscale images of Group 1 and
Group 2 are shown in (a–d), displaying the output images of the A-LGMD model for Group 1 and
Group 2 with corresponding sample images provided in Table 2. The normalized output curves of
different models in the Group 1 and Group 2 datasets are presented in (e–g), showing the sensitivity
of A-LGMD and D-LGMD to the looming region of the differential input image.

During the experiments conducted with Group 1 and Group 2, it was observed that
both the OppLoD and Optical-divergence models registered a high number of false alarms.
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This occurrence can be attributed to the OppLoD model’s inability to accurately distinguish
between the moving contours of the background and the symmetrical contours of the
impending object during UAV motion, ultimately resulting in the generation of a false
alarm signal. The high incidence of false alarms generated by the Optical-divergence model
resulted from the strong influence of the background on the optical flow dispersion in the
two selected regions. When the camera moved forward rapidly, the difference between
the backgrounds of these regions caused a marked variation in the calculated optical
divergence. As a result, this divergence was misinterpreted as a sign of an approaching
object, leading to a false alarm situation.

4.3.2. Outdoor Real Collision Tests

To assess the sensitivity of various biomimetic models in real collision scenarios, we
used drone-captured videos as input data from a first-person perspective. Our objective
was to evaluate their real-time performance by observing the warning and processing times
and assessing their performance in identifying looming objects.

Groups 3, 4, and 5 depicted recordings of drones colliding in genuine flight circum-
stances. The A-LGMD model proved its capability to generate trustworthy early warning
indicators (initiating avoidance commands while establishing the avoidance direction
through the discerned motion contours of neighboring objects) during these experiments
and portrayed the swiftest processing speed, rendering it more appropriate for the obstacle
avoidance necessities of low-power drones operating in real time.

The normalized output curves indicate that both the D-LGMD model and the OppLoD
model could perceive the oncoming UAV and basketball hoop. However, they exhibited
early alarm times to collision (ATTCs) that were less than 0.18 s, as shown in Table 3. It is
noteworthy that Group 3 barely recorded any near-collision incidents with the quadcopter.
This implies that the D-LGMD and OppLoD models encountered challenges in delivering
prompt cautionary notifications when genuine collisions were imminent. In addition,
we conducted a comparison test between the A-LGMD and D-LGMD models for false
detection backgrounds under the UAV’s motion, and we defined the false detection rate
(FDR) as

FDR(i) = Outputbackground(i)/Inputbackground(i) (18)

where Outputbackground represents the number of pixel points depicted in the model’s result-
ing image within the background region and Inputbackground corresponds to the number of
pixel points depicted in the initial difference image within the same region. Figure 9j shows
that the FDR of the D-LGMD model was earlier and larger than that of the A-LGMD model.
This implies that the persecution signals provided by the A-LGMD model were more
trustworthy than those provided by the D-LGMD model. Based on this finding, combined
with Figure 8g, we have reason to believe that the persecution motion information and
warning information extracted by the A-LGMD model are reliable and valid. From the
normalized output curves and the ATTC values in Table 3, it is evident that our proposed
A-LGMD model was highly sensitive to forthcoming collisions. The model could detect the
location of collision danger about 0.3 s before the collision occurred, consequently issuing a
warning signal. Even in scenarios involving drone movement (Group 1, Group 2, Group 4,
and Group 5), the A-LGMD model demonstrated efficient performance and displayed a sig-
nificant advantage in ATTC when compared with other models, emphasizing its potential
for widespread application in the drone industry.
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(a)

(b)

(c)

(d)

(e)

(f)

(g) (h) (i) (j)

Figure 9. Experiments were conducted using real drone flights involving collisions, focusing on an
objective perspective. Grayscale images from Groups 3, 4, and 5 are displayed in (a–c), respectively.
In Group 3, a stationary drone collided with an off-road vehicle at high speed. In Group 4, the drone
rapidly approached a basketball stand. In Group 5, a quadcopter collided with a uniformly moving
drone. (d–f) The output images of the A-LGMD model in Groups 3, 4, and 5, respectively, with
corresponding sample images listed in Table 2. (g–i) The normalized output curves of the A-LGMD
model and other models in Group 3, 4, and 5 datasets. (j) The rate of false detections by A-LGMD
and D-LGMD in the background section of the differential input image.

