
Citation: Zuo, W.; Gao, J.; Cao, J.; Xin,

X.; Jin, M.; Chen, X. Whole-Body

Dynamics-Based Aerial Fall

Trajectory Optimization and Landing

Control for Humanoid Robot.

Biomimetics 2023, 8, 460. https://

doi.org/10.3390/biomimetics8060460

Academic Editors: Mingguo Zhao

and Biao Hu

Received: 1 August 2023

Revised: 20 September 2023

Accepted: 22 September 2023

Published: 1 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Whole-Body Dynamics-Based Aerial Fall Trajectory
Optimization and Landing Control for Humanoid Robot
Weilong Zuo 1,2 , Junyao Gao 1,2,*, Jingwei Cao 1,2, Xilong Xin 1,2, Mingyue Jin 1,2 and Xuechao Chen 1,2

1 School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
2 Beijing Advanced Innovation Center for Intelligent Robotics and Systems, Beijing Institute of Technology,

Beijing 100081, China
* Correspondence: gaojunyao@bit.edu.cn

Abstract: When humanoid robots work in human environments, falls are inevitable due to the
complexity of such environments. Current research on humanoid robot falls has mainly focused
on falls on the ground, with little research on humanoid robots falling from the air. In this paper,
we employ an extended state variable formulation that directly maps from the high-level motion
strategy space to the full-body joint space to optimize the falling trajectory in order to protect the
robot when falling from the air. In order to mitigate the impact force generated by the robot’s fall,
during the aerial phase, we employ simple proportion differentiation (PD) control. In the landing
phase, we optimize the optimal contact force at the contact point using the centroidal dynamics
model. Based on the contact force, the changes to the end-effector positions are solved using a dual
spring–damper model. In the simulation experiments, we conduct three comparative experiments,
and the simulation results demonstrate that the robot can safely fall 1.5 m from the ground at a pitch
angle of 45°. Finally, we experimentally validate the methods on an actual robot by performing a
side-fall experiment. The experimental results show that the proposed trajectory optimization and
motion control methods can provide excellent shock absorption for the impact generated when a
robot falls.

Keywords: fall; trajectory optimization; control; humanoid robot

1. Introduction

Humanoid robots are a tangible manifestation of human technological advancement,
making them of great interest to researchers. The world’s most advanced humanoid, Atlas,
demonstrates flexible motion and manipulation abilities, pointing to the current direction
of humanoid robotics development [1]. Business magnate Musk has greatly supported
humanoid robotic technology by funding relevant research. As seen in the latest video [2],
Optimus can now assist humans in performing tasks in human environments.

At present, humanoid robot research primarily centers on walking, running, jumping,
and aiding people in performing duties [3–6]. Due to the complexity of the human envi-
ronment, robots will inevitably experience falling behavior when completing these tasks.
Therefore, designing a structure or control method that can effectively protect robots is very
important. According to the law of impulse, when the robot has a certain mass, reducing
the impact force of the robot on the ground mainly involves increasing the touchdown time
and reducing the landing speed. For the aspect of increasing the ground impact time, Kajita
et al. introduced a method using airbags [7]; however, the airbags employed can only be
used once and must reinflate before they can be used again, making the method complex
and expensive. Similarly, Sung-Hee Lee introduced a way of placing a backpack on the
robot’s back [8] to change the falling direction after the robot receives an impact, which is
suitable for environments wherein surrounding objects do not interfere. In [9], Kakiuchi
designed a robot with hard points mounted over its entire body, which looks like a man

Biomimetics 2023, 8, 460. https://doi.org/10.3390/biomimetics8060460 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8060460
https://doi.org/10.3390/biomimetics8060460
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0002-6223-3147
https://orcid.org/0000-0003-1136-3053
https://doi.org/10.3390/biomimetics8060460
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8060460?type=check_update&version=1

Biomimetics 2023, 8, 460 2 of 17

wearing a set of shackles and significantly limits the robot’s workspace. Inspired by the
self-protection of turtles, Nguyen et al. designed a type of shell protector. However, in their
latest research, since the robot only had a lower body, the actual fall performance of the
whole body has not yet been observed [10]. In the aspect of decreasing the ground impact
velocity, researchers use methods for optimizing trajectories and motion control methods.
For example, Fujiawara optimized the falling trajectories of robots in different orientations
through imitating Ukemi motion by using energy shaping and distribution methods [11].
Luca established a variable-length inverted pendulum model to optimize forward falling
trajectories for a robot [12]. In addition, some researchers optimize the the distribution
of contact points and the contact sequence, as described in [13,14]. Regarding robot mo-
tion control, being able to effectively cushion impact forces is a very important strategy.
Mujica proposed a variable admittance control that successfully achieved human–robot
collaborative tasks [15]. For the task of adjusting control parameters, ref. [16] proposed a
new Lyapunov-based offline self-tuning control method. Similarly to [15,17] presented a
compliant adaptive control method that can enable stable and safe physical human–robot
interaction during work. In recent research, MIT proposed using model predictive control
to mitigate the impact forces of acrobatic robot maneuvers [18]. HaoxiangQi achieved
stable control after a robot’s high jump landing by optimizing contact forces and using a
virtual model [19].

Based on the above references, we can see that current research on robot falls mainly
considers robots falling on flat ground. However, research on robots falling from high
altitudes is still lacking. Because human exploration desires are endless, people also hope
that robots can replace humans to accomplish some high-difficulty actions such as aerial
acrobatics and parachuting. But when performing these actions, robots face the risk of
falling. Therefore, more research needs to focus on solutions to help robots mitigate the
impact of falling from high altitudes in order to achieve complex aerial tasks that are
difficult for humans.

