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Abstract: Geometric–semantic scene understanding is a spatial intelligence capability that is essential
for robots to perceive and navigate the world. However, understanding a natural scene remains
challenging for robots because of restricted sensors and time-varying situations. In contrast, humans
and animals are able to form a complex neuromorphic concept of the scene they move in. This
neuromorphic concept captures geometric and semantic aspects of the scenario and reconstructs
the scene at multiple levels of abstraction. This article seeks to reduce the gap between robot
and animal perception by proposing an ingenious scene-understanding approach that seamlessly
captures geometric and semantic aspects in an unexplored environment. We proposed two types
of biologically inspired environment perception methods, i.e., a set of elaborate biomimetic sensors
and a brain-inspired parsing algorithm related to scene understanding, that enable robots to perceive
their surroundings like bats. Our evaluations show that the proposed scene-understanding system
achieves competitive performance in image semantic segmentation and volumetric–semantic scene
reconstruction. Moreover, to verify the practicability of our proposed scene-understanding method,
we also conducted real-world geometric–semantic scene reconstruction in an indoor environment
with our self-developed drone.

Keywords: biomimetic; SLAM; scene understanding; 3D reconstruction; attention mechanism;
semantic navigation

1. Introduction

Scene understanding has gained increasing attention in the biomimetic and robotics
community as a means to help intelligent robots perceive the world. High-level environ-
mental perception is a precondition for robot autonomous navigation in an unexplored
environment and for efficient human–computer interaction. The next generation of agents
must be able to understand and fulfill high-level commands. For example, users can directly
give high-level instructions to the agent through dictation: “Come here and hand over
this article to Professor Lee at the engineering practice center”. Agents must holistically
understand the scene and quickly draw up the optimal execution plan.

In recent years, some studies have proposed partial solutions to these problems, such as
simultaneous localization and mapping (SLAM) [1–6], autonomous path replanning [7–10],
pattern recognition [11–14], and iterative reconstruction [15–17]. Nevertheless, research in
these fields has traditionally proceeded in isolation, and there is currently no complete full-
stack solution for scene parsing. Scene understanding in unknown environments still remains
an enormous challenge because of the time-varying situations and stringent requirements for
computing power, system latency, and energy consumption caused by the limited resources
of agents.

To surmount the above challenges, we turned to nature for inspiration. Humans
and animals have shown us their incredible environment perception capabilities and au-
tonomous navigating abilities in a large-scale complex environment [18–22]. As humans,
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we understand the surrounding environments effortlessly: we receive and transmit high-
level instructions and draw up long-distance travel between different cities, and even
accurately predict what will happen in the future. When animals are sensing the envi-
ronment and generating navigation maps, different sensory cues can activate multiple
types of sensory cells in their head [23–25], as illustrated in Figure 1. Animal neurons can
quickly structure spatiotemporal relationships for the surrounding environment [26–31].
This is in stark contrast with today’s machine capabilities; machines only receive navigation
instructions with Cartesian coordinate systems, and do not have inference algorithms to
achieve high-level decision making at multiple levels of abstraction.
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Figure 1. The comparison of the scene-understanding mechanism between bats and robots. (a) Bats
can perceive the surrounding environment with their vestibular organs, visual perception, echolo-
cation, and spatiotemporal analysis systems. (b) Robots can perceive the environment with a set of
elaborate biomimetic sensors and a brain-inspired parsing algorithm related to scene understanding.

This article presents a neuromorphic general scene-understanding system that em-
ulates the state estimation system, visual perception system, spatiotemporal analysis
system, and echolocation system of a bat to efficiently and comprehensively perceive the
environment. Although developing and applying a robot scene-understanding system
that completely includes all these ingredients can only be the purpose of a long-term
research agenda, we attempt to provide the first step towards this aspiration by proposing
a biologically inspired environmental perception strategy, and validating it through ex-



Biomimetics 2023, 8, 436 3 of 20

tensive experiments. The main novelties of the proposed scene-understanding system are
exhibited below:

• Inspired by bat’s binoculus and vestibular organs, we present a lightweight and
drift-free visual–inertia–GNSS tightly coupled multisensor fusion (LDMF) strategy
for unmanned aerial vehicle (UAV) pose estimation, which achieves accurate pose
estimation by imitating the state estimation system of bats.

• Inspired by the bat’s optic nervous system, we innovatively designed a neural network
sub-module with a neuro-like attention mechanism. Based on this, we constructed
a novel Transformer–CNN hybrid neural architecture, dubbed BatNet, for real-time
pixel-level semantic segmentation.

• Inspired by the bat’s spatiotemporal analysis and echolocation system, we propose a
layered directed scene graph called a hierarchical scene graph (HSG) to represent the
spatiotemporal relationships between substances, and implement a truncated signed
distance field (TSDF) to obtain the volumetric scene mesh at each keyframe.

