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Abstract: Object detection in pedestrian walkways is a crucial area of research that is widely used to
improve the safety of pedestrians. It is not only challenging but also a tedious process to manually
examine the labeling of abnormal actions, owing to its broad applications in video surveillance
systems and the larger number of videos captured. Thus, an automatic surveillance system that
identifies the anomalies has become indispensable for computer vision (CV) researcher workers.
The recent advancements in deep learning (DL) algorithms have attracted wide attention for CV
processes such as object detection and object classification based on supervised learning that requires
labels. The current research study designs the bioinspired Garra rufa optimization-assisted deep
learning model for object classification (BGRODL-OC) technique on pedestrian walkways. The
objective of the BGRODL-OC technique is to recognize the presence of pedestrians and objects in the
surveillance video. To achieve this goal, the BGRODL-OC technique primarily applies the GhostNet
feature extractors to produce a set of feature vectors. In addition to this, the BGRODL-OC technique
makes use of the GRO algorithm for hyperparameter tuning process. Finally, the object classification
is performed via the attention-based long short-term memory (ALSTM) network. A wide range
of experimental analysis was conducted to validate the superior performance of the BGRODL-OC
technique. The experimental values established the superior performance of the BGRODL-OC
algorithm over other existing approaches.

Keywords: bioinspired algorithms; image classification; object detection; deep learning; pedestrian
walkways

1. Introduction

Recent technological developments such as computer vision (CV) and surveillance
cameras (CCTV) have been utilized to protect the pedestrians and support safer walking
practices. For this purpose, the type of characteristics of risk constituents is required to
save the pedestrians from accidents [1]. Numerous CV techniques have been developed by
focusing on the processes such as activity learning, feature extraction, data acquisition, be-
havioral learning, and scene learning. The main objective of such techniques is to compute
the operations, such as video processing systems, traffic monitoring, scene identification,
multicamera-relied challenges and methods, human behavior learning, activities analysis,
vehicle prediction and monitoring, anomaly prediction techniques, etc. [2]. The current
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study focuses on anomalous forecast, a subfield of behavioral learning from the captured
visual images. Moreover, anomalous prediction methods realize popular behavior with the
help of training processes. The presence of numerous significant variations in the standard
implementation process is defined as “anomalous” [3]. Specific instances of anomalies
include cross-walking, presence of vehicles on paths, collapse of individuals while walk-
ing, signal avoidance at traffic junctions, vehicles making U-turns in red signals, and the
unpredicted allocation of people in the crowd [4].

Pedestrian detection involves the automated identification of the walking persons
from the information gathered from video and image sequences as well as the accurate
location of the pedestrian region [5]. However, pedestrians can be identified as nonrigid
objects in difficult environments, in various positions, under varying light conditions, and
with changing levels of occlusion in real road situations. These scenarios increase the
difficulty of accurately identifying the pedestrians [6]. With the fast growth of artificial
intelligence (AI) technology, pedestrian identification has become a significant research area
in CV. Pedestrian identification research approaches have been commonly categorized into
two types, namely, conventional and deep learning (DL)-based identification techniques [7].

The DL technique is an advanced domain in the machine learning (ML) field that
aims to determine the complex models of modest representations. The DL algorithms
commonly depend on artificial neural networks (ANNs) that contain numerous hidden
layers with nonlinear processing components [8]. The term “deep” corresponds to the
presence of several hidden layers that are employed to modify the representation of the
data. By applying the idea of feature learning, all the hidden layers of the neural networks
design their input data in a new representation [9]. The layer control engages a higher level
of generalization than the theoretical perception in the preceding layer. In DL frameworks,
the hierarchy of feature learning at numerous levels is ultimately mapped to the output
of the ML technique in one architecture [10]. Like ML algorithms, the DL approach can
be categorized into two different classes such as unsupervised learning methods and
supervised learning techniques, comprising deep neural networks (DNNs).

The current research paper outlines the design of the bioinspired Garra rufa optimization-
assisted deep learning model for object classification (BGRODL-OC) technique on pedes-
trian walkways. The BGRODL-OC technique primarily applies the GhostNet feature
extractor to produce a set of feature vectors. Moreover, the BGRODL-OC technique makes
use of the GRO algorithm in the hyperparameter tuning process. Finally, the object classifi-
cation process is performed using the attention-based long short-term memory (ALSTM)
network. A wide range of experimental analysis was conducted to validate the superior
performance of the BGRODL-OC method. In short, the key contributions of the paper are
summarized herewith.

