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Abstract: The carnivorous plant algorithm (CPA), which was recently proposed for solving optimiza-
tion problems, is a population-based optimization algorithm inspired by plants. In this study, the
exploitation phase of the CPA was improved with the teaching factor strategy in order to achieve
a balance between the exploration and exploitation capabilities of CPA, minimize getting stuck in
local minima, and produce more stable results. The improved CPA is called the I-CPA. To test the
performance of the proposed I-CPA, it was applied to CEC2017 functions. In addition, the proposed
I-CPA was applied to the problem of identifying the optimum parameter values of various solar
photovoltaic modules, which is one of the real-world optimization problems. According to the
experimental results, the best value of the root mean square error (RMSE) ratio between the standard
data and simulation data was obtained with the I-CPA method. The Friedman mean rank statistical
analyses were also performed for both problems. As a result of the analyses, it was observed that
the I-CPA produced statistically significant results compared to some classical and modern meta-
heuristics. Thus, it can be said that the proposed I-CPA achieves successful and competitive results in
identifying the parameters of solar photovoltaic modules.

Keywords: parameter extraction; parameter identification; photovoltaic models; solar cells; solar
module; carnivorous plant algorithm

1. Introduction

Energy, which manifests itself in all areas of human life, is becoming increasingly
important today [1]. The world’s increasing population, developing industry, and advances
in technology are increasing the need for energy in developed and developing countries [2].
Considering the increasing energy need, energy crises, and environmental problems in
the world, the importance of renewable energy sources such as wind, solar, geothermal,
and wave, which are reliable, inexhaustible, and clean, is increasing [3]. Among these
sources, solar energy is one of the renewable energy sources that attracts a lot of attention
and contributes significantly to energy production [4]. According to the report of the
International Renewable Energy Agency, it is seen in Figure 1 that the installed power
capacity of solar panels for obtaining electrical energy from the sun is gradually increasing
across the world [5].

Since there is a worldwide trend towards solar energy, interest in solar panels has
increased and scientists have been in search of how to increase the efficiency obtained
from solar panels [6]. Solar panels are composed of photovoltaic cells, which enable the
generation of electrical energy from sunlight [7]. The performance evaluation, simulation,
and optimization of photovoltaic models also depends on the identification of the optimum
parameters of photovoltaic models [8]. There are three different photovoltaic models
commonly used in the literature [9]: single diode, double diode, and PV module models.
Many metaheuristic algorithms have been used in the literature to identify the optimum
parameter values of these models. Some of the metaheuristic algorithms in the literature
are given in Figure 2.
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Figure 1. Installed power capacity of solar panels in the world according to years.

 

Figure 2. Figure 2. Some metaheuristic algorithms in the literature and their classification.

The nature-inspired metaheuristic algorithms in Figure 2 are presented in seven main
categories in this study. The first category consists of swarm-based algorithms, inspired by
the social behavior of swarming communities. Some of these algorithms are the artificial
bee colony (ABC) [10], grey wolf optimizer (GWO) [11], ant colony optimization (ACO) [12],
and particle swarm optimization (PSO) [13]. The second category consists of physics-based
algorithms inspired by the laws of physics. Some of them are the multi-verse optimizer
(MVO) [14], gravitational search algorithm (GSA) [15], electromagnetic field optimization
(EFO) [16], and optics inspired optimization (OIO) [17]. The third category includes
chemistry-based algorithms that are inspired by the laws of chemistry. Some of them are
the artificial chemical reaction algorithm (ACRO) [18], gases brownian motion optimization
(GBMO) [19], artificial chemical process (ACP) [20], and chemotherapy science algorithm
(CSA) [21]. The fourth category includes math’s-based algorithms, which are inspired by
mathematical rules. Some of these algorithms are the sine-cosine algorithm (SCA) [22],
stochastic fractal search (SFS) [23], golden ratio optimization method (GROM) [24], and
radial movement optimization (RMO) [25]. The fifth category includes evolutionary-
based algorithms inspired by biological phenomena in nature. Some of them are the
differential evolution (DE) [26], genetic algorithm (GA) [27], evolutionary strategy (ES) [28],
and evolutionary programming (EP) [29]. The sixth category consists of human based
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algorithms inspired by human behavior. Some of these algorithms are the teaching learning
based algorithm (TLBO) [30], firework algorithm (FWA) [31], harmony search (HS) [32],
and football game inspired algorithm (FGIA) [33]. The last category includes plant-based
algorithms, which are inspired by the behavior of plants in nature. Some of them are the
flower pollination algorithm (FPA) [34], sunflower optimization algorithm (SFO) [35], tree
seed algorithm (TSA) [36], and carnivorous plant algorithm (CPA) [37].

Many metaheuristic algorithms have been proposed in the literature for solving
optimization problems. However, the basic forms of algorithms are sometimes insufficient
for solving optimization problems [38,39]. In addition, algorithms may tend to get stuck
in local minima in identifying the parameters of PV module models [40,41]. Therefore, in
order to improve the performance of the CPA, the local search capability of the CPA has
been improved. Thus, we aimed to minimize the tendency of the CPA to get stuck in local
minima. The proposed method, with the improvement made in the CPA, is called the I-CPA.
The effectiveness and performance of the I-CPA are tested on the parameter optimization
of four different solar photovoltaic panels and compared with the results obtained by the
basic CPA. The obtained results were run for 30 runtimes until the maximum number of
function evaluations (MaxFEs) termination condition was met. The convergence curves,
box plots, I-V characteristics, and P-V characteristics of the obtained results are presented
in the related sections. Furthermore, the performance of the I-CPA is compared with the
results of some classical and modern metaheuristic algorithms, such as the differential
evolution algorithm (DE) [26], particle swarm optimization (PSO) [13], carnivorous plant
algorithm (CPA) [37], coati optimization algorithm (COA) [42], and skill optimization
algorithm (SOA) [43]. The main contributions of this study are as follows:

• A teaching factor (TF) strategy has been added to the CPA in order to minimize getting
stuck in local minima and produce more stable results. Thus, an improved CPA (I-CPA)
is proposed, aiming to introduce it to the literature.

• The performance and success of the proposed I-CPA are first tested on CEC2017
functions. Then, the proposed I-CPA is applied to identify the parameters of solar
photovoltaic modules.

• The performance of the I-CPA is compared not only with the basic CPA but also with
the results of some classical and modern metaheuristics. The comparison results are
supported by convergence and box plots.

• The Friedman mean rank test was performed to show the ranking of the I-CPA among
the compared algorithms and the significance of the results.

• Experimental results and statistical analyses show that the proposed I-CPA is an
effective and competitive method.

This paper is organized as follows: Section 2 presents the literature studies on both
the basic CPA and photovoltaic models. Section 3 describes the basic CPA. In Section 4, the
added strategy to improve the performance of the CPA is described. Section 5 presents
the PV models used in the study, the mathematical equations of these models, and the
objective function of the problem. In Section 6, the performance comparison of the proposed
I-CPA and other algorithms on CEC2017 functions is presented. Section 7 presents detailed
analyses of the experimental results. In Section 8, the results of the study are interpreted
and suggestions for future studies are given.

