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Abstract: Direct methanol fuel cells (DMFCs) are promising form of energy conversion technology
that have the potential to take the role of lithium-ion batteries in portable electronics and electric cars.
To increase the efficiency of DMFCs, many operating conditions ought to be optimized. Developing
a reliable fuzzy model to simulate DMFCs is a major objective. To increase the power output of a
DMFC, three process variables are considered: temperature, methanol concentration, and oxygen
flow rate. First, a fuzzy model of the DMFC was developed using experimental data. The best
operational circumstances to increase power density were then determined using the beetle antennae
search (BAS) method. The RMSE values for the fuzzy DMFC model are 0.1982 and 1.5460 for the
training and testing data. For training and testing, the coefficient of determination (R2) values were
0.9977 and 0.89, respectively. Thanks to fuzzy logic, the RMSE was reduced by 88% compared to
ANOVA. It decreased from 7.29 (using ANOVA) to 0.8628 (using fuzzy). The fuzzy model’s low
RMSE and high R2 values show that the modeling phase was successful. In comparison with the
measured data and RSM, the combination of fuzzy modeling and the BAS algorithm increased the
power density of the DMFC by 8.88% and 7.5%, respectively, and 75 ◦C, 1.2 M, and 400 mL/min were
the ideal values for temperature, methanol concentration, and oxygen flow rate, respectively.

Keywords: direct methanol fuel cell; beetle antennae search algorithm; fuzzy modeling; optimization

1. Introduction

Global warming, which is mainly caused by the overuse of fossil fuels, is a serious en-
vironmental concern with far-reaching repercussions. The extensive use of fossil fuels such
as coal, oil, and natural gas emit substantial volumes of greenhouse gases into the atmo-
sphere, mainly carbon dioxide [1,2]. These gases trap heat and cause global temperatures
to rise, culminating in the phenomena known as global warming. This, in turn, exacerbates
catastrophic weather occurrences and upsets delicate ecological balances [3,4]. Aside from
these climatic effects, the health of both individuals and ecosystems is jeopardized. As
temperatures rise, heat-related ailments and respiratory diseases become more common.
The spread of infectious illnesses can potentially be worsened if climate change affects
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vectors and ecosystems. It is clear that addressing the core cause of global warming by
shifting away from the use of fossil fuels is critical for mitigating its cascading effects on our
ecosystem, weather patterns, and overall well-being. There are numerous techniques for
combating and managing global warming. These tactics include using renewable energies,
improving the efficiency of present energy conversion technology, and pushing forward
the development of ecologically acceptable energy conversion systems. The fuel cell is one
example of an efficient energy conversion device. Fuel cells have small or insignificant
environmental footprints, operate quietly, are compact, and have capabilities ranging from
a few watts to large scales. Because of their extraordinary efficiency and versatility, fuel cells
are set to play a significant role in the renewable energy sector. Fuel cells have emerged as a
cornerstone technology in the expanding global emphasis on sustainable energy solutions,
notably the interest in green hydrogen. They are perfect for green hydrogen use due to their
high efficiency in turning chemical energy into power with low or no environmental impact.
A closed-loop, clean energy cycle is achieved by using renewable energy sources to make
hydrogen using electrolysis. The hydrogen converted back into electrical power using furl
cell. Therefore, fuel cells are becoming essential components of energy storage systems.
The ability of these renewable resources to store surplus energy and release it when needed
assures a stable and predictable power supply, bridging the intermittent nature of these
renewable resources. Fuel cells are poised to shine as a cornerstone technology, propelling
the renewable energy sector forward as the world accelerates its move toward cleaner
energy choices.