• An effective BGRODL-OC technique is developed in this study, comprising GhostNet
feature extraction, GRO-based hyperparameter tuning, and ALSTM-based classifica-
tion for pedestrian walkway detection. To the best of the authors’ knowledge, the
BRGODL-OC technique has never been mentioned in the literature.

• The GhostNet model is developed to produce a collection of feature vectors. This
model is known for its efficiency and effectiveness in deep-learning-based image
analysis and in improving the accuracy of object detection.

• The BRGO algorithm is employed for the hyperparameter tuning process, which
helps in fine-tuning the model’s parameters to improve its performance in object
classification.

• The ALSTM model is presented for the object classification process, which can capture
long-term dependencies in video data. The attention mechanism enhances the model’s
ability to focus on relevant information, thus further improving the accuracy.

2. Related Works

Abdullah and Jalal [11] presented a new technique using the DL framework and con-
ditional random field (CRF). In this study, the preprocessing was executed primarily, while
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the superpixels were produced secondarily, utilizing enhanced watershed transform. Then,
the objects were segmented using a CRF. The relevant field was localized by employing the
conditional probability while a temporal relationship was applied to find the areas. At last,
a DL-based hierarchical network method was exploited for identification and classification
of the objects. In [12], the authors proposed the automatic DL-based anomaly detection
technology in pedestrian walkways (DLADT-PW) technique for susceptible transport user’s
protection. The suggested technique comprised preprocessing as the main phase to be
implemented for eliminating the noise and increasing the quality of the image. Similarly,
the mask region convolutional neural network (Mask-RCNN) with DenseNet technique
was utilized for identifying the operations. Harrou et al. [13] developed an innovative deep
hybrid learning approach with a completely-directed attention module. The presented
technique increased the modeling ability of the variational autoencoder (VAE) by combin-
ing it with the LSTM algorithm and employing a self-attention module at multiple phases
of the VAE method.

Al Sulaie [14] introduced a novel golden jackal optimizer with DL-based anomaly de-
tection in pedestrian walkways (GJODL-ADPW). In the developed GJODL-ADPW method,
the Xception technique was utilized for efficient extraction of the feature method. The
GJO technique was employed for optimal selection of the hyperparameters. Lastly, the
bidirectional-LSTM (Bi-LSTM) methodology was implemented with an aim to detect the
anomalies. Jayasuriya [15] suggested a method with the help of the convolutional neural
network (CNN) approach. In this study, the localization was performed on a predesigned
map. The extended Kalman filter (EKF) combines such annotations. In addition to this, an
omnidirectional camera was added to the technique to enhance the efficient field of view
(FoV) of the landmark detection method. The data-theoretic approach was also exploited
to select a better viewpoint. Alia et al. [16] designed a hybrid DL technique along with a
visualization model. This architecture had two key mechanisms. Firstly, deep optical flow
and wheel visualization were utilized to produce the motion data maps; secondly, a false
reduction method and EfficientNet-B0-based classifier were incorporated.

Kolluri and Das [17] implemented a technique by employing the hybrid metaheuristic
optimizer with DL (IPDC-HMODL) in which 3-phase was offered. Primarily, the IPDC-
HMODL approach employed multiple modal object detectors through RetinaNet and
YOLO-v5 frameworks. Secondarily, the IPDC-HMODL technique implemented the kernel
extreme learning machine (KELM) method for the classification of the pedestrians. Lastly,
the hybrid salp swarm optimization (HSSO) method was utilized to optimally adapt
the parameters. Alsolai et al. [18] introduced the innovative sine cosine algorithm with
DL-based anomaly detection in pedestrian walkways (SCADL-ADPW) technique. This
approach employed the VGG-16 framework for producing the feature vectors. In addition,
the SCA algorithm was developed for the optimal hyperparameter tuning methods. In this
study, the LSTM approach was exploited for anomaly detection.

3. The Proposed Model

In the current manuscript, an automatic object classification technique on pedestrian
walkways termed BGRODL-OC method is developed. The objective of the BGRODL-OC
algorithm is to recognize the presence of pedestrians and objects in the surveillance video.
It encompasses several processes such as the GhostNet feature extractor, the GRO-based
hyperparameter selection, and the ALSTM-based classification. Figure 1 illustrates the
workflow of the BGRODL-OC algorithm.
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Figure 1. Workflow of the BGRODL-OC algorithm.