Table 3. Alarm time to collision (ATTC; unit = ms).

Image
Sequence D-LGMD OppLoD Optical

Divergence A-LGMD

Group 1 390 False 690 390

Group 2 180 False False 300

Group 3 180 210 180 390

Group 4 150 150 570 840

Group 5 0 0 0 180
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4.4. Discussion

This study examined the use of bio-inspired motion vision-based algorithms for detect-
ing obstacles in autonomous drones and avoiding collisions, particularly in the presence of
self-motion interference. The A-LGMD model was proposed based on an analysis of the
characteristics of the angular acceleration information in images. The qualitative and quan-
titative analysis of the A-LGMD model, along with a comparison to other bionic approach
detection models, validate the A-LGMD model’s capability to extract angular acceleration
information and its feasibility for real-time early warnings, as shown in Figure 10, where
the BI and FAR are defined as follows.

BI =

∫ Frameend
1

NumberBackground regeion in di f f erence
NumberLooming regeion in di f f erence

Frameend
(19)

FAR =

∫ Framealarm
1

NumberBackground regeion in output
NumberOutput

Framealarm
(20)

Figure 10. Alarm time to collision (ATTC) and false alarm rate (FAR) performance of different
biomimetic looming detection models based on the field of view theory under different background
interference (BI). The LGMD algorithm had a high false alarm rate when the UAV was moving. The
D-LGMD algorithm was only sensitive to fast-moving objects and performed well in resolving the
background interference caused by its motion, but this may result in a lower ATTC, which may not
give the UAV enough time to avoid obstacles. In contrast, the A-LGMD algorithm had a high ATTC
and a low false alarm rate, making it ideal for UAV looming detection.

Compared with other bio-inspired looming algorithms relying on motion vision, our
algorithm incorporates higher-order motion information, specifically angular acceleration
information, to alleviate interference caused by the observer’s self-motion and improve
the perception of nearby objects. Furthermore, our caution system no longer relies on a
singular threshold setting; instead, it incorporates numerous pieces of data and produces
results via peaks in the output curve, resulting in heightened stability and dependability.
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It should be noted that our current model cannot strictly extract an image’s angular
acceleration. Instead, it only initially extracts the pixels of the image velocity jump as the
“acceleration”. Improving the image angular velocity extraction may help obtain more
accurate information on the image angular acceleration. Additionally, the model has many
parameters that must be adjusted according to different scenarios. In the future, the model’s
parameters could be combined with the regularity of natural scenes, and a deep learning
method could be used to achieve adaptive adjustments based on different scenes.

5. Conclusions

In this paper, we present the A-LGMD neural network model, a bio-inspired proximity
detection algorithm, to tackle the problem of UAVs experiencing delays in warnings or
being unable to function during their motion. We introduced and examined the features of
higher-order information on the angular size curves and integrated the angular acceleration
information of images into proximity detection for the first time. This model can accurately
extract information on image angular acceleration and fuse real-time multiple proximity
visual cues to provide early warnings of looming objects of interest. The experiments
conducted on the system indicate that the model can successfully extract the image angular
acceleration, eliminate irrelevant background motion, forecast the ideal angular acceleration
curve trend, and raise early alarms.

In conclusion, the prospects for the A-LGMD neural network model are promising.
Several critical areas have been identified for further development and enhancement. Firstly,
the scalability and computational efficiency of the A-LGMD model represent a key research
focus. Advancements in methods to scale up the model, enabling it to handle larger datasets
and computational workloads, will ensure efficient processing and real-time performance
across diverse UAV environments. Integrating multi-sensor fusion techniques, such as
cameras, lidar, and radar, into the A-LGMD model presents a significant opportunity to
enhance its looming detection capabilities. This will improve the model’s adaptability to
complex scenarios, making it more effective in real-world applications. Moreover, image
angular acceleration data, a less easily perceivable high-order visual feature, could have a
significant role in proximity detection and other areas of robot motion, including posture
recognition and grasping tasks.
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Appendix A. Problem Formulation

Figure A1. Object looming process. Black squares of different sizes approach at a constant speed and
eventually collide with the observer. The object size and value close to the speed were considered to
be constant, and thus lv = l/v was constant.