Low-temperature fuel cells like PEMFCs “proton exchange membrane fuel cells”
operate optimally at lower temperatures (typically around 80 ◦C) when membrane was
well hydrated [5,6]. While hydrogen remains the optimum fuel for PEMFCs, concerns
about its safety, purity, storage, and transportation have arisen [7,8]. To remove these
issues, indirect FCs based on hydrocarbons such as methane (natural gas), methanol, and
ethanol have become more common [9,10]. Although these hydrocarbons provide safer
and more manageable transportation and storage alternatives than hydrogen, indirect
systems are larger and less efficient than PEMFCs. As a result, researchers have focused
on direct alcoholic fuel cells as possible alternatives to indirect fuel cell systems [11,12].
At the anode side, direct alcoholic fuel cells use simple alcohols such as methanol [13,14],
ethanol [15,16], or propanol [17,18] as fuel. Methanol is the simplest alcohol that, when
compared to other alcohols, can be easily electrochemically oxidized at the anode side.
Methanol also has a high energy density and can be produced using renewable energy
sources. Direct methanol fuel cells have the potential to replace Li ion batteries in portable
electronics as well as other secondary batteries in transportation. Methanol crossover and
slow methanol oxidation at the anode are two major obstacles to the commercialization of
direct methanol fuel cells [19,20]. To manage the methanol crossover, many tactics have
been used, including reducing the methanol concentration, utilizing thicker membranes,
altering the current Nafion membranes with different fillers, replacing Nafion membranes
with others with lower crossover, or using a non-precious cathode catalyst that has high
oxygen reduction activity and low or no methanol oxidation activity [21,22]. On the other
hand, various mathematical modeling studies have been carried out to analyze all of the
parameters that affect cell performance, including methanol crossover. Such models are
helpful for fully understating all of the parameters affecting/related to methanol crossover,
and thus, they are helpful in deciding the best operating condition at minimum crossover
and the highest possible power output [23–25].

Massive experimental efforts are being undertaken to address methanol crossover and
the sluggish methanol oxidation at the anode and optimize the operating conditions (i.e.,
methanol concentration, cell temperature, etc.). Deciding the optimal operating conditions
experimentally requires massive amounts of effort, time, and costs; therefore, modeling and
simulation are considered the best choices to realize this aim [26,27]. Although mathemati-
cal and physical modeling succeed to a large extent in modeling various processes, they are
usually based on parameters that are sometimes based on assumptions, which could affect
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the model’s accuracy. Machine learning is an artificial intelligence approach that focuses on
creating algorithms [28]. Machine learning techniques are used in engineering applications
to evaluate complicated data patterns, optimize processes, and improve decision making
across multiple domains. Engineers use machine learning to create more efficient systems,
detect equipment breakdowns, streamline industrial processes, and improve overall per-
formance. Neural networks are types of algorithms that are based on the structure and
operation of the human brain. They are made up of interconnected nodes, or “neurons,”
that are structured in layers. Through a process known as training, neural networks may
learn patterns and relationships from data [29,30]. Neural networks are utilized in engi-
neering for tasks such as image and speech recognition, control systems, optimization, and
prediction. Convolutional Neural Networks (CNNs) thrive at image analysis, whereas
Recurrent Neural Networks (RNNs) excel at sequential data processing, making them
useful for tasks such as time series analysis and natural language processing [31,32].

Fuzzy logic is a mathematical framework for dealing with decision making uncertainty
and imprecision. Unlike standard binary logic, which categorizes everything as either
true or false, fuzzy logic can reflect degrees of truth. In engineering applications, fuzzy
logic models and controls systems with ambiguity and vagueness [33,34]. Temperature
management in HVAC systems, automatic transmission in vehicles, and expert systems
for decision support in many engineering fields are examples of fuzzy logic’s many uses.
The authors of the present study have already used fuzzy modeling and optimization to
model and optimize various engineering processes, such as bio-methanol production [35],
microbial fuel cell operation [36,37], increasing carbon capture capacity [38,39], deciding
the optimal operating conditions of PEMFC [40,41], biohydrogen production [42], etc.