3.1. Feature Extraction: GhostNet Model

In this phase, the GhostNet model is applied for the feature extraction process. The
fundamental breakthrough of the GhostNet model is the introduction of the Ghost modules
that reduce the number of convolutional sizes and calculations through cheap linear trans-
formation so as to generate redundant feature mapping [19]. It also uses initial and cheap
convolutions instead of typical convolutions. The input dataset is X ∈ R(C× H ×W), in
which the H, W, and C correspond to the number of height, width, and channels, and X
first passes over the convolution kernels to be 1× 1 first convolutions once the network
is trained.

Y′ = X× F1×1 (1)

Here, F1×1 refers to pointwise convolution and Y′ ∈ R(H ×W × C′out) shows the
inherent features. Next, the cheap convolution is used to generate further features and
interconnect the generated features through the first convolution, as given below.

Y = Concat
([

Y′, Y′ × Fdp

])
(2)

In Equation (2), Fdp refers to depthwise convolution and Y ∈ R(H ×W × Cout) indi-
cates the output features.

Though the GhostNet model reduces the computational cost, its ability to capture
the spatial information is reduced. Thus, the Ghostnet-V2 model adds another attention
mechanism, i.e., DFC, based on the FC layer that has low hardware requirements. It is
achieved by capturing the dependencies amongst longer distance pixels, and it can enhance
the inference speeds. The computation of DFC attention is as follows.

Assume ∈ R(H ×W × C) as an HW label, zi ∈ RC, Z = {z11, z12, . . . , zHW}. The
features are aggregated along the vertical and horizontal directions, correspondingly, and
are formulated using the following equations.

α′hw =
H

∑
h′=1

FH
h,h′w � zh′w′ , h = 1, 2 · · ·H, w = 1, 2, · · ·W, (3)

αhw =
Σy

∑
w′=1

FW
w,hw′ � a′h′w′ , h = 1, 2 · · · , H, w = 1, 2, · · · , W, (4)
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Here, FH and FW denote the transformation weights, � indicates the elementwise multipli-
cation, and A = {a11, a12, . . . , aHW} represents the generated attention map. The original
feature Z is taken as input while the long-range dependency along both the directions
is captured.

Equations (3) and (4) are the representations of DFC attention that aggregate the pixels
in 2D horizontal and vertical directions, correspondingly. These equations partially exploit
the shared transformation of weights and perform them with convolution to increase the
inference speed. This also avoids the time-consuming tensor operations. Two depthwise
convolutions, sized 1× KH and KW × 1, are used, independent of the feature map sizes to
adapt the input images of various resolutions.

3.2. Hyperparameter Tuning: GRO Algorithm

The current study uses the GRO algorithm to adjust the hyperparameters related to the
GhostNet architecture. The GRO algorithm is a procedure that employs the mathematical
rules and is used to identify the better approach so as to determine the solutions for
the problem [20]. The procedure starts by determining a main function that is normally
connected to many engineering problems. Then, a group of parameters is defined and the
constraints are overcome to attain the required outcomes. Once these are determined, the
software then begins the optimization procedure that employs the mathematical models
to identify the most efficient and effective parameter values for resolving this issue. The
optimizer procedure is iterative, i.e., modifying the distribution of resources increases the
performance. The GRO technique is performed in three parts: the GRO initialization, leader
crossover, and the follower crossover.

Procedure 1. GRO initialization

The basic theory of GRO is to split the particles into several groups; each of the groups
takes a unique group of leaders for either global or the local optimum group places. The
GRO system also needs to deploy major rules like the notion that all the fishes can act
as followers while the leaders rely on the connected global optimum point for all the
groups. The follower portions can switch the very weak ones to stronger leaders, who
can accomplish a better ideal value before the next iteration. It is essential to primarily
adopt these maximal follower portions as a percentage. Further, the primary parameters
are considered as the acceleration coefficients (cl, c2) and the inertia weighted (ω).

f ollowers number =
total number o f particles− number o f groups

number o f groups
(5)

Procedure 2. Leaders’ crossover of GRO

The GRO approach contains two leader crossover procedures that need to be consid-
ered in the study. A primary model involves the selection of the novel leaders for all the
groups, whereas the secondary model involves the election of a great leader who can lead
the maximal number of followers. These stages assist as the guiding rules that found the
approaches to be a vital element, thus offering flexibility to this method.