2. Related Works

In the literature, there are many studies on parameter extraction of photovoltaic
models with metaheuristic algorithms. Boğar [44] integrated the least squares method
into the chaos game optimization algorithm and proposed a new hybrid algorithm called
the CGO-LS. To verify the effectiveness of the CGO-LS, it was applied to the parameter
estimation problem of PV models. The performance of the CGO-LS was compared with
both the basic CGO and the results reported in the literature. According to the comparison
result, it is stated that the CGO-LS is a competitive method. Ali et al. [45] proposed an
atomic orbital search algorithm to extract unknown parameters of various solar cells. The
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proposed algorithm was applied to two different solar cells and performance analyses
were performed based on RMSE values. In their comprehensive analyses, they explained
that the proposed algorithm obtained the best result compared to the other algorithms in
the extraction of unknown parameters of solar cells. Duan et al. [46] carried out a study
aiming at parameter extraction of the photovoltaic model using the nutcracker optimizer
algorithm. They used three different photovoltaic models for this purpose. To assess the
performance of the proposed algorithm on these models, they compared it with three
popular algorithms in the literature, such as the whale optimization algorithm, fireworks
algorithm, and particle swarm optimization. According to the experimental results, the
least error value was obtained with the proposed algorithm in all models and, thus, the
efficiency in parameter extraction of photovoltaic models is increased by the suggested
algorithms. El-Mageeda et al. [41] introduced a new method called IQSODE by adapting
an improved queuing search optimization method to the differential evolution algorithm.
This proposed method was used to extract the parameters of models such as single diode,
double diode, and PV module. They compared the results of this method with those of
other algorithms in the literature, stating its superior performance both statistically and
in terms of convergence speed. It was concluded that the proposed method is a suitable
alternative for parameter extraction of photovoltaic models. Vais et al. [47] employed
the dandelion optimization algorithm (DOA), a bio-inspired algorithm, to analyze the
parameters of two different models: single diode and double diode, of various panel
types. The results obtained with the proposed method were compared with those of
both the analytical methods and also other algorithms in the literature. The comparisons
indicated that the proposed method is a successful parameter estimation tool, exhibiting a
sufficient performance compared to other algorithms. El-Dabah et al. [4] utilized northern
goshawk optimization to identify nine unknown parameters of a three-diode model of
three commercial modules. The results obtained by the proposed method were compared
with the results of some algorithms in the literature. According to the comparison results,
the proposed method is said to be competitive compared to other algorithms in terms of
convergence speed and accuracy. In the work presented by Dkhichi [48], five parameters
of the photovoltaic system are extracted by hybridizing the Levenberg–Marquardt and
simulated annealing algorithm. When the results of the proposed method were compared
with the results of newly proposed algorithms in the literature, it was stated that the
suggested method proved its superiority in terms of accuracy and robustness. Chaib
et al. [49] estimated the parameters of various photovoltaic models using the Harris hawks
algorithm, which has the advantages of good search ability, high convergence speed, and
high efficiency compared to classical methods. Estimation procedures were carried out
according to various weather conditions. According to the experimental results, the lowest
error value was obtained with the HHO, thus proving its superiority in solving this problem.
Maden et al. [50] conducted a study on the estimation of parameters of photovoltaic cells.
In this study, the values of single diode and double diode parameters were obtained by
using the squirrel search algorithm (SSA). According to the results obtained, it is stated that
SSA provides superior success compared to its competitors in the literature and increases
the efficiency of photovoltaic systems. Sharma et al. [51] used metaheuristic algorithms to
infer the parameters of four different panel types. According to the experimental results,
they realized that the algorithms that provide success in different types of panel change. For
this reason, they recommended further improvement of the algorithms. Qaraad et al. [52]
utilized the moth flame algorithm (MFO) for inferring the parameters of photovoltaic
systems. In addition, the IMFOL algorithm was proposed by adding the local escape
operator (LEO) mechanism to increase both the population diversity and the exploration
capability of the MFO algorithm. The results obtained by the proposed methods were
compared with the results of algorithms in the literature. According to the comparison,
the IMFOL algorithm is better in parameter extraction of PV systems. Thus, the IMFOL
algorithm is said to be an effective alternative method, exhibiting prosperity in speed,
stability, and accuracy.
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In the literature, many studies deal with solving optimization problems using the CPA.
Wang et al. [53] proposed a new method called the CPA-HDM by adding various improve-
ment strategies to the exploration phase, which is the growth phase, to balance exploration
and exploitation capabilities in the CPA. They assessed the performance of this proposed
method on the travelling salesman problem. According to the experimental results and
statistical analyses, the CPA-HDM method has superior performance. Wang et al. [54]
improved the CPA with the Levy mutation and similarity-removal operation in order to
solve problems such as the CPA getting stuck in local minima; the solutions obtained were
a little poor. Thus, it was stated that they increased the convergence speed of the CPA and
reduced the sticking to local minima. In order to prove this, they tested their proposed
method on test functions and engineering problems. According to the experimental results,
it is said that the solution quality of the proposed method was improved. In the work pre-
sented by Yang and Zhang [55], the CPA was transformed into a multi-objective algorithm
in order to solve multiple objectives simultaneously. They also improved the exploitation
phase of the multi-objective CPA to avoid local minima and increase the convergence speed.
The performance of the proposed algorithm was tested on various test functions and the
multi-objective CPA is said to be a competitive method. Wang et al. [56] optimized the
artificial neural network with CPA using four input data. From this, they predicted the
bond strength of wood and also predicted the surface roughness of wood. In the experi-
ments, both the neural network and the neural network optimized with CPA were used.
According to the experimental results, the results obtained from the CPA-optimized neural
network are said to be better. Zhang et al. [57] transformed the CPA into a discrete structure
to solve the travelling salesman problem. They made various improvements to the discrete
CPA to obtain better results. As a result of experimental analyses, the proposed method
is said to produce significantly better results. Peng et al. [58] added multiple strategies to
CPA in order to overcome some of its shortcomings and improve its performance. The im-
proved algorithm was tested on some benchmark functions and its success was verified. In
addition, engineering problems were solved with their proposed method, and they stated
that the results obtained were successful. Thus, it is stated that the proposed method is an
alternative for solving competitive and optimization problems. Yang et al. [59] improved on
the existing formulation for the estimation of carbon emission and developed a combined
estimation model. Carbon emissions were estimated using the CPA in this model and it
was stated that the results obtained were superior.

3. Carnivorous Plant Algorithm

The carnivorous plant algorithm (CPA) is a new bio-inspired metaheuristic algorithm
that simulates the survival process of carnivorous plants proposed by Ong [37] in 2021. The
CPA focuses on the idea of how carnivorous plants adapt to survive in harsh environmental
conditions. In the CPA, there are basically four parts: the initialization phase, classification
and grouping phase, growth phase, and reproduction phase. The main stages of the CPA
are growth (exploration) and reproduction (exploitation).

3.1. Initialization Phase

The CPA is initialized by randomly distributing a population of N individuals con-
sisting of carnivorous plants (nCPlant) and prey (nPrey). The matrix of the positions of
individuals in the initial population is given in Equation (1).

X =


X1,1 X1,2 · · · X1,D
X2,1 X2,2 · · · X2,D

...
...

. . .
...

XN,1 XN,2 · · · XN,D

 (1)
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where, the number of dimensions is expressed by D and the sum of nCPlant and nPrey is
denoted by N. Thus, the initial population is randomly initialized using Equation (2).

Individuali,j = Lbj +
(
Ubj − Lbj

)
× rand (2)

where i = 1, 2, . . ., N and j = 1, 2, . . ., D. The lower bound and upper bound of the search
space are represented by Lb and Ub, respectively. rand is a randomly generated number in
the range [0, 1].

3.2. Classification and Grouping Phase

In this section, after the individuals are sorted in ascending order according to the
fitness value, the nCPlant solutions at the top of the population are expressed as carnivorous
plants (CP), while the remaining solutions are expressed as nPrey. The nPrey number is k
times the nCPlant in the population and is an integer number. k is given in Equation (3).

k =
nPrey

nCPlant
(3)

where nCPlant is also the number of groups. The number of preys per group is denoted
by k. The sum of nCPlant and nPrey is the population size (N). To illustrate the grouping
process with an example [54], when the number of nCPlants is 2 and the number of nPreys
is 8, the population size is 10. The number of preys per group is 4.

3.3. Growth Phase

This part consists of the exploration phase. In order to obtain the nutrients they
need, carnivorous plants first release a pleasant smell and try to trap their prey. Then, the
carnivorous plant takes the necessary nutrients for its growth by digesting the trapped
prey. However, some prey may escape from the trap. In order to control this situation, an
attraction rate (ar) parameter is included in the algorithm. If the value of the ar parameter
is greater than a randomly selected number between 0 and 1, Equation (4) is used and if it
is smaller, Equation (5) is used.

NewCPi,j = growth× CPi,j + (1− growth)× Preyv,j
growth = growth_rate× randi,j

(4)

NewPreyi,j = growth× Preyu,j + (1− growth)× Preyv,j, u 6= v

growth =

{
growth_rate× randi,j f (preyv) > f (preyu)

1− growth_rate× randi,j f (preyv) < f (preyu)

(5)

where CPi,j is the current carnivorous plant and Preyv,j is the randomly selected individual.
Preyu,j refers to another randomly selected individual from group i.

3.4. Reproduction Phase

This part consists of the exploitation stage. Carnivorous plants use the nutrients they
obtain for growth and reproduction. The best individual in the population, the first ranked
individual, is allowed to reproduce. With this process, only the best solution is focused
on in the CPA. The mathematical formula of the reproduction process of the first ranked
individual is given in Equation (6).

NewCPi,j = CP1,j + Reproduction_rate× randi,j ×matei,j

matei,j =

{
CPv,j − CPi,j f (CPi) > f (CPv)
CPi,j − CPv,j f (CPi) < f (CPv)

, i 6= v 6= 1
(6)
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where CP1,j is the best solution and CPv,j is the randomly selected carnivorous plant. The
process in this step is repeated for nCPlant values. The pseudo code of CPA is given in
Algorithm 1 [37,57].

Algorithm 1: Pseudo code of CPA.