Few works have been discussed modeling and optimizing DMFCs. Wang et al. [43]
successfully used ANFIS (“adaptive-network-based fuzzy inference systems”) to model
a DMFC stack’s performance using current, methanol concentration, and temperature as
input parameters and the output is cell voltage. The accuracy of ANFIS was better than
those obtained by ANN. Similarly, using ANFIS and ANN, Hasiloglu et al. [44] modeled
a DMFC using temperature, methanol solution flow rate and concentration at the anode,
airflow at the cathode, and current as the input parameters, while cell voltage was the
output. Using fuzzy logic-based control, Cao et al. [45] optimized the energy consumption
in a hybrid energy system composed of a battery and a DMFC, aiming to maximize the
efficiency of the DMFC while keeping a high state of charge in the battery. Still, a lot of work
needs to be carried out for the proper modeling and optimization of DMFCs. The main goal
of the current work was to create a trustworthy fuzzy model to simulate DMFCs. Three
process variables were considered to boost the power density of the DMFC: temperature,
methanol concentration, and oxygen flow rate. Using experimental data, a fuzzy model of
the DMFC was first created. The beetle antennae search (BAS) technique was then used to
discover the optimal operational conditions to maximize power density.

The main focus of the present work is:

• Constructing a new fuzzy model for simulating direct methanol fuel cell.
• Applying BAS algorithm for determining the best values of temperature, methanol

concentration, and oxygen flow rate.
• Boosting the power density of the DMFC.

2. Dataset

The dataset points used for the current study are presented in Table 1. These dataset
points present the relationships between the output (maximum Power density (mW/cm2))
and three input parameters (temperature, methanol concentration, and oxygen flow rate).
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Table 1. Dataset points (with permission No. 5607770016240 from [46]).

Oxygen Flow Rate
(mL/min)

Methanol
Concentration (M)

Temperature
(◦C)

Maximum Power
Density (mW/cm2)

300 1 50 24.6
500 1 50 24.3
600 1 50 23.5
800 1 50 23.9
300 0.5 60 31.8
500 0.5 60 31.7
600 0.5 60 31.6
300 1 60 36.5
500 1 60 35.7
600 1 60 34.2
800 1 60 33.1
300 2 60 28.1
500 2 60 27.9
600 2 60 26.1
300 1 75 37.6
500 1 75 36.5
600 1 75 35.8
300 0.5 70 33.4
500 0.5 70 32.9
600 0.5 70 32.5
800 0.5 70 30.5

1000 0.5 70 29.5
300 1 70 36.8
500 1 70 35.6
600 1 70 34.5
800 1 70 33.4
300 2 70 33.8
500 2 70 33.2
600 2 70 30.8
800 2 70 27.8

3. Methodology

The suggested approach comprises two main stages: modeling and optimization. First,
using the experimental data, an accurate model that simulates the DMFC was created via
fuzzy logic. The datasets were divided into 70% (training) and 30% (testing). The model
precision for tracking the data was confirmed first. Then, the BAS algorithm was used to
determine the optimal parameters which improve the power density of the DMFC. Three
crucial elements determining the reliability of the model predictions were carefully selected
in order to build a robust model and handle the overfitting problem: (1) the modelling
tool; (2) the ratio between training and testing data; and (3) the number of training epochs.
Because fuzzy logic can handle complex and non-linear datasets, it was chosen as the
modelling tool.

3.1. Fuzzy Modeling

Fuzzy Inference Systems (FISs) could serve as instruments for approximating intricate
system behaviors characterized by vague and non-linear functions. These instruments
have the ability to attribute qualitative facets of human understanding to approximate
the functions. Typically, Fuzzy Inference Systems (FISs) encompass the following five
functional elements [47]:

• An assemblage of fuzzy IF–THEN rules within the rule base. The number of rules
can be determined by multiplying the number of inputs. The rules are provided as
follows:

# If α is X1 and β is Y1, then γ is Z1
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# If α is X2 and β is Y2, then γ is Z2
# If α is Xn and β is Yn, then γ is Zn

Here α and β are inputs; γ is an output; and X, Y, and Z are fuzzy sets.

• A database that outlines the membership functions of each set.
• The decision making method.
• A fuzzification stage that converts the inputs to linguistic variables.
• A defuzzification stage that converts the linguistic variables to outputs.

The architecture of the FIS is illustrated in Figure 1.
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3.2. Beetle Antennae Search Algorithm

The BAS algorithm is based on the natural search behavior of longhorn beetles. This
metaheuristic algorithm imitates insect antennae and their unpredictable travel patterns.
The beetle uses its two antennae to haphazardly explore surrounding surroundings. In the
event that only one antenna detects the target’s odor (where the odor concentration mirrors
the objective function, denoted as f ), the beetle adjusts its course toward that direction.
If neither antenna detects the odor, the beetle changes its path to the opposite side. This
algorithm efficiently integrates these two elements to navigate and guide its search [48].