2. System Overview

As diagrammed in Figure 2, we use the ZED binocular camera, WIT JY901B inertial
measurement unit, and ZED-F9P GNSS receiver to simulate the bat perception organs
such as the binocular organs, microscopic canals, saccules, and ears. Additionally, the
hybrid neural networks, HSG, and TSDF are used to replace the visual nerve center and
spatiotemporal analysis system in the bat brain. The ZED stereo camera can directly output
color images and corresponding depth images. The different types of sensor information
are tightly coupled (expounded in Section 3) to provide a global consistent UAV odometry
and coordinate transformation tree. The three-dimensional volumetric scene reconstruction
leverages a TSDF-based strategy to generate the global scene mesh. At each keyframe, we
capture depth images from the ZED stereo camera and convert color and depth images into
spatial pointcloud data. Then, we perform the truncated signed distance field (proposed in
Section 5.2) to obtain the volumetric scene mesh at each keyframe.
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Figure 2. The flowsheet of the proposed bat-inspired scene-understanding system.

For geometric–semantic scene reconstruction, we make use of a pixel-level image
semantic segmentation method, BatNet (proposed in Section 4), to categorize each image
pixel, then semantically annotate the global scene mesh. Furthermore, we exploit a hierar-
chical scene graph (proposed in Section 5.1) to represent the spatiotemporal relationships
between substances. During the packaged projection, we also semantically propagate
a label to each spatial pointcloud generated by the ZED stereo camera. After packaged
semantic projection, each spatial voxel has a vector of category probabilities, which is
completely consistent with the category in HSG.

3. Bat-Inspired State Estimation

Inspired by the bat’s pose estimation system, we present a lightweight and drift-free
vision–IMU–GNSS tightly coupled multisensor fusion (LDMF) strategy for UAV state
estimation, as shown in Figure 3. The multisensor fusion is formulated as a probabilistic
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factor graph optimization, and the whole system states inside the circumscribed container
can be summarized as follows: χ = [x0, x1, . . . , xn, λ1, λ2, . . . , λm, ψ]T

xk =
[
ow

rtk
, vw

rtk
, pw

rtk
, bωtk , batk , δt, δt′

]T
, k ∈ [0, n]

(1)

where xk is the robot state at the time tk that the kth image frame is captured. It contains
nose orientation ow

rtk
, velocity vw

rtk
, position pw

rtk
, gyroscope bias bωtk , and acceleration bias

batk . δt and δt′ correspond to the clock biases and bias drifting rate of the GNSS receiver,
respectively. n is the sliding window size and m is the total number of visual features in the
sliding window. λl is the inverse depth of the lth visual feature. ψ is the yaw bias between
the odometry and the world frame.
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Figure 3. The flowsheet of the LDMF state estimation system.

Assuming that the measurement noise conforms to a Gaussian distribution with zero
mean, then the solution process of the UAV state vector χ can be expressed as:

χ = arg max
χ

P(χ|z)

= arg min
χ

(∥∥ep − Hpχ
∥∥2

+
n
∑

k=1
‖E(zk, χ)‖2

) (2)

where z is the UAV pose linear observation model, HP matrix means the prior UAV pose
information obtained by the airborne camera, n is the number of UAV state vectors, and
E(·) implies the sum of all sensor measurement error factors.

Finally, the UAV pose can be obtained by optimizing the UAV state vector χ by
employing probability factor graph optimization. For the detailed process of factor graph
optimization, please refer to our previous literature [32–35].

4. Bat-Inspired Real-Time Semantic Segmentation

In this section, we first revisit the original self-attention and external-attention mecha-
nisms, and provide detailed elaboration of our ingenious bionics-inspired attention mech-
anism. Then we drive two bionics-inspired attention modules to compose an artificial
neural block. Finally, a complete neural network dubbed BatNet is constructed for real-time
semantic segmentation.
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4.1. Attention Mechanism
4.1.1. Self-Attention Mechanism

In neuroscience, due to bottlenecks in information processing, bats selectively focus
on a portion of all information while ignoring other unimportant parts. In situations where
computing resources are limited, attention mechanisms can automatically allocate comput-
ing resources to more important tasks. A self-attention (SA) module can be considered as
representing an input query and a set of key–value pairs from the input itself to an output,
where both input and output are vectors. Given an input feature matrix M ∈ RN×d , where
N is the number of pixels in the feature matrix and d represents the feature map dimensions,
self-attention simultaneously projects the input feature to a query matrix Q ∈ RN×dq, a key
matrix K ∈ RN×dk , and a value matrix V ∈ RN×dv , as shown in Figure 4a. The matrix of
attention outputs can be formulated as:

SA(Q, K, V) = Softmax

(
QKT√

dq

)
V (3)
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The value of dq is usually relatively large, thus bringing the SoftMax function into
regions where it has extremely small gradients. To alleviate this negative impact, the inner
products is divided by

√
dq.