Research on falling mitigation for robots mainly focuses on quadruped robots, notably
the Mini Cheetah from MIT [20,21]. Research employs offline or online optimization to
combine machine learning or neural networks when falling from heights. The results show
that by using the method in [20], a robot can fall from a height of 10 feet (about 3 m); while
using the method in [21], a robot can fall from around a 2 m height. Another avenue of
research is from a bio-inspired perspective, where a tail is added to the quadruped robot
to cushion the impact of falling, which is discussed in papers [22,23]. Different from the
methods and experimental objectives mentioned above, Francesc proposed an optimization-
based reactive landing controller for handling horizontal impacts during falls [24] and
showed that a quadruped robot can recover from falls at horizontal speeds up to 3 m/s.
In this paper, we adopted a direct mapping relationship from the high-level motion task
strategy space to the robot’s whole joint space by setting the robot’s different state variables
and adding the corresponding contact constraint equations. In this method, the high-level
action task strategy is utilized as the objective function of the robot, allowing the optimizer
to satisfy our desired actions. For instance, when a robot experiences a fall from the air, its
high-level motion task strategy space is to minimize contact force, follow a prior trajectory
function, and distribute the force evenly across each contact point. Using the optimizer
solution method, we optimized the trajectory of a robot falling from the air given the initial
and target states. When the robot was in the aerial stage, we used a proportion derivative
(PD) method to control the posture of the centroid and endpoints. When the robot was
in the landing stage, the target reference force was optimized using centroid dynamics to
reduce the impact force by damping control. Figure 1 illustrates the overall framework of
our method.

Biomimetics 2023, 8, 460 3 of 17

Figure 1. Planning and control framework for a humanoid robot falling from the air. The superscripts
“d” and “a” mean the desired value and the actual (measured) value, respectively; X0 and XF

represent the initial state and the final state, respectively; Xd and Ud represent the expected state and
the expected input value, respectively.

The contribution of this work is three-fold:

• An optimized trajectory for the robot falling from the air is generated, enabling the
humanoid robot to land smoothly on the ground.

• Direct mapping is adopted from the high-level task strategy space to the joint space,
bypassing the need to go through the centroid space as in previous methods.

• Simulation results show that the trajectories optimized after adding contact point
information are more human-like compared to those without contact information.

2. Trajectory Optimization

Traditional motion planning methods map from the high-level motion task strategy
space to the centroid space and then to the full-body joint space of humanoid robots [25].
The advantage of this method is that the centroid motion model is simple and can easily
generate whole-body joint motions. However, due to the oversimplified movements in
the centroid space, which cannot consider all possible contacts, and its inability to utilize
known information about the robot’s spatial posture, we employ an optimization method
that maps directly from the high-level motion task strategy space to the full-body joint
space of the robot in this paper, as shown in Figure 2.

Figure 2. The differences between step-by-step centroid space optimization and unified strategy
space planning methods.

2.1. Methods

According to the above-mentioned method, we adopt an approach that works from
the high-level task space directly to the joint space, putting the robot’s joint angles into
the optimization variables. The state variables of existing trajectory optimization contact
models mainly focus on the position, direction, velocity, and angular velocity of the center
of mass; and since a humanoid robot produces contact forces with the ground during the
landing phase, these contact forces also have an impact on the robot’s overall state, so this

Biomimetics 2023, 8, 460 4 of 17

paper considers the robot’s contact forces and the velocity and energy of the contact point
and establishes the following form of state variables:

x = [pcom; θcom; qall]
T (1)

X = [x; ẋ; pc; ṗc; Wc1...Wcn]
T (2)

where pcom represents the position of the centroid, θcom represents the direction of the
centroid, qall represents all joint angles, pc represents the position of the contact point, ṗc
represents the velocity of the contact point, and Wci represents the work done by the contact
force corresponding to the i-th contact point.

Here, we represent the control input of the robot as follows

U = [τi; f1... fn]
T (3)

where τ represents the driving torque of the corresponding joint of the robot, and fn
represents the contact force of the n-th contact point. The advantages of using this form of
state variables and control inputs are: First, we added the state update equations for the
contact point position dimensions, allowing us to leverage partial prior information about
contact points from the reference trajectory. Second, the additional terms for contact force
work nicely to avoid energy conservation issues while facilitating reference trajectories
based on energy changes. To further validate that the state variables proposed in this
paper can provide good guidance for trajectory optimization of the robot’s falling state, we
conducted a comparison in the simulation section to demonstrate its effectiveness.