The new location can be computed as a function of the directional factor d and the
location turning of the right and left sides (xr and xl), given that xt represents the beetle’s
location at iteration t. The following formula can be used to determine d in terms of the
search space dimensions (dim):

d =
rand(dim)

|rand(dim)| (1)

xr and xl can be determined:

xl = xt + at·d (2)

xr = xt − at·d (3)

at is the length of the antennae sensing at t and expressed as follows:

at = 0.95·at−1 + 0.01 (4)

The new position of the beetle can be determined as follows:

xt = xt−1 + bt·d·sgn( f (xr)− f (xl)) (5)

bt (the step size) can be determined as follows:

bt = 0.95·bt−1 (6)
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4. Results and Discussion

To build a concrete model and to overcome the problem of overfitting, fuzzy logic is
used. 30 points were used to build the model (21 for training and the rest for testing). The
system’s rules, which were developed using the subtractive Clustering Algorithm (SC),
were in this work 10. The model was trained until lower RMSE values were obtained. The
statistical metrics of the model is shown in Table 2.

Table 2. Statistical metrics of the fuzzy model of the DMFC.

RMSE R2

Train Test All Train Test All

0.1982 1.5460 0.8628 0.9977 0.89 0.96

As indicated in Table 2, the RMSE values for DMFC model are 0.1982 and 1.5460
for the training and testing data, respectively. The R2 values for training and testing are
0.9977 and 0.89. Using fuzzy logic, a 88% reduction in RMSE was achieved compared to
ANOVA [46]. Where the RMSE decreased from 7.29 in case of ANOVA to 0.8628 (using
fuzzy). The fuzzy model’s low RMSE and high R2 values show robustness of the modeling
phase. The three-input, single-output fuzzy model of the DMFC is shown in Figure 2, and
Figure 3 expresses the Gaussian-shape membership functions.
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Figure 4 presents the surface of the DMFC’s fuzzy model when the system’s input–
output function is considered for each pair of inputs. Yellow receives the output’s highest
value, while dark blue receives the lowest value. The performance of the DMFC at various
methanol concentrations (between 0.5 and 1 M) is positively influenced by temperature
within the measured range, which is between 50 and 75 ◦C (Figure 4a). When cell tempera-
ture was raised, the electrochemical oxidation and reduction activities at both electrodes,
i.e., anode and cathode, is improved, and thus performance [49]. Up to a definite tempera-
ture, which is 65 ◦C in this study, the cell temperature had a favorable impact on the power
output of the DMFC when varying oxygen flow rates were applied to the cell’s cathode.
However, when the cell temperature increased further, performance degraded (Figure 4b).
The influence of cell temperature on the drying of the cathode side with an increase in the
cell temperature, especially at higher oxygen flow rates (800 and 1000 mL/min), would
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result in a slight decrease in power. Figure 4c demonstrates that the cell’s performance
improved as the methanol concentration was increased from 0.5 M to 1.5 M. Conversely,
the performance declined at higher methanol concentrations, and this was observed at
different oxygen flow rates. The effect of the methanol concentration at the various oxygen
flow rates is the same as increasing the cell temperature [50] because it is well known that
an increase in the methanol concentration would increase the methanol crossover and,
consequently, the cell temperature [50] (Figure 4b).
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The developed fuzzy model can accurately estimate the power density of DMFC by
detecting the accurate relationship between the controlling inputs and desired outputs
of DMFC as seen in Figure 5. As clearly seen in the figure, a well matching between the
estimated and experimental data. Additionally, an accuracy around 100% line was obtained
for the prediction plots of the training and tested data obtained by the fuzzy model as
demonstrated in Figure 6.