Instead of performing a single matrix multiplication operation, it is better to divide
the input into several equal parts and respectively project the Q, K, and V matrices H times
with a learnable weighting matrix. Their respective attention maps are then calculated
in parallel, which is named multi-head self-attention (MHSA), as illustrated in Figure 5a.
The multi-head self-attention structure allows the neural network to aggregate semantic
information from different representation subspaces at different positions. In practice, the
multi-head mechanism is similar to partitioned matrix multiplication. Multi-head self-
attention can capture different affinities between input vectors, promoting the multimodal
performance of neural networks to a certain extent. The computational process of multi-
head self-attention can be formulated as:{

MHSA(Q, K, V) = Concat(head1, . . . , headH)WO

headi = SA
(

QWQ
i , KWK

i , VWV
i

) (4)

where the symbol headH represents the input channel, H is the number of heads, and i is
the ith head. The symbols WQ

i , WK
i , WV

i , and WO are the shared parameter matrices.
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4.1.2. External-Attention Mechanism

Although the multi-head mechanism can parallelize the matrix multiplication opera-
tion to some extent, the quadratic complexity still remains. Furthermore, the self-attention
mechanism only utilizes the relative relationship between an input batch, while ignoring
the potential correlations in the entire training dataset, which implicitly limits the model
flexibility and generality.

To address these disadvantages, a flexible and lightweight attention mechanism called
external attention (EA) was invented, which manufactures an attention map between a
query matrix Qe and two different learnable memory units, Ke and Ve, as the key and value,
respectively. The illustration of external attention is shown in Figure 4b. The memory unit
is an external parameter matrix independent of the query matrix, which acts as a prior and
traverses the whole sample. The external-attention mechanism can be expressed by the
following formula:

EA(Qe, Ke, Ve) = DualNorm
(

QeKe
T
)

Ve (5)

where Qe ∈ RN×d is the input query, Ke, Ve ∈ RS×d are the shared external learnable
parameter matrices, and S is the dimension of the parameter matrix. The symbol DualNorm
represents the double normalization operation proposed by Yu et al. [36], which normalizes
the columns and rows in an attention map separately.

Figure 5b shows the multi-head version of the external-attention mechanism. The
multi-head external attention (MHEA) mechanism can be written as:{

MHEA(Qe, Ke, Ve) = Concat(head1, . . . , headH)WO

headi = EA
(
Qe

i, K′e, V′e
) (6)

where, as in Formula (4), the symbol headi represents the input channel, H is the number of
heads, and i is the ith head. K′e, V′e ∈ RS×d′ are the shared multi-head parameter matrices,
d′ = d/H. Although the external-attention mechanism leverages shared parameter matrices
to calculate the attention map corresponding to different heads, the system latency caused
by excessive matrix computation still remains.

4.1.3. Neuro-like Attention Mechanism

To mitigate the impact of multi-head attention, we drew inspiration from neuroscience
and redesigned a concise but efficient attention mechanism called neuro-like attention
(NLA), as shown in Figure 6. NLA inherits the linear complexity from the EA mechanism,
and dispenses with the multi-head mechanism to reduce the system latency caused by
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restricted video RAM bandwidth on neural computing platforms. The neuro-like attention
mechanism can be expressed as:

NLA(Qn, Kn, Vn) = GroupedNorm
(

QnKn
T
)

Vn (7)

where Qn ∈ RN×d is the neuro-like attention input query matrix and Kn, Vn ∈ RSn×d

are the external learnable parameter matrices, Sn = S× H. GroupedNorm denotes the
grouped normalization operation, which distributes the original double normalization into
H channels.
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It is worth noting that for image processing, the hyperparameter S is usually much
smaller than N (typically N = 512 × 512 = 262,144, while S = 64). Thus, neuro-like attention
has lower computational complexity compared to self-attention, allowing it to be directly
deployed on mobile devices. Compared with external attention, the neuro-like attention
mechanism has several inherent advantages. Firstly, neuro-like attention dispenses with
the multi-head structure from the EA mechanism. Therefore, the system output latency
caused by restricted video memory bandwidth is reduced. As an alternative, neuro-
like attention utilizes grouped normalization operations to maintain the superiority of
MHEA to a certain extent. Secondly, the neuro-like attention mechanism expands the
number of learnable parameters in external memory units by a quadratic factor of H.
Thus, having more parameters provides more substantial analytical capabilities for scene-
understanding tasks. Finally, the neuro-like attention mechanism integrates the sequential
matrix manipulation, which significantly reduces the number of linear matrix operations
and is quite suitable for the neuro-like device architecture.