When a humanoid robot falls from the air, it has no contact with the environment,
but when it lands on the ground, parts of its body come into contact with the surroundings.
These contact forces affect the robot’s base; however, the full-body dynamic model provides
equations describing the impact of external forces on the robot’s motion. According to
reference [26], we can obtain the robot dynamic equation involving all external contact
forces as

D(x)ẍ + C(x, ẋ)ẋ + G(x) = τ +
n

∑
i=1

JT
ci fi (4)

where D(x) ∈ R(N+6)×(N+6) is the mass inertia matrix, C(x, ẋ) ∈ R(N+6)×(N+6) is Coriolis
force, G(x) ∈ R(N+6)×(N+6) is gravity acting on the robot, τ ∈ R(N+6)×1 are the joint
torques of the robot, x ∈ R(N+6)×1 are the state variables of the robot, Jci ∈ R(N+6)×(6n))

is the Jacobean matrix of the i-th contact point, and fi ∈ R(6n)×1 is the contact force of the
robot at the i-th contact point, where N denotes the number of degrees of freedom. When a
robot’s body comes into contact with the ground, an acceleration is produced at the point
of contact. According to the contact dynamics equation mentioned above, the acceleration
at the contact point can be related to the contact force via an expression as follows

p̈c = J̇c ẋ + JcD−1(u− C(x, ẋ)ẋ− G(x)−
n

∑
i=1

JT
i fi) (5)

2.2. Cost Function

In this paper, we aim to achieve the reference target with minimal driving force,
and there should be no uneven force distribution at each contact point. Therefore, the ob-
jective function can be defined as follows:

J =
∫ t f

t0

w1(U −Ure f)
2 +

∫ t f

t0

w2(X− Xre f)
2 +

∫ t f

t0

w3(Fc − Fre f)
2 (6)

where U represents the robot’s control input; Ure f represents the robot’s reference input; X
and Xre f represent the state variables and reference variables mentioned earlier, respectively;
Fre f represents the reference contact force; and w1, w2, and w3 represent the corresponding

Biomimetics 2023, 8, 460 5 of 17

weight matrices. The purpose of setting the third term is that we do not expect the robot to
have an uneven distribution of forces after falling down the ground. In optimization, we
expect the robot’s knees and arms to land, resulting in a Fre f value of mg/4. In addition,
we expect the robot’s center of mass to be 0.8 m above the ground with no slippage at the
contact points and with the robot’s roll, pitch, and yaw angles to be 0.

2.3. Constraints

The following constraints are crucial for optimizing the trajectory:
(1). At the start of optimizing the robot, the minimum and maximum values need to be

specified for the initial state variable X0; also, the minimum and maximum desired values
for the final state variable XF need to be specified. Additionally, the minimum time tmin
and maximum time tmax for the desired robot motion, the minimum qmin and maximum
qmax values for all joints, and the lower limit Umin and upper limit Umax for the control
inputs need to be specified. To accelerate convergence, an initial guess value is also created,
including the motion time tguess, state Xguess, and control input Uguess for the robot.

(2). For the dynamics, we want the entire motion trajectory to satisfy the full-body
dynamical model, as shown in Equation (4).

(3). In terms of kinematics, during the optimization process of the robot, the maximum
extension of the robot’s end-effector should less than the length of the robot arm or leg
and should meet the forward kinematics equation [21].

r ≤ Lmax

r = g(qj) (7)

(4). During the optimization process, we found that when the robot falls in a non-
dynamic environment, the end points of the robot’s arms or legs are prone to mold piercing
when colliding with the ground, as shown in Figure 3. Therefore, it is necessary to set the
vertical distance pz

i > 0 of the robot’s collision point.

Figure 3. The robot exhibits ground penetration. In the simulation, the robot is in a non-dynamic
environment with its arms and knees already penetrating the ground.

(5). When the robot makes contact with the ground, we want no slippage to occur.
Based on Posa’s contact complementarity constraint equations [27], we can obtain the
relationship between the contact position, contact force, and contact velocity, as described
below, where ξ is a slack coefficient to encourage convergence.

pc ∗ fn 6 ξ (8)

ṗc ∗ fn 6 ξ (9)

Biomimetics 2023, 8, 460 6 of 17

(6). In [28], the robot’s sole was simplified to four support points, with each support
point corresponding to a tetrahedron that forms a relatively complex friction cone constraint.
In this paper, a simplified model is adopted by approximating each contact location to a
single point. Based on the friction relationship, the following equations can be obtained,
where FN and Ff are optimization variables from the inputs above.

µ f FN ≤ Ff (10)

3. Controller
3.1. Air Stage Controller

Through previous trajectory optimizations, we can optimize the state variables and
control inputs of the robot during the falling process. These parameters are essential
for setting the motion controller. During the air stage, due to differences between the
simulation model and the actual physical model, there will be deviations in the position
and orientation of the robot’s center of mass during motion. Therefore, designing an
effective motion controller to minimize these deviations becomes crucial. The PD controller
has the function of simple parameters and easy implementation, so we set the following
control equations

p̈comout = kpc(pa − pd) + kdc(ṗa − ṗd)

ẇcomout = kRc log(RaRd) + kwc(α̇a − α̇d) (11)

p̈endout = kpe(penda − pendd) + kde(ṗenda − ṗendd)

ẇcomout = kRe log(RendaRendd) + kwe(α̇enda − α̇endd) (12)

where p represents the position, R represents the orientation, subscript a represents the ac-
tual value, subscript d represents the desired actual value, and end represents the endpoint
of arms or legs. The variables kpc , kdc , kRc , kwc represent the corresponding coefficients
and have the same meaning as the coefficients in Equation (12).

3.2. Landing Controller

During a robot’s walk or run, the center of mass is usually placed at the hip joint
center; however, the robot requires a more precise position during falls. Therefore, we
use the actual link lengths and mass distributions to solve for the corresponding center-of-
mass position.

pa =
∑Nn

i=1 mi pi(q)

∑N
i=1(mi)

(13)

where Nn is the total number of links, mi is the mass of the ith link, and pi(q) represents
the position of the ith link in the world coordinate frame.