Procedure 3. Followers’ crossover of GRO

There is a huge probability of determining the optimum performance from a problem
space owing to the flexible motion among the groups. Some optimizer approaches are
not as flexible to work from one searching space to another, which can cause confusion in
most of the difficult issues. This problem appears because of the presence of numerous
parameters and higher differential equation order from difficult problems. The GRO model
deploys a process to seek a large space of the problem by utilizing the follower crossovers
among the groups. First, an arbitrarily chosen fish, in all the groups, changes to a strong
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leader. Second, one step needs to be taken from the direction of all the leaders by evaluating
the position (X) and velocity (v), employed in Equations (6) and (7), correspondingly.

vi(z + 1) = ωvi(z) + c1r1(pi(z)− Xi(z)) + c2r2(Gi(z)− Xi(z)) (6)

Xi(z + 1) = Xi(z) + vi(z + 1) (7)

The fitness function (FF) in the group figures is recomputed, containing every follower
and leader. Equations (8) and (9) define a novel phase in the GRO method.

moving f ollowersi = integer(E× random) (8)

f ollowersij = Max
((

f ollowersij−1 −moving f ollowersi
)
, 0
)

(9)

Here, f refers to the maximal feasibility of the moving fish. The pseudocode of GRO
algorithm is given in Algorithm 1.

Algorithm 1: Pseudocode of the GRO algorithm

Select the primary values (number of particles, leader number, FF limits)
Followers number = n/leaders number
Compute FF for n of particles, with sort FF
While t < iteration do
For i = 1 to leader counts
Upgrade particles for the follower for leaders(i) utilizing optimizer system
End for
i = 2 to leader counts
Random£x = mobile_fishes(i)

Followers(i) = Max(0,followers(i)−mobile_fishes(i))
The total amount of mobile_fishes = total no. mobile_fishes+ mobile_fishes(i)
End for
Followers(1) = total no. of mobile_fishes + Followers(1)
Define the performance of sub-global for all the leaders
Compute the global solution

End while

In the GRO approach, fitness selection is a vital factor. The encoded solution is applied
to measure the goodness of the solution candidate. Here, the accuracy values remain the
primary condition to design an FF.

Fitness = max(P) (10)

P =
TP

TP + FP
(11)

Here, TP and FP represent the true and false positive values, respectively.

3.3. Object Classification: ALSTM Model

The ALSTM model is used for the object classification process in this study. The
underlying concept of the LSTM network is to control the data flow through gates and to
utilize the memory cells (units) for storing and transferring the data [21,22]. Particularly,
the LSTM network includes a memory cell along with input, forget, and output gates.

The input gate defines the amount of data that are fed as input to the memory units
while the forget gate decides whether to remove the prior memory or not. Finally, the
output gate decides the output of the hidden layer. The memory units are accountable for
storing and transmitting long-term data that can be updated and controlled by calculating
the gate units. Now, xt refers to the input dataset at t time; Ct−1 denotes the memory
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values at t − 1 time; ht−1 indicates the output values of the LSTM network at t − 1 time.
The three datasets xt, Ct−1, and ht−1 constitute the input dataset. Ct corresponds to the
memory values at t time, ht represents the output values of the LSTM network at t time,
and the two datasets Ct and ht constitute the output information.

The control functions of the forget, input, and the output gates are as follows.

f (t)i = sigma

(
b f

i + ∑
j

U f
i,jx

(t)
j + ∑

j
W f

i,jh
(t−1)
j

)
(12)

g(t)i = sigma

(
bg

i + ∑
j

Ug
i,jx

(t)
j + ∑

j
Wg

i,jh
(t−1)
j

)
(13)

q(t)i = sigma

(
b0

i + ∑
j

U0
i,jx

(t)
j + ∑

j
W0

i,jh
(t−1)
j

)
(14)

where bo, Uc, and Wo refer to the bias, the input, and the cyclic weights of the forget gate,
correspondingly.

Attention mechanism is the important component used in the NN model. The core
principle is to allocate the attention weight to dissimilar parts of the input datasets, thus
reducing the role of inappropriate parts. At the time of processing and learning tasks,
this allows one to be more focused on the crucial data, which eventually improves the
performance. This attention weight is used for computing the context vectors that capture
the fittest data from the inputs.

In order to improve the model’s performance, the relevant equation is given below.