4.1.4. Dual-Resolution Attention Mechanism

The feature map fusion structure with different resolutions has achieved incredible
effects in image semantic segmentation tasks. Multi-resolution feature fusion includes
two branches: high-resolution thread and low-resolution thread. The high-resolution
branch excels in extracting detailed information such as geometric textures from input
images. Since the low-resolution branch has a larger receptive field than its counterpart,
it focuses on aggregating global semantic information. In order to incorporate global
contextual information from the low-resolution branch into the high-resolution branch,
we heuristically designed an imaginative attention mechanism, dubbed dual-resolution
attention (DRA). The calculation can be represented by the following formula:DRA(Qd, Kd, Vd) = Softmax

(
QdKd

T√
dq

)
Vd

Kd, Vd = ψ(Qn)
(8)

where Qd is the DRA module input query, Kd, Vd ∈ RS×d are the external parameter
matrices, dq means the feature dimension of Qd, and the symbol ψ implies convolution,
pooling, and permutation matrix manipulations.

The difference compared to the external-attention mechanism is that the K and V
parameter matrices in dual-resolution attention are learned from transforming the global
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context information generated from the low-resolution branch, as shown in Figure 7. It
is noteworthy that we only employ the SoftMax function to normalize the attention map,
since a SoftMax function performs better than GroupedNorm when the key and value
parameter matrices are transformed from the output matrix of the NLA module in the
low-resolution branch. Obviously, the multi-head mechanism has been deprecated to
reduce system latency.
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4.2. BatNet Architecture

Before building a complete artificial neural architecture, it is necessary to construct
the essential components of the neural network, namely the network block. In order to
fuse feature information from different resolution branches, we designed an innovative
neural network sub-module with the dual branch structure, dubbed BatNet block, as
exhibited in Figure 7. In contrast to the previous works, the BatNet block consists of
two types of attention modules along with their convolutional neural network (CNN).
Dual-resolution attention and neuro-like attention modules are respectively embedded
into high-resolution and low-resolution branches. Neuro-like attention inherits the linear
complexity from the EA mechanism, and dispenses with the multi-head mechanism to
reduce the system latency on the neuro-like computing architecture. Additionally, the
neuro-like attention module reasonably expands the number of learnable parameters
in external memory units. We ingeniously arrange the dual-resolution branches into a
stepped layout. The K and V parameter matrices in dual-resolution attention are obtained
by transforming the global context information generated from the low-resolution branch.
Consequently, the high-resolution branch can capture global contextual information
from the low-resolution branch.

In addition to neuro-like attention and dual-resolution attention modules, each of
the branches in the BatNet block contains a 3 × 3 convolutional layer without dimension
expansion. Conventional transformer-based methods typically use two fully connected
layers as feed forward layers, while the feed forward layers expand the input feature
dimension by four times. The difference compared to previous transformer-based methods
is that the BatNet block has higher execution efficiency than typical transformer-based
configurations on parallel computing devices.

Based on the BatNet block, we construct a novel Transformer–CNN hybrid neural
architecture, named BatNet, for real-time semantic segmentation. Figure 8 illustrates the
overall BatNet architecture. At the bottom of the neural network, we project the input
image into three channels: red, green, and blue. The first three segments of the network are
composed of basic residual modules that consist of a series of 3× 3 convolutional layers and
1 × 1 convolutional layers. It is noteworthy that, in the third segment, the dual-resolution
network structure is applied, and the feature maps are respectively split into high-resolution
and low-resolution branches. These can fully integrate local texture information and global
semantic information from different resolution branches. For the high-resolution branch,
the feature map size is 1/8 of the unchanged input image, while for the low-resolution
branch, the feature sizes are 1/16, 1/32, and 1/32, respectively. In order to facilitate the
fusion efficiency from different resolution branches, we combine two resolution branches
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into the stepped layout. The most significant innovation is that the last two segments are
constructed of our proposed BatNet block, which enables neural networks to not only
extract local geometric textures, but also fuse high-level global contextual information with
a smaller number of parameters.

Biomimetics 2023, 8, x FOR PEER REVIEW 9 of 21 
 

 

that the BatNet block has higher execution efficiency than typical transformer-based con-

figurations on parallel computing devices. 

Based on the BatNet block, we construct a novel Transformer–CNN hybrid neural 

architecture, named BatNet, for real-time semantic segmentation. Figure 8 illustrates the 

overall BatNet architecture. At the bottom of the neural network, we project the input im-

age into three channels: red, green, and blue. The first three segments of the network are 

composed of basic residual modules that consist of a series of 3 × 3 convolutional layers 

and 1 × 1 convolutional layers. It is noteworthy that, in the third segment, the dual-reso-

lution network structure is applied, and the feature maps are respectively split into high-

resolution and low-resolution branches. These can fully integrate local texture infor-

mation and global semantic information from different resolution branches. For the high-

resolution branch, the feature map size is 1/8 of the unchanged input image, while for the 

low-resolution branch, the feature sizes are 1/16, 1/32, and 1/32, respectively. In order to 

facilitate the fusion efficiency from different resolution branches, we combine two resolu-

tion branches into the stepped layout. The most significant innovation is that the last two 

segments are constructed of our proposed BatNet block, which enables neural networks 

to not only extract local geometric textures, but also fuse high-level global contextual in-

formation with a smaller number of parameters. 