Although the aforementioned trajectory optimization method solves for the impact
force of the robot’s contact points during landing, this is done without considering external
disturbances and lacks some robustness. In other words, since the landing time is relatively
short, designing a method that can efficiently and quickly respond to such impact forces
becomes very important. Model predictive control needs high precision in modeling,
but optimization is computationally intensive and time-consuming. Also, different cost
functions need to be designed for various scenarios, limiting generalizability. Since a robot’s
fall from the air and contact with the ground happens very quickly, a fast-responding
algorithm is needed. Here, we refer to the landing control method proposed in [29];
according to the Newton–Euler laws of motion, we can obtain the following:

mṗcom = Fall −mg

L̇ = n− c× Fall (14)

Biomimetics 2023, 8, 460 7 of 17

where m denotes the mass of the robot, pcom is the position of the center of mass, c is the
position from the contact point to the center of mass, L is the angular momentum about the
center of mass, and Fall and n represent the force and moment, respectively, exerted on the
robot by the environment, expressed in the world frame. Similar to [30], we approximate
the angular momentum equation of the robot’s center of mass as follows:

L = Iall q̇ ≈ Ibasew ≈ Iw (15)

where Iall is the angular part of the centroidal momentum matrix; q̇ is the angular velocity
of all joints, including the floating base; Ibase is the matrix block corresponding to the base
coordinate in Iall ; w is the angular velocity of the base link; and I is a constant and diagonal
approximation of Ibase. Combining Equations (14) and (15) and neglecting the effect of the
moment, we can obtain the following equation:[

I
c×

]
f =

[
m(p̈com + g)

Iẇ

]
(16)

We set the force and torque when the robot lands as

Nd =

[
m(p̈comout + g)

Iẇcomout

]
(17)

Let

M =

[
I

c×

]
(18)

We can express Equation (16) as a form of a quadratic program (QP), where α1 and α2
represent the corresponding weight coefficients, the rightmost term in the equation means
that the expected landing impact force of the robot is minimized.

min
f

α1(M f − Nd)
2 + α2 f 2

s.t.µ ∗ FN 6 Ff

(19)

3.3. Spring–Damper Controller

Using the method above, we have optimized for the impact force during the robot’s
landing. However, since our robot is position controlled, we need to convert this to
corresponding joint angles. To do so, we adopt a dual spring–damper model as shown in
Figure 4. Where k1, k2, D1, and D2 are the spring and damper coefficients, respectively.

Figure 4. Spring–damper model.

Biomimetics 2023, 8, 460 8 of 17

Let ε be the overall deformation of the robot after being subjected to an external force
f , where ε1 and ε2 are the deformations on the left and right sides, respectively. Then
according to Hooke’s law, we can obtain:

ε = ε1 + ε2

f = k1ε1 + D1 ε̇1 = k2ε2 + D2 ε̇2
(20)

Applying a Laplace transformation to the second term of Equation (20) yields

ε1 =
f

k1 + D1s

ε2 =
f

k2 + D2s

(21)

Substituting Equation (21) into the first term of Equation (20) and taking the inverse
Laplace transform, we obtain

k1k2ε + (k2D1 + k1D2)ε̇ + ε̈ = f (k1 + k2) + ḟ (D1 + D2) (22)

Let the state variable of the spring–damper model be χ =
[

f , ε, ε̇
]T , where the control

input u = ε̈; then the state equation of this spring–damper model can be written as:

χ̇ = Aχ + Bν (23)

d
dt

 f
ε
ε̇

 =

 k1+k2
D1+D2

k1k2
D1+D2

k1D2+k2D1
D1+D2

0 0 1
0 0 0

 (24)

Based on Equation (23), we can obtain the relationship between the desired state
variable and the desired input as follows:

χ̇d = Aχd + Bνd (25)

Subtracting Equation (23) from (25), we have

∆χ̇ = A∆χ + B∆ν (26)

The state feedback controller is given by

∆ν = −K∆χ (27)

where k = [k1; k2; k3]
T , which can be obtained through the LQR method. Define the cost

function as
J =

1
2

∫ ∞

0
(∆χTQ∆χ + ∆νT R∆ν)dt

=
1
2

∫ ∞

0
∆χT(Q + KT RK)∆χdt

(28)

where Q and R are the weight matrices of the state variables X and the input variable u,
respectively. Let K = R−1BT P, where P can be obtained through the Riccati equation:

AT P + PA + Q− PBR−1BT P = 0 (29)

Through Equations (28) and (29), we can get the values of the gain coefficient
k = [k1; k2; k3]

T ; then the end change can be expressed as follows:

∆̈ε = −k1(freal − f)− k2∆ε− k3∆̇ε (30)

Biomimetics 2023, 8, 460 9 of 17

4. Simulation and Experiment
4.1. Simulation Platform

The simulation platform used in this paper is a bipedal robot independently developed
by our laboratory, as shown Figure 5. The robot weighs 50 kg in total and has 20 degrees
of freedom, including 6 degrees of freedom in the legs, 2 degrees of freedom in the waist,
and 3 degrees of freedom in the arms. The specific dimensions and parameters are shown
in Table 1.

Figure 5. Snapshots of the humanoid robot. The left side represents a three-dimensional view of the
robot, and the right side depicts a schematic diagram of the robot’s joints.

Table 1. The parameters of our robot.