Input: The population size N
The population size of carnivorous plants: nCPlant
The population size of prey: nPrey
Group_iter: gi
Attraction_rate: ar
Growth_rate: gr
Reproduction_rate: rr
Maximum iteration: Maxiter

1. Generate initial individuals in the population
2. Calculate the fitness value and sort based on the fitness value
3. Identify the best individual, g* as the first rank carnivorous plant(CP)

WHILE iter < Maxiter
4. Set top nCPlant individuals as carnivorous plants
The remaining nPrey individuals as prey
Group the carnivorous plants and prey
/*Growth process

FOR i = 1:nCPlant
FOR Group_cycle = 1:gi

IF ar > a generated random number
Generate new carnivorous plant using Equation (4)

ELSE
Generate new prey using Equation (5)

END FOR
END FOR

/*Reproduction process
FOR i = 1:nCPlant

Generate new carnivorous plant based on the first rank CP using Equation (6)
END FOR

5. Evaluate the fitness of each new CP and new prey
6. Combine the previous and newly generated CPs and preys
7. Sort the individuals and select top n-ranked individuals to next generation
8. Identify the current best individual, g* as the first rank carnivorous plant

END WHILE
Output: The best solution and g*

4. Improved Carnivorous Plant Algorithm

The performance of metaheuristic algorithms depends on the ability to search effi-
ciently in the search space. There are two search capabilities in the algorithms: local search
and global search. These are called exploitation and exploration, respectively. While global
search explores all regions in the search space, local search is responsible for obtaining
a better result by searching around the global best result [60]. The performance of the
algorithm increases by balancing both global search and local search [61]. As the complexity
of a problem increases, it becomes more difficult to reach the best result. For this reason,
some improvements are made on the basic algorithm in order for the algorithm to produce
more effective results. In order to provide a better balance between the exploration and
exploitation capabilities of the CPA method, an effective improvement is made by adding
the teaching factor (TF) strategy [30,62] in the exploitation phase of the CPA. In this way, the
local search performance of the CPA is increased by searching for better solutions around
the best result obtained by the global search. Thus, both the exploration and exploitation
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capabilities of the CPA are more balanced, contributing to a more stable and a better result
of the CPA. The improvement in the local search equation is given in Equation (7).

NewCPi,j = CP1,j + Reproduction_rate× randi,j ×matei,j

matei,j =

{
CPv,j − TF ∗ CPi,j f (CPi) > f (CPv)

CPi,j − CPv,j f (CPi) < f (CPv)
, i 6= v 6= 1

TF = round(1 + rand())

(7)

where the strategy TF was added to the CPi,j in the matei,j equation to improve the exploita-
tion capability of the CPA. The strategy TF is an integer, and the number 1 or 2 is chosen
randomly. The TF strategy is an efficient method and has been used in many studies in
the literature [42,63–67]. This method contributes to the balance between exploration and
exploitation and allows for the algorithm to achieve successful results. The pseudo code of
the improved CPA (I-CPA) is given in Figure 3.
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5. Photovoltaic Models and Objective Functions

In this section, information about the single diode (SD) model, double diode (DD)
model, and PV module (PVM) model of solar cells are given. In addition, equivalent
circuits, mathematical equations, and objective functions of these models are presented
under the relevant titles [7].

5.1. Single Diode (SD) Model

The single diode model, which is one of the most widely used solar cell models,
consists of five parameters (Iph, Isd, Rs, Rsh, n). The output current of this model is calculated
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according to Kirchhoff’s Current Law, as in Equation (8). The diode current (Id) and shunt
resistor current (Ish) in this equation are calculated by the formula in Equation (9) and
Equation (10), respectively. The extended formula of the output current is given in Equation
(11) and the objective function of this model is given in Equation (12).

IL = Iph − Id − Ish (8)

Id = Isd ×
[

exp
(

q× (VL + Rs × IL)

n× k× T

)
− 1
]

(9)

Ish =
VL + Rs × IL

Rsh
(10)

IL = Iph − Isd ×
[

exp
(

q× (VL + Rs × IL)

n× k× T

)
− 1
]
− VL + Rs × IL

Rsh
(11)

 fi(VL, IL, XSD) = Iph − Isd ×
[
exp
(

q×(VL+Rs×IL)
n×k×T

)
− 1
]
− VL+Rs×IL

Rsh
− IL

XSD =
{

Iph, Isd, Rs, Rsh, n
} (12)

The parameter n is the ideality factor, Rsh is the shunt resistance, Rs is the series resis-
tance, Isd is the saturation current, and Iph is the photo generated current. The equivalent
circuit of the model is given in Figure 4.
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5.2. Double Diode (DD) Model

The double diode model considering recombination current loss consists of seven
parameters (Iph, Isd1, Isd2, Rs, Rsh, n1, n2). The output current of this model is calculated as
in Equation (13). The diode current (Id1 and Id2) and shunt resistor current (Ish) in this
equation are calculated by the formula in Equations (14), (15) and (16), respectively. The
extended formula of the output current is given in Equation (17) and the objective function
of this model is given in Equation (18).

IL = Iph − Id1 − Id2 − Ish (13)

Id1 = Isd1 ×
[

exp
(

q× (VL + Rs × IL)

n1 × k× T

)
− 1
]

(14)

Id2 = Isd2 ×
[

exp
(

q× (VL + Rs × IL)

n2 × k× T

)
− 1
]

(15)

Ish =
VL + Rs × IL

Rsh
(16)
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IL = Iph − Isd1 ×
[

exp
(

q× (VL + Rs × IL)

n1 × k× T

)
− 1
]
− Isd2 ×

[
exp

(
q× (VL + Rs × IL)

n2 × k× T

)
− 1
]
− VL + Rs × IL

Rsh
(17)


fi(VL, IL, XDD) = Iph − Isd1 ×

[
exp
(

q×(VL+Rs×IL)
n1×k×T

)
− 1
]

−Isd2 ×
[
exp
(

q×(VL+Rs×IL)
n2×k×T

)
− 1
]
− VL+Rs×IL

Rsh
− IL

XDD =
{

Iph, Isd1, Isd2, Rs, Rsh, n1, n2

} (18)

In addition to the single diode model parameters, Isd1, Isd2, n1, and n2 parameters
are included in this model. These parameters represent the diffusion current, saturation
current, diode ideality factor, and recombination diode ideality factor, respectively. The
equivalent circuit of the DD model is given in Figure 5.
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5.3. PV Module (PVM) Model

The PVM model, which is based on the single diode model, consists of cells connected
in series and parallel. The mathematical formula for the output current of the PV module is
given in Equation (19) and the objective function of the model is given in Equation (20).

IL/Np = Iph − Isd ×
[

exp

(
q×

(
VL/Ns + Rs × IL/Np

)
n× k× T

)
− 1

]
−

VL/Ns + Rs × IL/Np

Rsh
(19)



fi(VL, IL, XPVM) = Iph − Isd ×
[

exp

(
q×
(

VL
Ns +

Rs×IL
Np

)
n×k×T

)
− 1

]
−

VL
Ns +

Rs×IL
Np

Rsh
− IL

Np

XPVM =
{

Iph, Isd, Rs, Rsh, n
} (20)

The equivalent circuit of solar cells connected to each other as Ns × Np is given
in Figure 6. Where Ns represents series connected cells, while Np represents parallel
connected cells.
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After determining the parameter values of the single diode, double diode and PV
module models, the formula for the root mean square error (RMSE) of the optimization
problem, which aims to minimize the error between simulation data and standard data, is
given in Equation (21), where N is the number of standard data.

RMSE(X) =
√

1
N ∑N

i=1 fi(VL, IL, X)2

X = [XSD, XDD, XPVM]
(21)

6. Performance Comparison of the Proposed I-CPA and Other Algorithms on CEC2017

In this section, CEC2017 test functions are used to test the performance of the proposed
I-CPA. Two of the CEC2017 test functions are unimodal, seven are multimodal, ten are
hybrid, and the remaining ten are composition functions. CEC2017 test functions consisting
of 29 functions in total are given in Table 1 [68].

Table 1. Unconstrained CEC2017 test functions.

Function No Name Fmin

Unimodal
F1 Shifted and Rotated Bent Cigar Function 100
F3 Shifted and Rotated Zakharov Function 300

Multimodal

F4 Shifted and Rotated Rosenbrock’s Function 400
F5 Shifted and Rotated Rastrigin’s Functions 500
F6 Shifted and Rotated Expanded Scaffer’s F6 Function 600
F7 Shifted and Rotated Lunacek Bi_Rastrigin Function 700
F8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800
F9 Shifted and Rotated Levy Function 900

F10 Shifted and Rotated Schwefel’s Function 1000

Hybrid

F11 Hybrid Function 1 (N = 3) 1100
F12 Hybrid Function 2 (N = 3) 1200
F13 Hybrid Function 3 (N = 3) 1300
F14 Hybrid Function 4 (N = 4) 1400
F15 Hybrid Function 5 (N = 4) 1500
F16 Hybrid Function 6 (N = 4) 1600
F17 Hybrid Function 6 (N = 5) 1700
F18 Hybrid Function 6 (N = 5) 1800
F19 Hybrid Function 6 (N = 5) 1900
F20 Hybrid Function 6 (N = 6) 2000
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Table 1. Cont.