BatNet 
block × 2 DAPPM

1/2

Residual 
block

1/8 1/8 1/8

1/321/16 1/16

1/4

Seg head

Input Semantic output
 

Figure 8. The BatNet architecture illustration. 

The top of the BatNet is a segmentation head, which is used to predict the category 

of each pixel. At the end of the low-resolution branch, we inserted a deep aggregation 

pyramid pooling module (DAPPM) [37,38] to expand the feature map size to match the 

high-resolution branch. The final feature map size after fusion is 1/8 of the input image. 

The segmentation head involves a 3 × 3 convolutional layer and a 1 × 1 convolutional layer, 

while the feature map dimension is the same as that of the input. Ultimately, the output 

features are categorized at the pixel level to densely predict semantic labels. 

We instantiated two different configurations of the network architecture: the original 

BatNet and the lightweight variant named BatNet-tiny. The original BatNet generates fea-

ture maps with more channels than its tiny variant to enrich the feature representation. 

As recorded in Table 1, we used an array containing five elements to represent the number 

of feature channels for each segment of the network. Elements containing two numbers 

represent high-resolution and low-resolution branches, respectively. BatNet-tiny and Bat-

Net have the same network architecture. The difference is that BatNet-tiny only reduces 

the number of channels by half to further improve the inference speed for real-time se-

mantic segmentation. 

Table 1. The different configurations of BatNet architecture. 

Networks Channel Number Parameters 

BatNet [64, 128, 128/256, 128/512, 128/512] 17.1 M 

BatNet-tiny [32, 64, 64/128, 64/256, 64/256] 4.9 M 

  

Figure 8. The BatNet architecture illustration.

The top of the BatNet is a segmentation head, which is used to predict the category
of each pixel. At the end of the low-resolution branch, we inserted a deep aggregation
pyramid pooling module (DAPPM) [37,38] to expand the feature map size to match the
high-resolution branch. The final feature map size after fusion is 1/8 of the input image.
The segmentation head involves a 3 × 3 convolutional layer and a 1 × 1 convolutional
layer, while the feature map dimension is the same as that of the input. Ultimately, the
output features are categorized at the pixel level to densely predict semantic labels.

We instantiated two different configurations of the network architecture: the original
BatNet and the lightweight variant named BatNet-tiny. The original BatNet generates
feature maps with more channels than its tiny variant to enrich the feature representa-
tion. As recorded in Table 1, we used an array containing five elements to represent the
number of feature channels for each segment of the network. Elements containing two
numbers represent high-resolution and low-resolution branches, respectively. BatNet-tiny
and BatNet have the same network architecture. The difference is that BatNet-tiny only
reduces the number of channels by half to further improve the inference speed for real-time
semantic segmentation.

Table 1. The different configurations of BatNet architecture.

Networks Channel Number Parameters

BatNet [64, 128, 128/256, 128/512, 128/512] 17.1 M
BatNet-tiny [32, 64, 64/128, 64/256, 64/256] 4.9 M

5. Bat-Inspired Hierarchical 3D Scene Representation
5.1. Hierarchical Scene Graph

A scene graph (SG) is a directed acyclic graph commonly used in game engines and 3D
modeling. The scene graph is composed of serial vertices and edges where vertices indicate
substances in the scene and edges indicate affiliations among vertices. In this section, we
propose a layered directed scene graph called a hierarchical scene graph (HSG) enlightened
by the mammalian brain mechanism, which is an arborescent and flexible data structure.
In general, the root of HSG is at the top of the arborescent graph and the leaves are at the
bottom. The hierarchical scene graph decomposes the scene into a hierarchical structure
represented by several vertices and edges at different levels of abstraction, where vertices
represent the spatial grouping of substances, while edges represent the spatiotemporal
relationships between substances, e.g., “There is a black border collie in room A at time t”.