αi =
e(s(hi ,ht))

ΣN
j=1e(s(hi ,ht))

(15)

α =
N

∑
i=1

αihi (16)

Now αj denotes the score of the feature vector and a high score designates great
attention. s(hi, ht) shows the weight value of the ith input feature in the attention module,
viz., the score ratio of the feature vector to the entire population. Next, each vector is added
and averaged to attain the concluding vector, α. Figure 2 defines the architecture of the
ALSTM network.
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Figure 2. Architecture of the ALSTM.

4. Results and Discussion

The proposed model was simulated in Python 3.6.5 tool on a PC configured with
specifications such as i5-8600k, GeForce 1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1
TB HDD. The parameter settings used for the study were as follows: learning rate: 0.01,
dropout: 0.5, batch size: 5, epoch count: 50, and activation: ReLU. In this section, the
performance of the BGRODL-OC technique is evaluated using the UCSD dataset [23],
comprising images from the surveillance videos. Figure 3 depicts the sample images.

Table 1 shows the comparative accuracy ( accuy
)

examination outcomes achieved by
the BGRODL-OC technique on test 004 and 007 datasets [12,24,25]. The results infer that the
MDT and FRCNN models attained ineffectual performance. Moreover, the CBODL-RPD,
DLADT-PW, and RS-CNN methodologies exhibited significant performance. However, the
BGRODL-OC technique accomplished the maximum performance on all the frames.

Table 2 shows the average accuy analysis outcomes accomplished by the BGRODL-OC
technique and other recent models on two datasets. Figure 4 portrays the comparative
average accuy analysis results of the BGRODL-OC method with the existing systems
on the test-004 dataset. The experimental values denote that both FR-CNN and MDT
systems reached the least average accuy values such as 87.42% and 85.17%, respectively. In
addition, the DLADT-PW and RS-CNN techniques achieved a moderate performance with
average accuy values such as 98.35% and 97.90%, respectively. Although the CBODL-RPD
model attained a considerable accuy of 99.06%, the BGRODL-OC technique exhibited the
maximum performance with an average accuy of 99.32%.
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Table 1. Accuy analysis outcomes of the BGRODL-OC approach on test 004 and 007 datasets.

Test-004 Accuracy

No. of
Frames BGRODL-OC CBODL-RPD DLADT-PW RS-CNN FR-CNN MDT

FR-40 97.62 98.99 98.41 97.84 86.02 86.89
FR-42 99.45 98.98 98.23 97.65 88.90 85.67
FR-46 99.50 98.85 98.24 97.66 88.26 83.42
FR-51 99.38 99.61 99.32 97.60 85.88 86.39
FR-75 99.37 99.95 99.06 97.63 88.61 86.02

FR-106 99.90 98.96 98.07 98.27 88.92 86.99
FR-123 99.45 98.98 98.20 97.93 86.29 82.91
FR-135 98.93 98.93 98.06 97.89 86.25 83.26
FR-136 99.60 98.93 98.01 98.19 88.96 86.73
FR-137 99.07 98.91 98.08 98.25 87.34 86.13
FR-149 99.82 98.90 98.04 98.10 86.00 84.86
FR-158 99.85 98.99 98.20 98.04 88.51 86.59
FR-177 98.91 98.94 98.20 97.67 86.48 84.51
FR-178 99.51 99.00 99.09 97.78 88.79 84.05
FR-180 99.40 98.98 98.07 97.95 86.05 83.20

Test-007 Accuracy

No. of
Frames BGRODL-OC CBODL-RPD DLADT-PW RS-CNN FR-CNN MDT

FR-78 98.55 97.32 97.33 92.56 86.74 78.77
FR-91 100.64 100.91 98.01 93.97 87.70 77.38
FR-92 100.45 100.16 100.68 95.52 88.72 67.78

FR-110 100.49 99.57 97.05 93.86 85.92 73.46
FR-113 97.60 96.11 94.90 90.33 86.89 76.72
FR-115 89.41 88.27 85.81 85.24 84.60 73.46
FR-125 100.44 100.31 99.80 94.13 91.76 71.02
FR-142 100.06 99.44 99.49 97.12 84.40 71.34
FR-146 87.11 85.98 86.62 82.64 77.18 81.28
FR-147 90.71 89.41 85.68 83.85 82.98 69.79
FR-148 77.78 76.25 71.01 56.62 55.37 70.05
FR-150 96.80 95.91 89.89 85.40 84.29 73.55
FR-178 84.31 83.07 76.05 71.60 65.16 78.76
FR-179 82.43 81.51 74.34 65.90 63.16 75.64
FR-180 90.88 89.82 85.89 83.00 82.71 80.10
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Table 2. Average accuy analysis results of the BGRODL-OC approach on test 004 and 007 datasets.