The visual system performs a fundamental function in biological perception and
response. During an object’s approach, its area in the visual field progressively increases, a
characteristic that can be simplified as the angle of the visual field expands. Gabbiani [7]
derived a relationship between the process of change in the imaging angle and angular
velocity of an obstacle in the retina and the ratio of the real size of the obstacle to the
approximation velocity (refer to Equation (A1) and Figure 1). This relationship portrays
the imaging angle and angular velocity change process of the obstacle in the retina, which
provides an important theoretical basis for the encoding of the post-approaching visual
cues. Based on this, Zhao [15] proposed the distributed presynaptic connection (DPC)
structure to quantify the encoded image angular velocity and described the pre-collision
process as a nonlinear increase in the image angular velocity. Additionally, collisions are
reflected by the nonlinear increase in many image variation-based visual features that
loom (such as dilatancy, radial symmetry, and angular velocity). However, the change in
angular acceleration in higher-order visual fields is quite different, with a sharp peak in the
angular acceleration curve and a linear correlation with the object size and motion speed
before the TTC approaches zero, which is critical for early warnings of collisions. This
section provides a detailed explanation of the need for angular acceleration to achieve early
responses in collision detection algorithms:

θ(t) = arctan(
lv
t
) (A1)

To address image interference due to the robot’s movement and achieve a prompt
response by the model, Equation (A1) denotes detecting obstacles when the object imaging
angle theta is smaller so that the model can emit early warning signals for larger TTC
values. Therefore, for the algorithm of detecting the angle, setting the threshold of theta to
be smaller can theoretically achieve an early response, but this also leads the model to false
alarms for various small objects, and the performance is not robust:{

θ̇(t) = − sin 2θ/2t
t = − sin 2θ/2θ̇(t)

(A2)

Based on the above analysis, following the derivation of Equation (A1), Equation (A2)
provides the relationship between the TTC and image angular velocity and angle. The
algorithm for detecting the angular velocity can achieve an early response by setting a
small motion speed threshold when the object’s imaging angle is small, as demonstrated
by Equation (A2). However, even slight winds in the scene or the robot’s motion caused by
changes in the image can lead to false alarms and reduced model performance, thereby
decreasing its robustness: {

θ̈(t) = − sin 2θ cos(2θ + 1)/2t2

t = −θ̇(t) cos(2θ + 1)/θ̈(t)
(A3)
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By deriving Equation (A2), we can obtain the relationship between the image angular
acceleration and angle as expressed in Equation (A3). The combination of the θ, θ̇, and
θ̈ states can express the TTC, where the TTC is inversely proportional to θ̈ and directly
proportional to θ and θ̇. If a model for detecting the angular acceleration exists, then a
small angular acceleration threshold can be set during the detection of objects with small
imaging angles θ and θ̇. This would lead to an early response, indicating the importance of
acceleration in estimating the TTC for looming detection:

θ̇(t) = −lv/(l2
v + t2)

θ̈(t) = 2lvt/(l2
v + t2)2

...
θ (t) = 2l3

v − 6lvt2/(l2
v + t2)3

....
θ (t) = 24lvt(t2 − l2

v)/(l2
v + t2)4

(A4)

According to the higher-order field-of-view curves shown in Figure 1, the moment of
the spike appears earlier with an increasing field-of-view curve order, and this is linearly
related to lv. The expression for different higher-order field-of-view curves can be derived
from Equation (A1) as shown in Equation (A4):{

tspike2 =
√

3
3 lv

tspike3 = lv
(A5)

Let
...
θ and

....
θ be zero. This provides us with the angular acceleration curves and the

third-order field-of-view curve, with peaks occurring at times tspike2 and tspike3 as shown in
Equation (A5). Consequently, if we can encode high field-of-view information, then we can
provide collision warnings at the earliest possible moment, based on curves of spikes in the
higher-order field-of-view.
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