The hierarchical scene graph of a multi-story building scene includes five layers from
high to low abstraction level: building, stories, rooms, constructions, and entities, as shown
in Figure 9. Each abstract or corporeal object in the physical scene has a unique vertex
corresponding to it in the hierarchical scene graph. The proposed HSG is constructed with
agents’ high-level semantic navigation in mind. For example, consumers can directly issue



Biomimetics 2023, 8, 436 10 of 20

high-level commands to the agent through dictation: “Take out the kitchen garbage and
help me pick up the delivery”. Next, we provide a detailed description of each layer and
the vertices they contain.
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Figure 9. The illustration of hierarchical scene graph. Similar to the analysis of mammalian brains,
the hierarchical scene graph decomposes the scene into an arborescent structure represented by serial
vertices and edges, where vertices represent the spatial level of substances, while edges represent the
spatiotemporal relationships between substances.

In the hierarchical scene graph, the upper three layers are abstraction layers and the
lower two layers are concrete instances. Since we have assumed that a single building is
represented by the HSG, there is only one vertex on the topmost layer, which represents
the abstraction concept of the whole building. The building vertex contains the spatial
location and semantic labels of the building obtained from the BatNet, and the building
edges are connected to all story’s vertices within the story’s layers. Layer 3 in our proposed
HSG is the room layer, and the room vertices in this layer are connected to the upper story
vertex where the rooms are located. For example, the rooms on the second floor are only
connected to the second story vertex, and there is no direct connection to the first and third
story vertices. In addition to the rooms, the corridors and stairs are also in layer 3 as they
belong to the same abstract level as the room. Layer 4 is the constructions layer, which is
composed of wall vertices, floor vertices, ceiling vertices, etc. Moreover, each construction
vertex is connected to the nearest room vertex. It is worth noting that the ceiling in a room
is the floor of the upper room, so the vertices C3, C4, C6, and C7 in Figure 9 representing
the ceiling or floor will be connected to the rooms between two stories. On the contrary, the
wall vertices in layer 4 only connect to adjacent rooms. Layer 5 is used to describe specific
entities and contains four types of vertices: furniture, agents, pet animals, and persons,
whose main distinction is the fact that furniture is stationary, whereas agents, pet animals,
and persons are time varying. Edges between different vertices indicate relations, such
as relative position, distance, or dependence. For example, edges in layer 5 can represent
“there is a gray laptop on the table”, or “the TV on the wall is playing a football game”.

In addition to the arborescent structure, the hierarchical scene graph also has the
superiority of flexibility, i.e., the settings for layers, vertices, and edges in the HSG are not
stationary and are entirely set according to specific scene-understanding tasks. One can
easily insert or discard more layers in the HSG in Figure 9, and can also add or remove
vertices or edges. Moreover, we can add further layers at the top, such as the street layer,
community layer, and even city layer.

5.2. Truncated Signed Distance Field

The truncated signed distance field (TSDF) has recently become a familiar implicit
scene volumetric representation for three-dimensional computer reconstruction and game
development [39–41] since it has several advantages, e.g., uncertainty representation, real-
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time reconstruction, and ability to generate visible spatial meshes for user monitoring. In
contrast to the Euclidean signed distance field (ESDF), the truncated signed distance field
leverages the raycasting distance, which is the distance along the viewing ray crossing
voxel center to the object surface, and saves this distance information from the Euclidean
distance to the transformed truncated distance. Subsequently, the new raycasting points are
averaged into the existing TSDF. The strategies for constructing a truncated signed distance
field from input pointclouds are extremely significant in terms of both the reconstruction
accuracy and the update rate of distance maps. Next, we provide a detailed description of
the construction principles for our proposed TSDF.

Like the bat echolocation system, the signed distance field (SDF) is a set of voxel grids
where every voxel element contains its Euclidean distance to the nearest obstacle surface.
For an n-dimensional space, the scene is represented through an n-dimensional grid of
equally volumetric voxels. Similar to other fields (such as electric field, magnetic field, and
gravitational field), the field strength in an SDF is expressed by the Euclidean distance.
Each voxel x in an SDF contains two types of data, i.e., signed distance sdfi(x) and weight
wi(x). The sdfi(x) represents the signed distance information between the voxel center x
and its nearest object surface along the current raycasting ray, as illustrated in Figure 10. If
the spatial position of the voxel center x is between the object surface and the sensor origin,
the sdfi(x) sign on that side is positive, and vice versa is negative. Given the sensor origin
o, the position p of the nearest pointcloud on the target surface, the current voxel center x,
and o, p, x ∈ R3, SDF can be formulated as follows:

sdfi(x) = ‖p− x‖sign((p− x)•(p− o)) (9)

where the subscript i denotes the ith scan.
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Figure 10. The signed distance field illustration. Each small square represents the spatial voxel in the
scene. Like the bat echolocation system, the signed distance field can effortlessly describe obstacle
information in the environment and generate a metric distance map, which plays a crucial role in
robot autonomous navigation.