The next step after constructing the fuzzy model is the validation stage. Table 3
displays the validation results regarding the fuzzy model. Table 3 displays validation
results of 70 ◦C, 1 M, and 300 mL/min for temperature, methanol concentration, and
oxygen flow rate, respectively. Under these conditions, the maximum power density (MPD)
values are 36.8 mW/cm2, 38.1 mW/cm2, and 36.35 mW/cm2 for experimental, RSM, and
fuzzy modeling, respectively. As shown in Table 3, the percentage error decreased from
3.5% (ANOVA) to 1.22 using fuzzy modeling.

Table 3. Validation of fuzzy model of DMFC.

Method Temperature ◦C Methanol
Concentration

Oxygen Flow Rate
(mL/min)

Maximum Power
Density (mW/cm2) Percentage Error (%)

Exp. [46] 70 1 300 36.8 0.0

RSM [46] 70 1 300 38.1 3.5

Fuzzy 70 1 300 36.35 1.22
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After the validation stage, the fuzzy model was integrated with the BAS algorithm
to detect the best operating conditions of the DMFC to maximize the power density. The
optimization problem can be expressed in the following manner:

x = arg
x∈R

max(y)

x is the set of the input parameters, and y is power density of the DMFC.
In Table 4, the optimal input parameters, and their corresponding power densities

for the DMFC are presented using measured data, the RSM, and the BAS Algorithm. The
combination of fuzzy modeling and the BAS algorithm resulted in an 8.88% and 7.5%
increase in the power density of the DMFC when compared to the utilization of measured
data and the RSM method, respectively. Figure 7 shows the particle convergence during
optimization. As presented in Figure 7a, the best objective value of 40.94 (mW/cm2) was
obtained at iteration no. 20. The optimal values for temperature, methanol concentration,
and oxygen flow rate are 75 ◦C, 1.2 M, and 400 mL/min, respectively. The increase in
performance with the increase in the methanol concentration from (1 M to 1.2 M) is related to
the increase in the available methanol molecules at the anode surface for the electrochemical
reaction and, especially, the increase in cell temperature from 70 to 75 ◦C. The increased
methanol concentration increases the energy density, which is favorable for the commercial
application of DMFCs. Improved performance was obtained at the same methanol flow
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rate, indicating no more flowing power requirements and at slight increase in the cell
temperature.
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Table 4. Achieved best parameters using considered approaches.

Method Temperature ◦C Methanol
Concentration

Oxygen Flow
Rate (mL/min)

Maximum
Power Density

(mW/cm2)

Exp. [46] 70 1 300 37.6

RSM [46] 70 1 300 38.1

Fuzzy and BAS 75 1.2 400 40.94
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To confirm the power of the BAS algorithm, a comparison with SCA, PSO, GA, JS,
and HHO was done. To avoid arbitrary results, all optimizers were executed 30 times, and
comprehensive statistical evaluations were carried out. Table 5 and Figure 8 present the
details of the 30 runs using the different optimizers. Various statistical metrics, including
the best value, worst value, average value, and standard deviation, were computed and are
presented in Table 6. The average cost function values (power density of DMFC) ranged
between 40.9 and 37.56. BAS shows the highest average value of 40.9, followed by 40.56
in case of PSO, whereas GA showed the lowest value of 37.56. The STD values ranged
between 0.07 and 2.38. BAS algorithm showed the best STD value of 0.07, followed by
SCA (0.74), whereas as the lowest average value (2.38) was in case of using HHO. This
demonstrates the superior performance of the BAS algorithm in identifying the best values
associated with the maximum power output.
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Table 5. Details of the 30 runs.

No. SCA PSO GA BAS JS HHO No. SCA PSO GA BAS JS HHO

1 40.41 40.7 38.28 40.94 40.29 35.16 16 40.18 40.9 40.17 40.87 40.44 35.18
2 40.74 40.93 33.19 40.94 40.69 37.28 17 40.89 40.73 40.71 40.89 40.82 40.25
3 40.88 40.72 37.27 40.94 40.71 39.6 18 40.72 40.72 38.98 40.93 40.72 40.68
4 40.09 34.12 38.78 40.94 40.66 35.41 19 40.87 40.94 37.2 40.94 40.69 40.58
5 40.09 40.72 36.14 40.91 40.92 37.68 20 38.13 40.69 38.83 40.94 40.8 38.67
6 40.87 40.87 38.46 40.94 40.6 35.96 21 39.66 40.73 37.14 40.83 40.73 39.24
7 40.86 40.73 40.15 40.77 40.72 40.84 22 38.16 40.94 35.8 40.93 40.91 40.53
8 39.88 40.73 38.83 40.63 39.21 39.55 23 40.22 40.7 40.23 40.82 40.72 33.96
9 40.87 40.73 39.49 40.93 40.84 33.77 24 40.66 40.93 34.64 40.91 40.68 40.93