Function No Name Fmin

Composition

F21 Composition Function 1 (N = 3) 2100
F22 Composition Function 2 (N = 3) 2200
F23 Composition Function 3 (N = 4) 2300
F24 Composition Function 4 (N = 4) 2400
F25 Composition Function 5 (N = 5) 2500
F26 Composition Function 6 (N = 5) 2600
F27 Composition Function 7 (N = 6) 2700
F28 Composition Function 8 (N = 6) 2800
F29 Composition Function 9 (N = 3) 2900
F30 Composition Function 10 (N = 3) 3000

Search Range: [−100, 100]D, D: 30, MaxFEs: 300,000.

All the algorithms used in this study were run 30 times under the same conditions.
The mean and standard deviation values obtained as a result of the runs are given in Table 2.
In addition, the results obtained by the proposed I-CPA are compared with the results
obtained by the basic CPA, SOA, COA, PSO, and DE algorithms. Moreover, in order to
show the significance of the obtained results, the results of all the algorithms are subjected
to the Friedman mean rank test [69]. The statistical ranking results of the algorithms are
given in Table 2.

Table 2. CEC2017 function results and Friedman mean rank statistics analysis.

No I-CPA CPA SOA COA PSO DE

F1
Mean 6.58 × 109 3.55 × 1010 4.03 × 1010 6.69 × 1010 2.25 × 1010 3.89 × 1010

Std. 4.51 × 109 1.34 × 1010 7.82 × 109 7.40 × 109 1.86 × 1010 1.07 × 1010

F3
Mean 5.22 × 104 1.93 × 105 8.25 × 104 8.69 × 104 9.43 × 104 1.06 × 105

Std. 8.93 × 103 6.73 × 104 9.09 × 103 7.52 × 103 6.82 × 104 4.30 × 104

F4
Mean 1.84 × 103 8.23 × 103 7.86 × 103 1.90 × 104 3.66 × 103 7.65 × 103

Std. 1.09 × 103 4.29 × 103 2.03 × 103 2.89 × 103 3.45 × 103 2.81 × 103

F5
Mean 7.28 × 102 8.47 × 102 7.88 × 102 9.61 × 102 7.36 × 102 7.49 × 102

Std. 4.90 × 101 6.90 × 101 3.29 × 101 1.99 × 101 5.78 × 101 4.00 × 101

F6
Mean 6.42 × 102 6.62 × 102 6.59 × 102 6.97 × 102 6.41 × 102 6.40 × 102

Std. 7.32 × 100 1.08 × 101 5.42 × 100 5.82 × 100 1.26 × 101 7.83 × 100

F7
Mean 1.10 × 103 1.69 × 103 1.26 × 103 1.47 × 103 1.20 × 103 1.46 × 103

Std. 8.14 × 101 1.68 × 102 6.26 × 101 3.63 × 101 2.36 × 102 1.82 × 102

F8
Mean 9.93 × 102 1.09 × 103 1.00 × 103 1.17 × 103 1.02 × 103 1.01 × 103

Std. 3.51 × 101 5.00 × 101 2.96 × 101 2.33 × 101 5.14 × 101 4.54 × 101

F9
Mean 5.47 × 103 8.06 × 103 4.74 × 103 1.18 × 104 6.95 × 103 5.53 × 103

Std. 1.60 × 103 2.64 × 103 4.85 × 102 8.72 × 102 2.49 × 103 1.51 × 103

F10
Mean 6.00 × 103 7.37 × 103 5.53 × 103 9.28 × 103 5.35 × 103 6.14 × 103

Std. 6.68 × 102 7.43 × 102 6.73 × 102 4.13 × 102 8.02 × 102 7.20 × 102

F11
Mean 3.49 × 103 1.84 × 104 5.76 × 103 1.10 × 104 7.03 × 103 1.04 × 104

Std. 1.81 × 103 7.81 × 103 2.15 × 103 2.36 × 103 1.06 × 104 8.89 × 103

F12
Mean 6.37 × 108 6.06 × 109 9.03 × 109 1.96 × 1010 2.25 × 109 4.17 × 109

Std. 7.14 × 108 3.69 × 109 2.89 × 109 3.61 × 109 2.94 × 109 2.17 × 109

F13
Mean 6.37 × 108 4.12 × 109 3.92 × 109 1.70 × 1010 1.87 × 109 2.47 × 109

Std. 1.32 × 109 4.33 × 109 3.63 × 109 6.65 × 109 3.92 × 109 3.40 × 109

F14
Mean 1.02 × 106 9.13 × 106 1.63 × 106 1.26 × 107 1.19 × 106 1.69 × 106

Std. 7.34 × 105 1.49 × 107 1.86 × 106 1.69 × 107 2.72 × 106 2.50 × 106

F15
Mean 7.21 × 106 6.31 × 108 1.31 × 108 1.70 × 109 1.99 × 108 3.46 × 108

Std. 1.95 × 107 1.12 × 109 1.86 × 108 1.07 × 109 4.66 × 108 7.19 × 108

F16
Mean 3.23 × 103 4.13 × 103 3.65 × 103 7.58 × 103 3.42 × 103 3.34 × 103

Std. 3.97 × 102 9.84 × 102 5.85 × 102 1.57 × 103 6.41 × 102 5.70 × 102
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Table 2. Cont.

No I-CPA CPA SOA COA PSO DE

F17
Mean 2.31 × 103 3.01 × 103 3.36 × 103 1.82 × 104 2.70 × 103 2.48 × 103

Std. 2.16 × 102 6.01 × 102 1.06 × 103 2.03 × 104 3.22 × 102 1.90 × 102

F18
Mean 4.36 × 106 4.11 × 107 1.66 × 107 2.32 × 108 1.48 × 107 5.76 × 106

Std. 5.17 × 106 5.41 × 107 2.31 × 107 2.00 × 108 2.74 × 107 7.42 × 106

F19
Mean 2.05 × 107 5.03 × 108 9.01 × 107 1.35 × 109 2.58 × 108 1.79 × 108

Std. 3.68 × 107 7.12 × 108 1.61 × 108 6.93 × 108 5.33 × 108 3.37 × 108

F20
Mean 2.65 × 103 3.02 × 103 2.66 × 103 3.24 × 103 2.67 × 103 2.76 × 103

Std. 1.59 × 102 2.89 × 102 1.63 × 102 1.83 × 102 2.09 × 102 3.08 × 102

F21
Mean 2.51 × 103 2.61 × 103 2.58 × 103 2.82 × 103 2.56 × 103 2.52 × 103

Std. 3.42 × 101 5.00 × 101 4.91 × 101 6.51 × 101 7.29 × 101 5.00 × 101

F22
Mean 5.24 × 103 8.33 × 103 7.63 × 103 1.01 × 104 6.75 × 103 7.15 × 103

Std. 2.21 × 103 1.35 × 103 6.67 × 102 6.40 × 102 6.71 × 102 8.52 × 102

F23
Mean 3.08 × 103 3.27 × 103 3.36 × 103 3.80 × 103 3.13 × 103 3.14 × 103

Std. 1.22 × 102 1.70 × 102 1.38 × 102 2.49 × 102 1.82 × 102 1.53 × 102

F24
Mean 3.22 × 103 3.39 × 103 3.80 × 103 4.05 × 103 3.36 × 103 3.27 × 103

Std. 8.79 × 101 1.50 × 102 3.66 × 102 2.54 × 102 1.70 × 102 1.51 × 102

F25
Mean 3.17 × 103 5.11 × 103 3.95 × 103 5.82 × 103 3.68 × 103 4.38 × 103

Std. 1.18 × 102 1.01 × 103 3.90 × 102 6.47 × 102 6.60 × 102 6.95 × 102

F26
Mean 7.52 × 103 9.14 × 103 9.99 × 103 1.26 × 104 7.97 × 103 8.00 × 103

Std. 1.06 × 103 1.34 × 103 6.92 × 102 1.20 × 103 1.24 × 103 9.56 × 102

F27
Mean 3.59 × 103 3.83 × 103 4.42 × 103 5.15 × 103 3.43 × 103 3.52 × 103

Std. 1.43 × 102 2.46 × 102 3.32 × 102 6.60 × 102 1.47 × 102 1.28 × 102

F28
Mean 3.86 × 103 6.02 × 103 6.18 × 103 8.41 × 103 5.39 × 103 5.80 × 103

Std. 2.88 × 102 1.23 × 103 8.01 × 102 5.55 × 102 1.75 × 103 1.10 × 103

F29
Mean 4.72 × 103 5.90 × 103 6.08 × 103 1.57 × 104 4.55 × 103 4.68 × 103

Std. 4.08 × 102 8.67 × 102 9.15 × 102 1.21 × 104 4.24 × 102 6.24 × 102

F30
Mean 4.53 × 107 4.41 × 108 5.64 × 108 3.19 × 109 2.10 × 108 3.13 × 108

Std. 8.51 × 107 5.05 × 108 7.74 × 108 1.93 × 109 4.92 × 108 4.36 × 108

FMR 1.31 4.72 3.66 5.83 2.45 3.03

Rank 1 5 4 6 2 3

p-value 9.87 × 10−22

The best mean values are marked in bold font. FMR: Friedman mean ranks.