For surface reconstruction purposes, the Euclidean distances of sdfi(x) that are too
far from the object surface are not instrumental to generating the target mesh. Ultimately,
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unduly large distances are not conducive to real-time trajectory replanning for robot
autonomous navigation. To overcome this disadvantage, the SDF was truncated around
the object surface boundary. The truncated variant of sdfi(x) is expressed as follows:

tsdfi(x) = max
(
−1, min

(
1,

sdfi(x)
tru_d

))
(10)

where the symbol tru_d represents the truncation distance parameter. In robot navigation
applications, the truncation distance tru_d in the TSDF can be understood as the risk
coefficient for obstacle distance, which is equal to 1 or −1 to indicate absolute safety.
Truncation distance parameter tru_d can be set based on the physical size of the robot.

In TSDF, as mentioned above, there is a weight wi(x) for each voxel to appraise the
uncertainty of the corresponding tsdfi(x). Generally, when the updated voxel center x is
located within the sensor’s field of view, the uncertainty weight wi(x) is set to a constant
value of 1. On the contrary, if the voxel center x is located outside the sensor’s field of view,
the weight wi(x) is set to a constant value of 0.{

wconst(x) = 1, if x within the field of view
wconst(x) = 0, else

(11)

We designed a more sophisticated strategy to combine the uncertainty weights
shown above:

Wi(x) = min(Wi−1(x) + wi(x), Wmax) (12)

where Wi(x) and wi(x) represent the weights that previously existed in voxels and the
weights currently observed, respectively. Wmax represents the upper limit of all weights,
and in our experiment Wmax = 10,000.

For surface reconstruction requirements, simply finding voxels with truncation dis-
tances close to 0 can easily achieve the reconstruction of the entire scene. In order to
integrate the TSDF between the previous distance map and current measurements, differ-
ent observations can be averaged in one TSDF. This is usually done by weighted summation
through iterating TSDF as follows:

TSDFi(x) =
Wi−1(x)TSDFi−1(x) + wi(x)tsdfi(x)

Wi(x)
(13)

where TSDFi(x) represents the existing truncated signed distance after i iterations for voxel
x and tsdfi(x) represents current measurements. All voxels are initialized with TSDF0(x) = 0
and W0(x) = 0.

We attempt to facilitate the integration of the new input pointcloud into the existing
TSDF by only projecting once per end voxel. We project each input pointcloud into the
adjacent voxel and package all pointclouds in the same voxel. We then calculate the average
RGB color and distance between the bundled pointclouds, and raycast it only once. Our
approach, i.e., packaged raycasting, dramatically promotes raycasting efficiency with only
a slight loss in accuracy.

6. Experiments

We start by conducting a detailed evaluation of BatNet and its variants, including
a detailed model implementation (in Section 6.1.1), am ablation experiment with atten-
tion modules (in Section 6.1.2), and analysis with other state-of-the-art approaches (in
Section 6.1.3), in order to demonstrate the superiority of our proposed bat-inspired hybrid
architecture. Subsequently, we conducted more comprehensive experiments for scene
understanding, including TSDF-based metric scene reconstruction (in Section 6.2.1), bat-
inspired volumetric-semantic scene understanding (in Section 6.2.2), and masking for a
time-varying target (in Section 6.2.3). Finally, we utilized our self-developed drone to per-
form a 3D geometric–semantic scene-understanding test in the real world (in Section 6.3).
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The evaluation for robot state estimation has already been performed in our previous
work [32–35], so is not a contribution of this article.

6.1. Image Segmentation
6.1.1. Datasets and Implementation Details

The Cambridge-driving Labeled Video Database (CamVid) is a road scene segmenta-
tion dataset collected from an automobile camera. It contains 701 images with high-quality
dense pixel-level annotations. These images with a resolution of 960 × 720 are respectively
split into 367 for semantic segmentation model training, 101 for validating, and 233 for
testing. The annotated images provide 32 candidate classes, of which the subset of just
11 categories is used in our experiments for fair comparison with other neural architectures.
In this article, we combine the 367 training images and 101 validating images for training
BatNet, and the 233 testing images are used to evaluate BatNet.

Cityscapes [42] is a large-scale dataset that focuses on scene understanding in an urban
street background. The dataset contains 5000 annotated high-resolution images, which
are further split into 2975, 500, and 1525 images for neural network training, validating,
and testing respectively. Incredibly, the image resolution in the Cityscapes dataset has
reached 2048 × 1024, which is exceptionally challenging for real-time scene-understanding
scenarios. The annotated images have 30 different categories, but just 19 categories are
used in our experiments for a fair comparison with other image segmentation methods.

ADE20K is an enormous dataset used for scene understanding and contains 25 K
images and 150 fine-grained semantic categories. All images in ADE20K are fully an-
notated with objects, and are split so that with 20 K used for semantic segmentation
model training, 2 K used for validating, and 3 K used for testing. Due to numerous cat-
egories and challenging scenes, this dataset is quite challenging for real-time semantic
segmentation methods.