Parameter Size Mass

Thigh 361 (mm) 7.36 (kg)
Shank 330 (mm) 5.12 (kg)
Boom 350 (mm) 4.15 (kg)

Jib 360 (mm) 2.3 (kg)
Others —– 31.07 (kg)

Total Mass —– 50 (kg)

4.2. Trajectory Optimization

The robot’s falling trajectory was optimized in MATLAB, while the robot’s kinematics
and dynamics were generated by the open-source software FROST [31]. The optimization
library used consulted Matthew Kelly [32,33]. In the optimization process, we first follow
the first constraint introduced in Section 2.3 of the article to give the upper and lower
bounds of the robot’s state variables, motion time, state input, and so on. To shorten
the optimization time and avoid local optima in the first optimization process, we give
a free-fall trajectory as an initial trajectory, which is a simple trajectory that does not
satisfy the dynamic constraints but can constrain the optimization result to an ideal reliable
value range, as shown in Figure 6. Additionally, we selected the trapezoidal method
as the interpolation approach. Obviously, the initial reference trajectory from the first
optimization did not satisfy the dynamics equations. So after this, we put the optimized
reference trajectory into the estimate, performed a second optimization, and repeated this
process until the optimal trajectory appeared.

Biomimetics 2023, 8, 460 10 of 17

Figure 6. The robot free-falls through the air and in the final state lies flat on the ground.

4.3. Simulation

We perform the simulations using Coppeliasim and MATLAB. In Coppeliasim, the
robot’s physical engine is Bullet 2.78 and the control period is 5 ms. The initial pitch angle
of the robot is 45◦, the distance from the ground is 1.5 m, the ground friction coefficient
is 0.75, and the other parameters are introduced in Table 2, which appears at the end of
the article. We set two different sets of state variables to compare the optimization results:
the first set of optimization variables are as shown in Equation (1), and the second set
of optimization variables are as shown in Equation (2). The other constraints are kept
consistent. In addition, we also simulated the effect of adding the controller to the robot
when it landed.

Table 2. The control parameters of the simulation.

Parameter Value Parameter Value Parameter Value

w1 0.1 kpe diag([10 850 1760]) k2 200
w2 0.8 kde diag([0.005 27 50]) D1 1500
w3 0.005 kRe diag([5 150 1000]) D2 1800
ξ 0.03 kwe diag([0.005 52.3 65]) Q diag([1 1 1])

kpc diag([10 1000 2000]) α1 0.52 R 0.0001
kdc diag([0.01 12.7 45]) α2 1 m 50
kRc diag([2 100 750]) µ 0.75
kwc diag([0.002 10.0 25]) k1 210,000

4.3.1. Simple State Variables

As described above, we used the equation in (1) for the optimization variables. Figure 7
shows the optimized robot motion states obtained using this method. As can be seen from
Figure 7(1)–(4), in order to reduce the landing speed, the robot swings its arms backward.
Figures 7(5)–(8) show that after the robot lands, its knees quickly touch the ground and its
arms also start to find the landing position. Figure 7(8) is the final state, and it can be seen
that without the constraint of touchdown information, the robot has problems such as
flipping over backward and unbalanced ground contact, and the overall optimized motion
exhibits unreasonable phenomena.

Biomimetics 2023, 8, 460 11 of 17

Figure 7. Snapshots of the robot falling from the air without contact point information in the state variables.

4.3.2. Extended State Variables

In the second set of trajectory optimization experiments, we optimized using extended
state variables. The optimized robot motion states obtained are shown in Figure 8. Com-
pared to Figure 7, the state variables contain touchdown information. It can be seen that
when in the air, the robot stretches its arms and legs straight while bending its waist, which
is conducive to adapting when contacting the ground; after the front end of the foot touches
the ground, the robot immediately bends its knees to reduce the ground impact while the
arms touch the ground to share the pressure. After the robot’s hands or knees make contact
with the ground, the whole body keeps balance.

Figure 8. Snapshots of the robot landing without damping controller.

4.3.3. Extended State Variables and Control

Although the trajectories optimized using extended state variables conform to the
full-body dynamics model, the impact force during the robot’s landing remains large.
To solve this problem, we incorporated the motion controller described above. When the
robot is moving in the air, simple PD control is used. However, when the robot lands,
the landing controller is engaged. Figure 9(5)–(8) shows the effect of it. Once contact with
the ground is detected, the robot swings its arms backward, presses down its body, and

Biomimetics 2023, 8, 460 12 of 17

moves forward. Near the end of landing buffering, in order to maintain an overall balanced
posture, the robot’s upper body moves upward and recovers to a four-point landing state.

Figure 9. Snapshots of the robot landing with the damping controller.

4.3.4. Graphical Analysis

Due to the significant changes in the z- and y-directions during the robot’s fall, this
study primarily considers the hip, knee, ankle, waist, shoulder, and elbow joints. Figure 10
shows the joint angle trajectories of the robot joints optimized using the aforementioned
trajectory optimization method. It can be observed from the figure that the joint angle
trajectories vary smoothly without any anomalous values.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time[s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

p
o

s
it
io

n
[r

a
d

]

Joint position

hip

knee

ankle

waist

shoulder

elbow

Figure 10. The joint trajectory curve optimized by our method. Owing to the bilateral symmetry
between the legs and arms, only the joint angle profiles of the right leg, waist, and arm of the robot
are displayed.