The results in Table 2 show that the I-CPA obtained the best mean values in most of the
CEC2017 test functions. According to the Friedman mean rank test, the I-CPA was the first
algorithm to perform well in rank with a value of 1.31. Then, the PSO was the second-best
performing algorithm with a value of 2.45. The third best performing algorithm was the
DE algorithm with an FMR value of 3.03. According to the FMR test, the basic CPA ranked
5th among all algorithms with a value of 4.72. The p-value obtained as a result of the
Friedman mean rank test is less than 0.05, which shows that the I-CPA produces statistically
significant results in CEC2017 test functions compared to other algorithms.

7. Experimental Results

In this section, the proposed I-CPA and the basic CPA are applied to determine the
optimum parameter values for SD, DD, and PV module models. For this purpose, four
different solar photovoltaic module models popular in the literature were selected. The
lower and upper bound (LB and UB) values of these models are given in Table 3. The
nCPlant and nPrey values of the algorithms in the study were 2 and 8, respectively, and the
sum of both parameters gives the number of populations, and its value was 10. MaxFEs
was taken as 50,000. The study was run for 30 runtimes under equal conditions. The
experimental results, convergence, and box plots obtained with the proposed I-CPA and
the basic CPA according to these conditions are presented under the relevant titles.
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Table 3. Boundaries of solar photovoltaic modules.

Boundaries Iph (A) Isd,1,2 (A) RS (Ω) Rsh (Ω) n, n1,2

RTC France Solar Cell [70]
LB 0 0 0 0 1
UB 1 1 × 10−6 0.5 100 2

Photowatt-PWP201 [70]
LB 0 0 0 0 1
UB 2 50 × 10−6 2 2000 50

STM6-40/36 [70]
LB 0 0 0 0 1
UB 2 50 × 10−6 0.36 1000 60

KC200GT [71]
LB 0 0 0 0 1
UB 2 × Isc 100 × 10−6 2 5000 5

Where Isc value in the table represents the short circuit current. The formula of Isc is
given in Equation (22).

Isc(G, T) = Isc−STC
G

GSTC
+ α(T − TSTC) (22)

where G is the irradiance level and T is the temperature value. Under standard experi-
mental conditions, Isc−STC is the short circuit current, GSTC is the irradiance, TSTC is the
temperature, and α is the temperature coefficient of the short circuit current.

7.1. Result of Single Diode (SD) Model

In this model, an RTC France solar cell is used and consists of 26 I–V data pairs. In
addition, standard data [70] obtained at 33 ◦C and 1000 W/m2 irradiance are used in this
cell model. The best, mean, worst, and standard deviation (std) values obtained by the
proposed I-CPA and the basic CPA, SOA, COA, PSO, and DE are given in Table 4. The
parameter values obtained by the algorithms according to the best RMSE value are given
in Table 5.

Table 4. RMSE values of the algorithms for the SD model.

Algorithms Best Mean Std. Worst

I-CPA 9.9862 × 10−4 4.4400 × 10−3 4.2832 × 10−3 1.8243 × 10−2

CPA 1.3053 × 10−3 6.8584 × 10−2 7.2643 × 10−2 2.2585 × 10−1

SOA 2.6870 × 10−3 1.6503 × 10−2 1.2698 × 10−2 4.4222 × 10−2

COA 3.0192 × 10−2 1.9451 × 10−1 9.3783 × 10−2 4.0959 × 10−1

PSO 1.0014 × 10−3 4.0018 × 10−2 6.1949 × 10−2 2.2286 × 10−1

DE 1.1893 × 10−3 2.3637 × 10−2 3.2312 × 10−2 1.1858 × 10−1

Table 5. Parameter values according to the best RMSE for the SD model.

Algorithms Iph (A) Isd (A) RS (Ω) Rsh (Ω) n RMSE

I-CPA 0.760577 3.2563 × 10−7 0.036402 56.80359 1.481923 9.9862 × 10−4

CPA 0.759522 3.5336 × 10−7 0.036257 79.28121 1.489935 1.3053 × 10−3

SOA 0.764164 3.1260 × 10−7 0.035694 28.46189 1.478808 2.6870 × 10−3

COA 0.728476 8.2413 × 10−7 0.017023 35.95890 1.591579 3.0192 × 10−2

PSO 0.760735 3.5397 × 10−7 0.036011 56.32661 1.490452 1.0014 × 10−3

DE 0.760822 4.5474 × 10−7 0.034975 63.38279 1.516437 1.1893 × 10−3

When Tables 4 and 5 are analyzed, it is seen that the best RMSE is obtained by the
proposed I-CPA with a value of 9.9861664297 × 10−4. Then, the PSO algorithm obtained
the second-best RMSE with a value of 1.0013654751 × 10−3. Based on the mean RMSE
value, it was seen that the I-CPA achieved very good success compared to other algorithms,
with a value of 4.4400472660 × 10−3. In addition, it was observed that the I-CPA obtained
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better results compared to other algorithms at std. and worst values. According to the
box plots and convergence curve given in Figure 7, it is seen that the I-CPA is more stable
than both the basic CPA and the other algorithms. The I–V and P–V characteristic curves
obtained with the data generated by the I-CPA are shown in Figure 8. According to the
results here, it is seen that the agreement between the simulated data and the standard data
is very close.
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7.2. Result of the Double Diode (DD) Model

In this model, an RTC France solar cell is used and consists of 26 I–V data pairs [70].
The parameter values according to the best RMSE obtained by the proposed I-CPA and the
other algorithms are given in Table 6. Also, the best, worst, mean, and std. values produced
by the I-CPA and the other algorithms are given in Table 7. The proposed I-CPA obtained a
better result than the other algorithms with a value of 1.0252353427 × 10−3.

Table 6. Parameter values according to the best RMSE for the DD model.

Algorithms Iph (A) Isd1 (A) RS (Ω) Rsh (Ω) n1 Isd2 (A) n2 RMSE

I-CPA 0.760190 4.0418 × 10−8 0.036475 63.0435 1.522657 2.8693 × 10−7 1.477916 1.0252 × 10−3

CPA 0.762026 1.6085 × 10−7 0.039435 78.01944 1.760364 1.7933 × 10−7 1.427847 3.1788 × 10−3

SOA 0.764871 3.6528 × 10−7 0.019998 13.00286 1.565339 2.9868 × 10−7 1.562413 2.0952 × 10−3

COA 0.735841 2.0086 × 10−7 0.033445 57.4358 1.857056 2.3340 × 10−7 1.456689 1.9054 × 10−2

PSO 0.760674 3.9729 × 10−7 0.035548 60.2668 1.502309 0.0000 × 100 1.654406 1.0626 × 10−3

DE 0.760657 1.5424 × 10−7 0.035343 61.3255 1.624442 3.0473 × 10−7 1.489441 1.1075 × 10−3

Table 7. RMSE values of the algorithms for the DD model.

Algorithms Best Mean Std. Worst

I-CPA 1.0252 × 10−3 4.3539 × 10−3 3.0441 × 10−3 1.2067 × 10−2

CPA 3.1788 × 10−3 5.8840 × 10−2 7.2786 × 10−2 2.6221 × 10−1

SOA 2.0952 × 10−3 1.5730 × 10−2 1.1951 × 10−2 4.3416 × 10−2

COA 1.9054 × 10−2 1.8824 × 10−1 9.7086 × 10−2 3.4214 × 10−1

PSO 1.0626 × 10−3 5.7209 × 10−2 1.2077 × 10−1 6.3074 × 10−1

DE 1.1075 × 10−3 4.2795 × 10−2 6.7470 × 10−2 2.5263 × 10−1

The convergence and box plots of the proposed I-CPA and the other algorithms are
given in Figure 9. When the box plot is analyzed, it is seen that the I-CPA has a stable
structure compared to both the basic CPA and the SOA, COA, PSO, and DE algorithms,
while the convergence graphs show that the I-CPA has better convergence performance
than other algorithms. The I–V and P–V characteristic curves obtained according to the
best value of the I-CPA are given in Figure 10, and it is seen that the standard data and the
simulation data obtained by I-CPA coincide with each other.
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7.3. Result of Photowatt-PWP201 Module (PVM)

In this model, a Photowatt-PWP201 PV module was used and experimental results
were obtained using 25 standard data [70] measured at 45 ◦C and 1000 W/m2 irradiance.
According to the comparative results given in Table 8, although the results of the proposed
I-CPA and DE are close to each other, the I-CPA is successful by producing a better value.
Also, when the table is analyzed according to the mean RMSE, it is seen that the I-CPA
achieves a better result than the other algorithms. Table 9 shows the parameter values
obtained by the algorithms according to the best RMSE value.