Average Accuracy (%)

Methods BGRODL-
OC

CBODL-
RPD

DLADT-
PW RS-CNN FR-CNN MDT

Test-004 99.32 99.06 98.35 97.90 87.42 85.17
Test-007 93.18 92.27 89.50 84.78 80.51 74.61
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Figure 5 shows the comparative average accuy analysis outcomes of the BGRODL-OC
technique with present methods on the test-007 dataset. The experimental values specify
that the FR-CNN and MDT techniques accomplished the least average accuy values such
as 80.51% and 74.61% individually. Also, the DLADT-PW and RS-CNN methodologies
achieved a modest performance with average accuy values such as 89.50% and 84.78%,
correspondingly. While the CBODL-RPD algorithm simulated the data with a significant
accuy of 92.27%, the BGRODL-OC system attained the maximum performance with an
average accuy of 93.18%.
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Table 3 and Figure 6 portray the comparative TPR results of the BGRODL-OC approach
on test sequence 004. The results show that the DLADT-PW and MDT models obtained poor
performance. Then, the CBODL-RPD technique reported slightly decreased performance.
Simultaneously, the RS-CNN and FR-CNN methods accomplished considerable results.
However, the BGRODL-OC technique outperformed other models with the maximum
TPR values.

Table 3. Comparative TPR outcomes of the BGRODL-OC technique and other existing methods on
test sequence 004.

True Positive Rate (TPR) (Test Sequence-004)

False
Positive

Rate (FPR)
BGRODL-OC CBODL-RPD DLADT-PW RS-CNN FR-CNN MDT

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.2194 0.2156 0.1921 0.1920 0.1547 0.1211
0.10 0.5234 0.3685 0.3637 0.3164 0.2785 0.2272
0.15 0.6310 0.4604 0.4927 0.4474 0.4243 0.3380
0.20 0.7702 0.5961 0.6093 0.5462 0.4972 0.5149
0.25 0.9508 0.7120 0.7166 0.6726 0.6170 0.6559
0.30 0.9910 0.8783 0.8579 0.8786 0.8106 0.8008
0.35 0.9845 0.9373 0.9019 0.9388 0.8790 0.8631
0.40 0.9845 0.9113 0.8760 0.9113 0.8507 0.8381
0.45 0.9931 0.9315 0.9340 0.9795 0.8798 0.9278
0.50 0.9998 0.9592 0.9517 0.9998 0.9142 0.9693
0.55 0.9998 0.9667 0.9719 0.9998 0.9466 0.9899
0.60 0.9998 0.9667 0.9869 0.9998 0.9796 0.9950
0.65 0.9998 0.9667 0.9844 0.9998 0.9781 0.9939
0.70 0.9998 0.9794 0.9920 0.9998 0.9886 0.9863
0.75 0.9998 0.9869 0.9931 0.9998 0.9956 0.9941
0.80 0.9998 0.9895 0.9941 0.9998 0.9995 0.9940
0.85 0.9998 0.9931 0.9931 0.9998 0.9986 0.9939
0.90 0.9998 0.9956 0.9941 0.9998 0.9994 0.9958
0.95 0.9998 0.9956 0.9931 0.9998 0.9999 0.9939
1.00 0.9998 0.9956 0.9931 0.9997 0.9994 0.9950
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Table 4 and Figure 7 portray the comparative TPR analysis outcomes of the BGRODL-
OC system on test sequence 007. The observational data denote that the DLADT-PW
and MDT algorithms acquired inferior performance. In addition, the CBODL-RPD ap-
proach achieved a moderately low performance. Concurrently, the RS-CNN and FR-CNN
methodologies attained notable experimental outcomes. However, the BGRODL-OC sys-
tem outperformed the rest of the techniques with better TPR values.
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Table 4. Comparative TPR outcomes of the BGRODL-OC technique and other existing methods on
test sequence 007.