Figures 11–13 show schematic diagrams of the robot’s actual center-of-mass position,
velocity, and orientation, respectively, when falling from the air. The trajectory plots
include the cases of extended state variables and control (with control), extended state
variables (without control), simple state variables (without contact points), and free-fall
motion. The other snapshots are similar. The red curve in Figure 11 shows that after adding
the landing controller, the robot’s center-of-mass trajectory continues moving downward
and then recovers to a stable state, consistent with the motion in Figure 9. In Figure 12,
the free-fall motion velocity curve is blue and has a maximum velocity reaching 4.02 m/s.
The purple curve indicates optimization with no contact point information in the state

Biomimetics 2023, 8, 460 13 of 17

variables: the robot lands after 0.76 s with a maximum velocity of 3.92 m/s. Comparing the
red and fluorescent curves (without control), the speed of the robot drops directly from
3.1315 m/s to 0.18185 m/s within 0.04 s after landing, while with control, the velocity
decreases from 2.9311 m/s to 1.3363 m/s. This demonstrates that the proposed landing
controller provides good shock absorption. Figure 13 shows the orientation of the robot
during landing, and it can be seen that after touchdown, the landing controller starts to
take effect, demonstrating the effectiveness of the proposed method.

Figure 14 shows a schematic diagram of the impact force on the robot’s right hand
when striking the ground. Since in free-fall motion we do not want the robot’s arms to
contact the ground, the impact force is almost 0 during landing. Compared to no landing
controller and trajectory optimization without contact point information, the red curve
represents the use of control during the fall and has a maximum impact force of 5797 N at
the instant of touchdown. Approximately 0.1 s later, a secondary impact occurs, but this
time the impact force is 709.2 N, which is less than the 1132 N experienced without a
landing controller.

Figure 15 shows the ground reaction force on the robot’s right foot: it can be seen that
free-fall motion has the most significant impact force. After adding the landing controller,
the robot’s first impact force is reduced to about 4100 N, and the second impact force
is reduced to 2300 N. Comparing without control and without contact points, it can be
seen that the impact effects of both are similar. These data demonstrate that the proposed
methods can handle ground impact forces effectively.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

time[s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

co
m

 p
o

si
ti

o
n

[m
]

Position of Center of Mass

With Control

Without Control

Without Contact Points

Free Fall

Figure 11. Snapshots of the centroid position of the robot falling from the air.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

time[s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

c
o
m

 v
e
lo

c
it
y
[m

/s
]

Velocity of Center of Mass

With Control

Without Control

Without Contact Points

Free Fall

Figure 12. Snapshots of the centroid velocity of the robot falling from the air.

Biomimetics 2023, 8, 460 14 of 17

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

time[s]

-100

-90

-80

-70

-60

-50

-40

-30

-20

c
o
m

 o
ri
e
n
a
ti
o
n
[°

]

Orienation of Center of Mass

With Control

Without Control

Without Contact Points

Free Fall

Figure 13. Snapshots of the centroid orientation of the robot falling from the air.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

time[s]

0

1000

2000

3000

4000

5000

6000

R
h

a
n

d
 F

o
rc

e
[N

]

Right Hand Force

With Control

Without Control

Without Contact Points

Free Fall

Figure 14. Schematic diagram of the impact force generated by the robot’s right hand hitting the ground.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

time[s]

0

1000

2000

3000

4000

5000

6000

7000

8000

R
fo

o
t

F
o

rc
e

[N
]

Right Foot Force

With Control

Without Control

Without Contact Points

Free Fall

Figure 15. Schematic diagram of the impact force generated by the robot’s right foot hitting the ground.

4.4. Experiment

Falling from the air is a very dangerous maneuver for the robot and requires various
safety equipment. However, we were unable to complete this experiment at this time
since the hardware environment is still being set up. To validate the method proposed in

Biomimetics 2023, 8, 460 15 of 17

this paper, we conducted an experiment outdoors using the example of the robot falling
forwards to the right. We completed this experiment using trajectory optimization and
motion control methods. Figure 16 shows the joint angle profiles of the robot optimized
using the aforementioned optimization approach. During the motion, we applied a lateral
force of approximately 150 N to the robot for 0.3 s. When the lateral push force exceeded
the robot’s self-adjustment range, it had to fall. Our robot detected the falling direction and
threshold based on the method proposed in [34]. Upon detecting the fall, the robot’s right
leg quickly lifted up and the waist joint immediately twisted to brace for impact with the
ground. Since the robot’s hands are quite delicate, to avoid damage during the collision,
we swung the arms upwards during the fall. This minimized the impact on the hands; the
final effect is shown in Figure 17.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

time[s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

p
o
s
it
io

n
[r

a
d
]

Optimal joint position

hip

knee

ankle

waist

shoulder

elbow

Figure 16. Robot joint position.

Figure 17. The robot falls on its side, and in Figures (a,b) an external force is applied to the robot,
Figures (c,d) represents that the robot completes this protection action according to the optimized
trajectory and PD control, Figures (e,f) indicates that the landing controller takes effect after the robot
reaches the ground.

5. Conclusions

This paper optimizes a protection trajectory for a robot falling from the air. Com-
pared with traditional trajectory optimization methods, this paper abandons the strategy
of humanoid robots of working from the high-level motion task strategy space to the
center-of-mass space and then to the whole-body joint space. Rather, we establish a re-
lationship between the high-level motion task strategy space and the whole-body joint
space. Moreover, this paper adds the robot’s contact point information to the state variables,
enabling it to utilize reference contact information to avoid phenomena that do not comply

Biomimetics 2023, 8, 460 16 of 17

with contact dynamics during trajectory optimization. A PD controller is added during
the robot’s flight phase to control the position and direction of the center of mass or the
endpoints. During the robot’s contact phase, according to the center-of-mass dynamics
model, the contact force is optimized. Assuming that force sensors are installed at the
endpoint parts of the robot, then according to the actual applied force and the optimized
applied force, we can use a damping controller to calculate the movement of the endpoint
to finally put the above results into an inverse kinematics optimization based on QP to
obtain the joint angle changes required to desired forces. The simulation and hardware
experiment results show that by combining trajectory optimization and motion control
methods, the robot can safely fall to the ground. Compared to simple free-fall motion or
only simple state variables, this method can effectively buffer the impact force.