Table 8. RMSE values of the algorithms for the PVM.

Algorithms Best Mean Std. Worst

I-CPA 2.4374 × 10−3 6.7743 × 10−3 6.1563 × 10−3 3.0363 × 10−2

CPA 3.0119 × 10−3 8.9207 × 10−2 1.0569 × 10−1 4.7271 × 10−1

SOA 5.4642 × 10−3 8.5049 × 10−2 8.8685 × 10−2 2.7425 × 10−1

COA 7.7377 × 10−2 7.0752 × 10−1 9.6805 × 10−1 4.7377 × 100

PSO 2.5005 × 10−3 7.7136 × 10−2 1.1219 × 10−1 2.7425 × 10−1

DE 2.4828 × 10−3 3.0656 × 10−1 7.3988 × 10−1 4.0836 × 100
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Table 9. Parameter values according to the best RMSE for the PVM.

Algorithms Iph (A) Isd (A) RS (Ω) Rsh (Ω) n RMSE

I-CPA 1.031157 3.5751 × 10−6 1.197135 929.6739 48.74672 2.4374 × 10−3

CPA 1.027829 3.8392 × 10−6 1.181989 1064.428 49.03548 3.0119 × 10−3

SOA 1.047762 2.2434 × 10−6 1.210877 304.1560 47.07763 5.4642 × 10−3

COA 0.979167 2.1819 × 10−6 1.656607 624.8833 47.17717 7.7377 × 10−2

PSO 1.029246 4.3374 × 10−6 1.178268 1304.384 49.49755 2.5005 × 10−3

DE 1.029839 4.1940 × 10−6 1.182198 1191.611 49.36549 2.4828 × 10−3

The convergence and box plots of the proposed I-CPA and the other algorithms are
given in Figure 11, respectively. It is seen from the box plot that the proposed I-CPA is
more stable than both the CPA and SOA, COA, PSO, and DE. When the convergence graph
is analyzed, it is seen that the COA is stuck to the local minimum after approximately
1000 FEs, and the CPA after approximately 2500 FEs. However, the I-CPA achieved the best
result with a faster convergence trend. The I–V and P–V characteristic curves generated
according to the data obtained by the I-CPA are given in Figure 12, and it can be said that
the simulation data and standard data are compatible.
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7.4. Result of STM6-40/36 Module

In this section, the STM6-40/36 PV module was used and experimental results were
obtained with 20 standard current–voltage data [70] measured at 51 ◦C and 1000 W/m2

irradiance. There are five parameters in this module. The parameter and RMSE values
obtained with both the I-CPA and the other algorithms are given in Table 10. In addition,
Table 11 shows the best, mean, worst, and std. values obtained by the algorithms. While
the proposed I-CPA obtained the best result with a value of 2.1565659255 × 10-3, the
second-closest value was obtained by the SOA and the algorithm that obtained the third-
closest value was the PSO. Based on the mean value, it is seen that the I-CPA is better than
other algorithms.
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Table 10. Parameter values according to the best RMSE for the STM6-40/36.

Algorithms Iph (A) Isd (A) RS (Ω) Rsh (Ω) n RMSE

I-CPA 1.661132 2.6044 × 10−6 0.003057 20.60004 1.565799 2.1566 × 10−3

CPA 1.564076 2.3197 × 10−5 5.63 × 10−5 426.2615 1.895378 9.8909 × 10−2

SOA 1.662258 4.7862 × 10−6 0.000690 22.04669 1.640448 3.0013 × 10−3

COA 1.673044 1.8703 × 10−5 3.18 × 10−11 564.1726 1.834307 1.6812 × 10−2

PSO 1.661513 5.5252 × 10−6 0.00 × 100 23.71499 1.659002 3.3300 × 10−3

DE 1.619320 6.7695 × 10−6 1.73 × 10−5 999.9999 1.689407 3.0103 × 10−2

Table 11. RMSE values of the algorithms for the STM6-40/36.

Algorithms Best Mean Std. Worst

I-CPA 2.1566 × 10−3 1.5146 × 10−2 1.0656 × 10−2 4.8066 × 10−2

CPA 9.8909 × 10−2 3.0348 × 10−1 8.1796 × 10−2 3.6316 × 10−1

SOA 3.0013 × 10−3 2.0919 × 10−2 1.4882 × 10−2 5.4448 × 10−2

COA 1.6812 × 10−2 2.4421 × 10−1 1.2490 × 10−1 3.6314 × 10−1

PSO 3.3300 × 10−3 1.3663 × 10−1 1.4695 × 10−1 3.6317 × 10−1

DE 3.0103 × 10−2 2.4320 × 10−1 1.2111 × 10−1 3.6308 × 10−1

Convergence curves obtained according to the best results and box plots showing the
stability of the algorithm are given in Figure 13. When the convergence graph is analyzed,
it is seen that the CPA, DE and COA get stuck in the local minimum after approximately
1000 FEs, while the I-CPA reaches the best result by continuously escaping from the local
minimum. When the box plots are analyzed, it is seen that the I-CPA is more stable than the
other algorithms. In Figure 14, the compatibility of the I–V and P–V characteristic curves
generated according to the best values of the I-CPA with the standard values is remarkable.
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7.5. Result of KC200GT Module

In this section, in order to obtain five different parameter values for the KC200GT
PV module, analyses were performed using standard data [72] according to different
temperature and irradiance values and detailed under two separate titles. In the first
section, the temperature value applied to the KC200GT PV module is kept constant at 25 ◦C
and experimental results are obtained according to 200, 400, 600, 800, and 1000 W/m2

irradiation values. In the last section, the irradiance value is kept constant at 1000 W/m2

and experimental results are obtained according to the temperature values of 25 ◦C, 50 ◦C,
and 75 ◦C. The results obtained are presented in the tables and the convergence, box, and
I–V, P–V curves are shown in the figures.
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7.5.1. Constant Temperature and Different Irradiance Work

The best, mean, std, and worst result values obtained with both the proposed I-
CPA and the other algorithms at 25 ◦C constant temperature and 200, 600, 800, and
1000 W/m2 irradiance values are given in Table 12. When the table is analyzed, it is
seen that the proposed I-CPA obtained a better result than the other algorithms, with
values of 8.7018663730 × 10−3 at 200 W/m2 irradiance, 2.0547281215 × 10−2 at 400 W/m2

irradiance, 4.2984541388× 10−2 at 600 W/m2 irradiance, 4.6780703134× 10−2 at 800 W/m2

irradiance, and 6.8155205337 × 10−2 at 1000 W/m2 irradiance. At the same time, based
on the mean value, it is seen that the I-CPA achieves an even better result. The parameter
values obtained by the algorithms according to the best RMSE value are given in Table 13.

Table 12. RMSE values of the algorithms for constant temperature and different irradiances.