True Positive Rate (Test Sequence-007)

False
Positive

Rate
BGRODL-OC CBODL-RPD DLADT-PW RS-CNN FR-CNN MDT

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.6228 0.4448 0.3607 0.222 0.3609 0.3034
0.10 0.6303 0.4703 0.4006 0.3995 0.4312 0.3429
0.15 0.8952 0.7162 0.5475 0.5133 0.632 0.455
0.20 0.9586 0.7936 0.5991 0.7132 0.7568 0.5312
0.25 0.9785 0.8235 0.849 0.7872 0.7784 0.6676
0.30 0.956 0.8952 0.919 0.8625 0.8965 0.788
0.35 0.9257 0.9583 0.9499 0.9677 0.8957 0.8363
0.40 0.926 0.9653 0.9539 0.9597 0.9317 0.999
0.45 0.9436 0.8146 0.8561 0.8397 0.8626 0.831
0.50 0.9711 0.8635 0.8791 0.8757 0.9334 0.8591
0.55 0.9711 0.8818 0.8911 0.8923 0.9366 0.8576
0.60 0.9711 0.9028 0.9136 0.8935 0.9629 0.8584
0.65 0.9711 0.9029 0.9225 0.9051 0.9617 0.8771
0.70 0.9711 0.9077 0.9567 0.9113 0.9625 0.9147
0.75 0.9711 0.9343 0.9827 0.9264 0.9603 0.9397
0.80 0.9971 0.9468 0.9822 0.9427 0.961 0.9407
0.85 0.9971 0.9464 0.9867 0.9675 0.9771 0.9406
0.90 0.9971 0.9571 0.9798 0.9908 0.968 0.9772
0.95 0.9971 0.9932 0.9691 0.9967 0.9602 0.9701
1.00 0.9971 0.9940 0.9981 0.9967 0.9857 0.9701
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Figure 7. Comparative TPR outcomes of the BGRODL-OC technique on test sequence 007.

Table 5 shows the comparative area under the ROC (AUC) curve and computation
time (CT) results of the BGRODL-OC technique. Figure 8 shows the comparative AUC
score results achieved by the BGRODL-OC technique. The results infer that the DLADT-PW,
FR-CNN, RS-CNN, and MDT systems exhibited the worst performance, with the lowest
AUC scores, such as 89.24%, 89.88%, 90.03%, and 89.28%, respectively. Though the CBODL-
RPD technique attained a slightly enhanced performance with an AUC score of 96.54%, the
BGRODL-OC technique surpassed the compared methods by achieving a maximum AUC
score of 97.80%.
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Table 5. AUC score and CT analysis outcomes of the BGRODL-OC technique and other algorithms.

Methods AUC Score (%) Computational Time (s)

BGRODL-OC 97.80 1.08
CBODL-RPD 96.54 2.90
DLADT-PW 89.24 2.75

RS-CNN 90.03 3.19
FR-CNN 89.88 2.90

MDT 89.28 3.56
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Figure 9 shows the comparative CT outcomes achieved by the BGRODL-OC technique
and other recent approaches. The results imply that the RS-CNN and MDT algorithms
achieved ineffectual outcomes, with maximum CT values such as 3.19 s and 3.56 s, respec-
tively. At the same time, the CBODL-RPD, DLADT-PW, and FR-CNN methods accom-
plished moderate performance, with CT values such as 2.90 s, 2.75 s, and 2.90 s. However,
the BGRODL-OC technique achieved an effectual performance with a minimal CT of 1.08 s.
These results show the enhanced performance of the BGRODL-OC technique.
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5. Conclusions

In the current study, an automatic object classification technique for pedestrian walk-
ways termed the BGRODL-OC technique was developed. The objective of the BGRODL-OC
technique is to recognize the presence of pedestrians and objects in the surveillance video.
It encompasses several processes such as the GhostNet feature extractor, GRO-based hy-
perparameter selection, and the ALSTM-based classification. To achieve the objective, the
BGRODL-OC technique primarily applies the GhostNet feature extractors to produce a
set of feature vectors. In addition, the BGRODL-OC technique makes use of the GRO
algorithm for hyperparameter tuning. Finally, the object classification is performed using
the ALSTM network. A wide range of experimental analysis was conducted to validate the
superior performance of the BGRODL-OC algorithm. The experimental values exhibited
the better performance of the BGRODL-OC approach over other current techniques, with
a maximum AUC score of 97.80%. The future works of the BGRODL-OC technique can
enhance its scalability for handling real-time video streams and extend its applicability to
different environmental conditions and camera perspectives so as to further bolster the
pedestrian safety and object classification accuracy.
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