6. Future Work

In the future, we will implement online motion trajectory optimization of the robot
and deploy it to the physical prototype to further prove the effectiveness of this method.

Author Contributions: Conceptualization, W.Z. and J.G.; methodology, W.Z. and J.C.; software, W.Z.
and J.C.; validation, W.Z., J.C., X.X. and M.J.; formal analysis, W.Z., J.G. and J.C.; investigation, W.Z.;
writing—original draft preparation, W.Z.; writing—review and editing, W.Z.; visualization, M.J.;
supervision, X.C.; project administration, X.C. and J.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under grants 91748202 and 61973039 and the Beijing Municipal Science and Technology Project under
grant Z191100008019003.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Feng, S.; Xinjilefu, X.; Atkeson, C.G.; Kim, J. Optimization based controller design and implementation for the atlas robot in

the darpa robotics challenge finals. In Proceedings of the 2015 IEEE-RAS 15th International Conference on Humanoid Robots
(Humanoids), Seoul, Republic of Korea, 3–5 November 2015; Volume 10, pp. 1028–1035.

2. Elon Musk Reveals New Optimus Robot Video! (2023 Tesla Shareholder Meetinig). Available online: https://www.youtube.com/
watch?v=KW3iRzXs940 (accessed on 25 July 2023).

3. Jeong, H.; Lee, I.; Oh, J.; Lee, K.K.; Oh, J.H. A robust walking controller based on online optimization of ankle, hip, and stepping
strategies. IEEE Trans. Robot. 2019, 35, 1367–1386. [CrossRef]

4. Kaneko, K.; Harada, K.; Kanehiro, F.; Miyamori, G.; Akachi, K. Humanoid robot HRP-3. In Proceedings of the 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 2471–2478.

5. Mesesan, G.; Englsberger, J.; Garofalo, G.; Ott, C.; Albu-Schffer, A. Dynamic walking on compliant and uneven terrain using
dcm and passivity-based whole-body control. In Proceedings of the 2019 IEEE-RAS 19th International Conference on Humanoid
Robots (Humanoids), Toronto, ON, Canada, 15–17 October 2019; pp. 25–32.

6. Bouyarmane, K.; Chappellet, K.; Vaillant, J.; Kheddar, A. Quadratic programming for multirobot and task-space force control.
IEEE Trans. Robot. 2019, 35, 64–77. [CrossRef]

7. Kajita, S.; Cisneros, R.; Benallegue, M.; Sakaguchi, T.; Nakaoka, S.; Morisawa, M.; Kaneko, K.; Kanehiro, F. Impact acceleration of
falling humanoid robot with an airbag. In Proceedings of the 2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids), Cancun, Mexico, 15–17 November 2016; Volume 35, pp. 637–643.

8. Lee, S.H.; Goswami, A.; Kaneko, K.; Kanehiro, F. Fall on backpack: Damage minimization of humanoid robots by falling on
targeted body segments. Journal of Computational Nonlinear Dynamics. J. Comput. Nonlinear Dyn. 2013, 8, 021005. [CrossRef]

9. Kakiuchi, Y.; Kamon, M.; Shimomura, N.; Yukizaki, S.; Inaba, M. Develop- ment of life-sized humanoid robot platform with
robustness for falling down, long time working and error occurrence. In Proceedings of the 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 689–696.

10. Nguyen, K.; Kojio, Y.; Noda, S.; Sugai, F.; Inaba, M. Dynamic fall recovery motion generation on biped robot with shell protector.
IEEE Robot. Autom. Lett. 2021, 6, 6741–6748. [CrossRef]

https://www.youtube.com /watch?v=KW3iRzXs940
https://www.youtube.com /watch?v=KW3iRzXs940
http://doi.org/10.1109/TRO.2019.2926487
http://dx.doi.org/10.1109/TRO.2018.2876782
http://dx.doi.org/10.1115/1.4006783
http://dx.doi.org/10.1109/LRA.2021.3094234

Biomimetics 2023, 8, 460 17 of 17

11. Subburaman, R.; Lee, J.; Caldwell, D.G.; Tsagarakis, N.G. Online falling-over control of humanoids exploiting energy shaping and
distribution methods. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
Australia, 21–25 May 2018; pp. 448–454.

12. Braghin, F.; Henze, B.; Garzon, M.A.R. Optimal trajectory for active safe falls in humanoid robots. In Proceedings of the
2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), Toronto, ON, Canada, 15–17 October 2019;
pp. 305–312.

13. Ruiz-Del-Solar, J.; Palma-Amestoy, R.; Marchant, R.; Parra-Tsunekawa, I.; Zegers, P. Learning to fall: Designing low damage fall
sequences for humanoid soccer robots. Robot. Auton. Syst. 2009, 57, 796–807. [CrossRef]

14. Ha, S.; Liu, C.K. Multiple contact planning for minimizing damage of humanoid falls. In Proceedings of the 2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015; pp. 2761–2767.