Algorithms Best Mean Std. Worst

200 W/m2

I-CPA 8.7019 × 10−3 1.7585 × 10−2 7.6136 × 10−3 4.0644 × 10−2

CPA 4.0412 × 10−2 1.8935 × 10−1 7.6538 × 10−2 2.6581 × 10−1

SOA 1.1437 × 10−2 1.9814 × 10−2 3.6146 × 10−2 2.1440 × 10−1

COA 4.8206 × 10−2 2.9368 × 10−1 2.3204 × 10−1 1.0333 × 100

PSO 1.2346 × 10−2 9.2294 × 10−2 1.0118 × 10−1 2.6786 × 10−1

DE 2.4422 × 10−2 1.2177 × 10−1 9.1937 × 10−2 2.6774 × 10−1

400 W/m2

I-CPA 2.0547 × 10−2 3.7445 × 10−2 1.5605 × 10−2 8.0397 × 10−2

CPA 7.7800 × 10−2 5.3220 × 10−1 4.1892 × 10−1 2.1953 × 100

SOA 2.0999 × 10−2 9.3643 × 10−2 1.5289 × 10−1 4.4701 × 10−1

COA 1.9475 × 10−1 5.5592 × 10−1 4.5848 × 10−1 2.9165 × 100

PSO 2.4469 × 10−2 1.1976 × 10−1 1.7069 × 10−1 5.6505 × 10−1

DE 2.6128 × 10−2 3.1305 × 10−1 2.2140 × 10−1 5.6507 × 10−1

600 W/m2

I-CPA 4.2985 × 10−2 6.3347 × 10−2 1.6160 × 10−2 1.0384 × 10−1

CPA 9.3935 × 10−2 1.0959 × 102 5.8594 × 102 3.2650 × 103

SOA 4.3828 × 10−2 1.0276 × 10−1 1.6895 × 10−1 7.3125 × 10−1

COA 8.8716 × 10−2 1.1665 × 100 1.2086 × 100 4.5504 × 100

PSO 5.1102 × 10−2 3.3265 × 10−1 8.2807 × 10−1 4.5504 × 100

DE 4.7580 × 10−2 5.7519 × 10−1 4.8638 × 10−1 2.3933 × 100

800 W/m2

I-CPA 4.6781 × 10−2 1.2417 × 10−1 2.0414 × 10−1 1.2164 × 100

CPA 1.4547 × 10−1 2.6183 × 1015 1.4099 × 1016 7.8541 × 1016

SOA 5.5369 × 10−2 2.5267 × 10−1 5.5278 × 10−1 2.8901 × 100

COA 1.1941 × 10−1 1.3369 × 100 1.3180 × 100 6.1055 × 100

PSO 7.1854 × 10−2 4.5482 × 10−1 4.2569 × 10−1 1.1703 × 100

DE 7.8629 × 10−2 6.0898 × 10−1 4.6163 × 10−1 1.2369 × 100

1000 W/m2

I-CPA 6.8155 × 10−2 1.2635 × 10−1 2.1128 × 10−2 1.6568 × 10−1

CPA 1.7914 × 10−1 2.4882 × 1034 1.3396 × 1035 7.4627 × 1035

SOA 8.2649 × 10−2 2.4378 × 10−1 3.7978 × 10−1 1.3716 × 100

COA 1.3297 × 10−1 1.7254 × 100 1.2918 × 100 7.5683 × 100

PSO 1.1458 × 10−1 5.8412 × 10−1 6.9455 × 10−1 1.7602 × 100

DE 1.1517 × 10−1 6.8757 × 10−1 6.9629 × 10−1 1.7615 × 100
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Table 13. Parameter values of the PV module according to the best RMSE of the algorithms under
constant temperature and different irradiance conditions.

Algorithms Iph (A) Isd (A) RS (Ω) Rsh (Ω) n RMSE

200 W/m2

I-CPA 1.577919 1.8993 × 10−7 0.009315 5000.00 1.390763 8.7019 × 10−3

CPA 1.599835 5.1585 × 10−5 9.32 × 10−6 2470.12 2.164018 4.0412 × 10−2

SOA 1.579777 1.1965 × 10−6 0.002324 1221.57 1.567724 1.1437 × 10−2

COA 1.625524 4.9398 × 10−5 0.000841 2466.46 2.141879 4.8206 × 10−2

PSO 1.579721 1.8262 × 10−6 0.00 × 100 5000.00 1.614168 1.2346 × 10−2

DE 1.589322 1.2742 × 10−5 0.00 × 100 3024.83 1.893861 2.4422 × 10−2

400 W/m2

I-CPA 3.253889 3.2070 × 10−7 0.00324 6.598593 1.413711 2.0547 × 10−2

CPA 3.247364 3.7822 × 10−5 0.00166 4390.309 2.025899 7.7800 × 10−2

SOA 3.228092 8.5527 × 10−7 0.00209 17.78862 1.503491 2.0999 × 10−2

COA 3.111251 3.0476 × 10−5 0.00693 1436.038 2.053825 1.9475 × 10−1

PSO 3.229227 2.0840 × 10−6 0.00 × 100 16.56421 1.594609 2.4469 × 10−2

DE 3.220904 3.7452 × 10−6 9.53 × 10−6 2294.147 1.663803 2.6128 × 10−2

600 W/m2

I-CPA 4.856086 1.1361 × 10−6 0.001913 10.81073 1.526247 4.2985 × 10−2

CPA 4.900939 6.0026 × 10−5 1.82 × 10−6 3911.121 2.069565 9.3935 × 10−2

SOA 4.848421 2.4426 × 10−6 0.001801 48.28901 1.607485 4.3828 × 10−2

COA 4.843326 4.1875 × 10−5 9.73 × 10−5 1789.595 2.005826 8.8716 × 10−2

PSO 4.848333 7.6747 × 10−6 0.00 × 100 75.67750 1.741967 5.1102 × 10−2

DE 4.850289 4.8496 × 10−6 1.10 × 10−3 3944.496 1.686342 4.7580 × 10−2

800 W/m2

I-CPA 6.481358 1.4688 × 10−7 0.003116 9.06509 1.335718 4.6781 × 10−2

CPA 6.533486 7.9757 × 10−5 0.000185 2506.688 2.088066 1.4547 × 10−1

SOA 6.487515 6.4209 × 10−7 0.002180 10.29268 1.456419 5.5369 × 10−2

COA 6.523348 4.5172 × 10−5 2.46 × 10−20 2483.004 1.977255 1.1941 × 10−1

PSO 6.485372 5.5691 × 10−6 0.00 × 100 14.02724 1.676213 7.1854 × 10−2

DE 6.484879 1.3011 × 10−5 0.00 × 100 4443.546 1.787232 7.8629 × 10−2

1000 W/m2

I-CPA 8.061536 7.5512 × 10−8 0.003449 4995.431 1.289751 6.8155 × 10−2

CPA 8.121738 1.9898 × 10−5 0.001601 546.2093 1.856372 1.7914 × 10−1

SOA 8.117739 1.0818 × 10−6 0.002224 15.27229 1.505406 8.2649 × 10−2

COA 8.167953 4.9748 × 10−5 0.00 × 100 2487.763 1.982407 1.3297 × 10−1

PSO 8.114500 1.9540 × 10−5 0.00 × 100 5000.00 1.837472 1.1458 × 10−1

DE 8.119760 2.3241 × 10−5 0.00 × 100 2537.75 1.862979 1.1517 × 10−1

The convergence curves obtained according to the best results of the algorithms and
the box plots generated according to the results obtained by the algorithms for 30 runtimes
are given in Figure 15. When the convergence curves are analyzed, it can be said that
the proposed I-CPA converges faster than the other algorithms and tends to avoid local
minima. When the box plots are analyzed, it can be said that the proposed I-CPA is more
stable than the other algorithms. When the box plots are interpreted for all irradiance
values, it is seen that the I-CPA produces more stable results than the basic the CPA. The
I–V and P–V characteristic graphs consisting of simulation data obtained by the I-CPA and
standard data under constant temperature and different irradiation values are presented in
Figure 16. When the figure is analyzed, it is seen that the simulation data of the I-CPA and
the standard data are in harmony over the entire voltage range for all cases.
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7.5.2. Different Temperature and Constant Irradiance Work

The best, mean, std., and worst result values obtained for 1000 W/m2 constant irradi-
ance and different temperature values of 25 ◦C, 50 ◦C, and 75 ◦C are given in Table 14. Ac-
cording to the results in the table, it is seen that the proposed I-CPA produces a better result
than the other algorithms with values of 6.8155205337× 10−2 at 25 ◦C, 6.6338374335× 10−2

at 50 ◦C, and 6.4612208129 × 10−2 at 75 ◦C. The parameter values produced by the algo-
rithms according to their best result are given in Table 15.

Table 14. RMSE values of the algorithms for different temperature and constant irradiance.

Algorithms Best Mean Std. Worst

25 ◦C—1000 W/m2

I-CPA 6.8155 × 10−2 1.2635 × 10−1 2.1128 × 10−2 1.6568 × 10−1

CPA 1.7914 × 10−1 2.4882 × 1034 1.3396 × 1035 7.4627 × 1035

SOA 8.2649 × 10−2 2.4378 × 10−1 3.7978 × 10−1 1.3716 × 100

COA 1.3297 × 10−1 1.7254 × 100 1.2918 × 100 7.5683 × 100

PSO 1.1458 × 10−1 5.8412 × 10−1 6.9455 × 10−1 1.7602 × 100

DE 1.1517 × 10−1 6.8757 × 10−1 6.9629 × 10−1 1.7615 × 100

50 ◦C—1000 W/m2

I-CPA 6.6338 × 10−2 9.3289 × 10−2 2.7757 × 10−2 1.9511 × 10−1

CPA 1.1992 × 10−1 8.0406 × 1030 4.3300 × 1031 2.4122 × 1032

SOA 6.9765 × 10−2 1.8893 × 10−1 3.4039 × 10−1 1.4563 × 100

COA 1.1288 × 10−1 1.3781 × 100 8.1909 × 10−1 3.9345 × 100

PSO 9.1813 × 10−2 9.1974 × 10−1 1.4235 × 100 7.5736 × 100

DE 7.4535 × 10−2 1.2903 × 100 1.2307 × 100 6.4153 × 100

75 ◦C—1000 W/m2

I-CPA 6.4612 × 10−2 1.9626 × 10−1 3.6800 × 10−1 2.1540 × 100

CPA 5.0825 × 10−1 2.1560 × 104 1.1609 × 105 6.4674 × 105

SOA 7.6140 × 10−2 4.3558 × 10−1 4.2661 × 10−1 1.6534 × 100

COA 3.1861 × 10−1 1.5048 × 100 9.3394 × 10−1 4.8212 × 100

PSO 1.0167 × 10−1 7.4441 × 10−1 6.3584 × 10−1 2.1347 × 100

DE 2.5991 × 10−1 1.4281 × 100 7.9062 × 10−1 2.1360 × 100

When the convergence and box plots given in Figure 17 are analyzed, it can be
interpreted from the graph that the I-CPA tends to avoid local minima by showing a better
convergence performance than both the basic CPA and the other algorithms. The box plot
shows that the I-CPA is more stable than the basic CPA. The I–V and P–V characteristic
graphs consisting of simulation data and standard data obtained with the I-CPA under
constant irradiance and different temperature values are presented in Figure 18. When the
figure is analyzed, it is seen that the simulation data of the I-CPA and the standard data are
in harmony over the entire voltage range for all cases.
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Table 15. Parameter values of the PV module according to the best RMSE of the algorithms under
different temperature and constant irradiance conditions.