10 40.9 40.73 33.67 40.88 40.54 40.14 25 40.87 40.73 38.87 40.94 40.85 40.69
11 39.25 40.72 37.37 40.94 39.35 40.79 26 40.6 40.73 39.35 40.94 40.62 40.16
12 40.91 40.94 34.45 40.93 40.35 40 27 39.7 40.93 33.19 40.93 40.64 34.73
13 40.59 40.73 39.35 40.93 34.87 40.84 28 40.8 40.72 40.88 40.94 40.85 40.73
14 40.48 40.93 33.19 40.93 40.88 40.72 29 40.9 40.73 37.29 40.92 40.7 40.62
15 40.92 40.73 35.95 40.93 39.21 40.11 30 40.75 40.73 39 40.9 39.77 40.94

Table 6. Results derived from the statistical evaluation of the considered optimizers.

SCA PSO GA BAS JS HHO

Best 40.92 40.94 40.88 40.94 40.92 40.94
Worst 38.13 34.12 33.19 40.63 34.87 33.77
Mean 40.36 40.56 37.56 40.9 40.33 38.86
STD 0.74 1.2 2.33 0.07 1.12 2.38

Other tests, such as an ANOVA and Tukey’s test, were also carried out. Table 7 outlines
the results derived from using an ANOVA, while Figure 9 provides a visual representation
of the rankings, effectively confirming the exceptional proficiency of the BAS method. The
diagram highlights its superior average fitness and remarkable variances, reinforcing its
position as the leading performer.

Table 7. ANOVA results.

Source df SS MS F Prob

Columns 5 248.365 49,673 20.11 8.364 × 10−13

Error 174 429.835 2.470

Total 179 678.200

The outcomes obtained through using Tukey’s test, depicted in Figure 10, validate the
conclusions drawn from the ANOVA. Specifically, the mean results achieved by GA and
HHO were distinctly inferior to those derived from using the BAS method. SCA, PSO, and
JS showed the second highest performances, trailing behind the BAS method.
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5. Conclusions

The target of this work was to enhance the power density of a DMFC. A fuzzy model
of a DMFC was developed based on collected data for temperature, methanol concentration,
and oxygen flow rate. The best operating parameters to increase the power density of
the DMFC were then found using the beetle antennae search (BAS) method. The RMSE
values for the DMFC fuzzy model were 0.1982 and 1.5460 for the training and testing
data, respectively. For the training and testing phases, the coefficient of determination (R2)
values were 0.9977 and 0.89, respectively. The RMSE was reduced by 88% via the use of
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the BAS method compared to an ANOVA. It decreased from 7.29 using ANOVA to 0.8628
using fuzzy. The fuzzy model’s low RMSE and R2 values show that the modeling phase
was successful. In comparison to the measured data and RSM, the combination of fuzzy
modeling and the BAS algorithm increased the power density of the DMFC by 8.88% and
7.5%, respectively. To confirm the power of the BAS method, a comparison with SCA, PSO,
GA, JS, and HHO was carried out.

The average values of the cost function (power density of the DMFC) ranged between
40.9 and 37.56. The BAS algorithm achieved the highest average value of 40.9, followed by
PSO (40.56), while GA yielded the lowest average value of 37.56. Standard Deviation (STD)
values varied between 0.07 and 2.38. The BAS algorithm exhibited the best STD value of 0.07,
followed by SCA (0.74), with HHO recording the highest value of 2.38. This underscores
the effectiveness of the BAS algorithm in deciding the best values corresponding to the
highest power output.
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