15. Mujica, M.; Crespo, M.; Benoussaad, M.; Junco, S.; Fourquet, J.Y. Robust variable admittance control for human–robot co-
manipulation of objects with unknown load. Robot. Comput.-Integr. Manuf. 2023, 79, 102408. [CrossRef]

16. Abadi, A.S.S.; Ordys, A.; Pierscionek, B. Novel off-line self-tuning controller with guaranteed stability. Int. J. Automot. Technol.
2023, 24, 851–862 [CrossRef]

17. Liu, A.; Chen, T.; Zhu, H.; Fu, M.; Xu, J. Fuzzy variable impedance-based adaptive neural network control in physical human–robot
interaction. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2023, 237, 220–230. [CrossRef]

18. Chignoli, M.; Kim, D.; Stanger-Jones, E.; Kim, S. The MIT humanoid robot: Design, motion planning, and control for acrobatic
behaviors. In Proceedings of the 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids), Munich,
Germany, 19–21 July 2021; pp. 1–8.

19. Qi, H.; Chen, X.; Yu, Z.; Huang, G.; Liu, Y.; Meng, L.; Huang, Q. Vertical Jump of a Humanoid Robot with CoP-Guided Angular
Momentum Control and Impact Absorption. IEEE Trans. Robot. 2023, 39, 3154–3166. [CrossRef]

20. Kurtz, V.; Li, H.; Wensing, P.M.; Lin, H. Mini cheetah, the falling cat: A case study in machine learning and trajectory optimization
for robot acrobatics. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA,
USA, 23–27 May 2022; pp. 4635–4641.

21. Jeon, S.H.; Kim, S.; Kim, D. Online optimal landing control of the mit mini cheetah. In Proceedings of the 2022 International
Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 178–184.

22. Tang, Y.; An, J.; Chu, X.; Wang, S.; Wong, C.Y.; Au, K.S. Towards Safe Landing of Falling Quadruped Robots Using a 3-DoF
Morphable Inertial Tail. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation, London, UK, 29
May–2 June 2023;

23. Yang, Y.; Norby, J.; Yim, J.K.; Johnson, A.M. Proprioception and Tail Control Enable Extreme Terrain Traversal by Quadruped
Robots. arXiv 2023, arXiv:2303.04781.

24. Roscia, F.; Focchi, M.; Del Prete, A.; Caldwell, D.G.; Semini, C. Reactive Landing Controller for Quadruped Robots. arXiv 2023,
arXiv:2305.07748.

25. Dai, H.; Valenzuela, A.; Tedrake, R. Whole-body motion planning with centroidal dynamics and full kinematics. In Proceedings
of the 2014 IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, 18–20 November 2014; pp. 295–302.

26. Featherstone, R. Robot Dynamics Algorithms; Edinburgh University: Edinburgh, UK, 1987.
27. Posa, M.; Cantu, C.; Tedrake, R. A direct method for trajectory optimization of rigid bodies through contact. Int. J. Robot. Res.

2014, 33, 69–81. [CrossRef]
28. Cisneros, R.; Benallegue, M.; Morisawa, M.; Kanehiro, F. QP-based task-space hybrid/parallel control for multi-contact motion in

a torque-controlled humanoid robot. In Proceedings of the 2019 IEEE-RAS 19th International Conference on Humanoid Robots
(Humanoids), Toronto, ON, Canada, 15–17 October 2019.

29. Nguyen, Q.; Powell, M.J.; Katz, B.; Carlo, J.D.; Kim, S. Optimized jumping on the mit cheetah 3 robot. In Proceedings of the 2019
International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 7448–7454.

30. Murooka, M.; Morisawa, M.; Kanehiro, F. Centroidal trajectory generation and stabilization based on preview control for
humanoid multi-contact motion. IEEE Robot. Autom. Lett. 2022, 7, 8225–8232. [CrossRef]

31. Hereid, A.; Ames, A.D. FROST: Fast Robot Optimization and Simulation Toolkit. In Proceedings of the 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017.

32. OptimTraj—Trajectory Optimization for Matlab. Available online: https://github.com/MatthewPeterKelly/OptimTraj (accessed
on 10 August 2023).

33. Kelly, M. An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation. SIAM Rev. 2017, 59, 849–904.
[CrossRef]

34. Wu, T.; Yu, Z.; Chen, X.; Dong, C.; Gao, Z.; Huang, Q. Falling Prediction based on Machine Learning for Biped Robots. J. Intell.
Robot. Syst. 2021, 103, 1–14. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.robot.2009.03.011
http://dx.doi.org/10.1016/j.rcim.2022.102408
http://dx.doi.org/10.1007/s12239-023-0069-7
http://dx.doi.org/10.1177/09596518221128088
http://dx.doi.org/10.1109/TRO.2023.3271136
http://dx.doi.org/10.1177/0278364913506757
http://dx.doi.org/10.1109/LRA.2022.3186515
https://github.com/MatthewPeterKelly/OptimTraj
http://dx.doi.org/10.1137/16M1062569
http://dx.doi.org/10.1007/s10846-021-01506-y

	Introduction
	Trajectory Optimization
	Methods
	Cost Function
	Constraints

	Controller
	Air Stage Controller
	Landing Controller
	Spring–Damper Controller

	Simulation and Experiment
	Simulation Platform
	Trajectory Optimization
	Simulation
	Simple State Variables
	Extended State Variables
	Extended State Variables and Control
	Graphical Analysis

	Experiment

	Conclusions
	Future Work
	References