Algorithms Iph (A) Isd (A) RS (Ω) Rsh (Ω) n RMSE

25 ◦C—1000 W/m2

I-CPA 8.061536 7.5512 × 10−8 0.003449 4995.431 1.289751 6.8155 × 10−2

CPA 8.121738 1.9898 × 10−5 0.001601 546.2093 1.856372 1.7914 × 10−1

SOA 8.1177390 1.0818 × 10−6 0.002224 15.27229 1.505406 8.2649 × 10−2

COA 8.1679533 4.9748 × 10−5 0.00 × 100 2487.763 1.982407 1.3297 × 10−1

PSO 8.1145002 1.9540 × 10−5 0.00 × 100 5000.000 1.837472 1.1458 × 10−1

DE 8.1197601 2.3241 × 10−5 0.00 × 100 2537.752 1.862979 1.1517 × 10−1

50 ◦C—1000 W/m2

I-CPA 8.217318 4.6475 × 10−6 0.002365 8.286305 1.379142 6.6338 × 10−2

CPA 8.317071 5.3480 × 10−5 0.001114 3953.827 1.657883 1.1992 × 10−1

SOA 8.213238 9.6663 × 10−6 0.001949 12.73250 1.574289 6.9765 × 10−2

COA 8.162757 4.9712 × 10−5 1.41 × 10−8 2485.616 1.646706 1.1288 × 10−1

PSO 8.223759 1.0000 × 10−4 2.33 × 10−4 5000.000 1.749940 9.1813 × 10−2

DE 8.203875 2.1073 × 10−5 1.49 × 10−3 5000.000 1.539649 7.4535 × 10−2

75 ◦C—1000 W/m2

I-CPA 8.274836 7.2027 × 10−6 0.004698 38.39862 1.187854 6.4612 × 10−2

CPA 8.265985 8.1748 × 10−5 0.005869 3865.020 1.476085 5.0825 × 10−1

SOA 8.285779 1.8963 × 10−5 0.004161 55.04236 1.489774 7.6140 × 10−2

COA 8.225573 1.0000 × 10−4 1.77 × 10−21 5000.000 1.449672 3.1861 × 10−1

PSO 8.304616 1.0000 × 10−4 3.02 × 10−3 5000.000 1.461759 1.0167 × 10−1

DE 8.189925 6.7452 × 10−5 9.52 × 10−4 2751.274 1.405813 2.5991 × 10−1Biomimetics 2023, 8, x FOR PEER REVIEW 26 of 30 
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7.6. Statistical Analysis Results of Solar Photovoltaic Modules

The Friedman mean rank test was performed to analyze the performance of the pro-
posed I-CPA and the basic CPA, SOA, COA, PSO, and DE algorithms on solar photovoltaic
modules. In the Friedman mean rank test, the algorithm corresponding to the lowest value
performs the best. The performance rankings of the algorithms according to the Friedman
mean rank statistical test are given in Table 16. In addition, the mean values obtained by
the algorithms according to the solar photovoltaic modules are also given in the same table.

Table 16. Mean values of solar photovoltaic modules and Friedman mean rank statistics results.

Modules I-CPA CPA SOA COA PSO DE

SD 4.44 × 10−3 6.86 × 10−2 1.65 × 10−2 1.95 × 10−1 4.00 × 10−2 2.36 × 10−2

DD 4.35 × 10−3 5.88 × 10−2 1.57 × 10−2 1.88 × 10−1 5.72 × 10−2 4.28 × 10−2

PVM 6.77 × 10−3 8.92 × 10−2 8.50 × 10−2 7.08 × 10−1 7.71 × 10−2 3.07 × 10−1

STM6-40/36 1.51 × 10−2 3.03 × 10−1 2.09 × 10−2 2.44 × 10−1 1.37 × 10−1 2.43 × 10−1

KC200GT-200
W/m2-25 ◦C 1.76 × 10−2 1.89 × 10−1 1.98 × 10−2 2.94 × 10−1 9.23 × 10−2 1.22 × 10−1

KC200GT-400
W/m2-25 ◦C 3.74 × 10−2 5.32 × 10−1 9.36 × 10−2 5.56 × 10−1 1.20 × 10−1 3.13 × 10−1

KC200GT-600
W/m2-25 ◦C 6.33 × 10−2 1.10 × 102 1.03 × 10−1 1.17 × 100 3.33 × 10−1 5.75 × 10−1

KC200GT-800
W/m2-25 ◦C 1.24 × 10−1 2.62 × 1015 2.53 × 10−1 1.34 × 100 4.55 × 10−1 6.09 × 10−1

KC200GT-1000
W/m2-25 ◦C 1.26 × 10−1 2.49 × 1034 2.44 × 10−1 1.73 × 100 5.84 × 10−1 6.88 × 10−1

KC200GT-1000
W/m2-50 ◦C 9.33 × 10−2 8.04 × 1030 1.89 × 10−1 1.38 × 100 9.20 × 10−1 1.29 × 100

KC200GT-1000
W/m2-75 ◦C 1.96 × 10−1 2.16 × 104 4.36 × 10−1 1.50 × 100 6.36 × 10−1 1.43 × 100

FMR 1.09 5.45 2.00 5.45 3.09 3.91

Rank 1 5 2 5 3 4

p-value 8.86 × 10−10

FMR: Friedman mean ranks.

When Table 16 is analyzed, the I-CPA is the first algorithm with the best performance
in determining the parameter values of solar photovoltaic modules, with an FMR value
of 1.09. Then, the SOA is the second algorithm with the best performance with an FMR
value of 2.00. The PSO is the third-best-performing algorithm with an FMR value of 3.09.
The basic CPA and COA performed similarly to each other, and both algorithms ranked
fifth with an FMR value of 5.45. Therefore, the fact that the p-value obtained as a result of
the Friedman mean rank test is less than 0.05 shows that the I-CPA produces statistically
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significant results in the parameter identification of solar PV modules compared to other
algorithms.

8. Conclusions

In this study, the I-CPA method, which is an improved version of the CPA, is proposed
to identify the optimum parameter values of solar PV modules. Thus, it aims to both
minimize the getting stuck in local minima of the CPA and improve its performance in
terms of solution quality in this problem. The performance of the proposed I-CPA method
is evaluated on CEC2017 test functions. It is observed that the results obtained with
the I-CPA are more successful than the basic CPA. The performance of the I-CPA is also
compared with the results of the PSO, DE, SOA, and COA algorithms in the literature. The
comparisons show that the proposed I-CPA has a better performance. The Friedman mean
rank statistical test was performed to show the ranking of the proposed I-CPA among all
algorithms and the significance of the results. As a result of the statistical analyses, the
I-CPA ranked first among all algorithms with a score of 1.31 and obtained more successful
and statistically significant results. The I-CPA, whose success was tested on CEC2017
functions, was applied to three different models: single diode, double diode, and PV
module models. When the results obtained from the models are analyzed, it is seen that
the quality of the solutions obtained using the I-CPA method increases compared to the
basic CPA. In addition, when the results of the I-CPA are compared with the results of the
PSO, DE, SOA, and COA algorithms in the literature, the I-CPA obtained better results.
When analyzed in terms of I–V and P–V characteristic curves, it is seen that the simulation
data obtained by the I-CPA and the standard data overlap over the entire voltage range.
Convergence curves, box plots, and statistical analyses obtained from the experimental
results show that the I-CPA produces more significant, stable, and better results than the
basic CPA.

In future studies, the I-CPA can be applied to high-dimensional optimization problems
and its performance can be measured. In addition, the I-CPA can be hybridized with differ-
ent optimization algorithms, and performance analyses can be performed on engineering
problems. In addition, the I-CPA can be made binary to solve binary optimization problems.
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