In this section, we conduct all experiments based on PyTorch 1.8. The performance
compared with other scene-understanding approaches was evaluated by running on a
single NVIDIA GeForce 1660 GPU with CUDA 10.2, CUDNN 7.6. The artificial neural
networks were trained from scratch with the initial learning rate of 0.001 and the weight
decay of 0.05. We trained all neural networks with the AdamW optimizer and adopted
the poly learning rate scheduler with the power of 0.9 to drop the learning rate. For data
augmentation, we conducted random scaling, random cropping, random color jittering,
and random horizontal flipping. The cropped resolution for the Cityscapes dataset was
1024 × 512, for the CamVid dataset was 960 × 720, and for the ADE20K dataset was
512 × 512. The random scale ranges were within [0.5, 0.75, 1.0, 1.25, 1.5]. We applied the
standard mean intersection over union (mIoU) for segmentation accuracy comparison and
frames per second (FPS) for inference speed comparison.

6.1.2. Ablation Study

Ablation studies were conducted to demonstrate the performance of our proposed
modules and to dissect these improvements. The ablation experiment selects BatNet-tiny
as the basic model and uses the same neural network training setting on the ADE20K
dataset. Table 2 displays the quantitative model performance and operational efficiency
with ablating modules.

Conventional transformer-based methods typically use two fully connected layers
as feed forward layers, but our proposed network block uses convolutional neural layers.
The ablation studies show that our proposed convolutional layers outperform typical feed
forward layers, not only for segmentation accuracy, but also for inferential efficiency. To
validate the superiority of our two proposed attention mechanisms, we implement the
different attention mechanisms under identical experimental conditions. We find that
neuro-like attention outperforms other forms of multi-head-based external attention, and
is much more efficient than the traditional self-attention mechanism. When we replaced
the attention mechanism with dual-resolution attention in the high-resolution branch, the
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accuracy improved further, with reasonable latency. The ablation experiment implies that
our proposed two attention mechanisms achieve a better trade-off between segmentation
accuracy and inferential efficiency than multi-head-based attention mechanisms on neural
computing platforms.

Table 2. Ablation studies for our proposed modules on the ADE20K dataset. The capital letters
SA, EA, NLA, and DRA represent self-attention, external attention, neuro-like attention, and dual-
resolution attention, respectively.

Convolutional FFN SA EA NLA DRA mIoU (%) FPS
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is much more efficient than the traditional self-attention mechanism. When we replaced 

the attention mechanism with dual-resolution attention in the high-resolution branch, the 

accuracy improved further, with reasonable latency. The ablation experiment implies that 

our proposed two attention mechanisms achieve a better trade-off between segmentation 

accuracy and inferential efficiency than multi-head-based attention mechanisms on neural 

computing platforms. 

6.1.3. Comparison with State-of-the-Art Approaches 

We compare the segmentation accuracy and inference speed of our proposed BatNet 

with previous state-of-the-art real-time neural networks on the CamVid test set. A detailed 

description is exhibited in Table 3. Model performances are evaluated with a single crop 

of 960 × 720, and FPS is estimated under the same input scale. On CamVid with the input 

size of 960 × 720, BatNet achieved the highest image segmentation accuracy, while its 

lightweight variant, BatNet-tiny, achieved the fastest inference speed. The experimental 

results demonstrate that the bionics-based BatNet architecture achieves a state-of-the-art 

trade-off between performance and inference efficiency compared to other methods. 
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Conventional transformer-based methods typically use two fully connected layers as 

feed forward layers, but our proposed network block uses convolutional neural layers. 

The ablation studies show that our proposed convolutional layers outperform typical feed 

forward layers, not only for segmentation accuracy, but also for inferential efficiency. To 

validate the superiority of our two proposed attention mechanisms, we implement the 

different attention mechanisms under identical experimental conditions. We find that 

neuro-like attention outperforms other forms of multi-head-based external attention, and 

is much more efficient than the traditional self-attention mechanism. When we replaced 

the attention mechanism with dual-resolution attention in the high-resolution branch, the 

accuracy improved further, with reasonable latency. The ablation experiment implies that 

our proposed two attention mechanisms achieve a better trade-off between segmentation 

accuracy and inferential efficiency than multi-head-based attention mechanisms on neural 

computing platforms. 

6.1.3. Comparison with State-of-the-Art Approaches 

We compare the segmentation accuracy and inference speed of our proposed BatNet 

with previous state-of-the-art real-time neural networks on the CamVid test set. A detailed 

description is exhibited in Table 3. Model performances are evaluated with a single crop 

of 960 × 720, and FPS is estimated under the same input scale. On CamVid with the input 

size of 960 × 720, BatNet achieved the highest image segmentation accuracy, while its 

lightweight variant, BatNet-tiny, achieved the fastest inference speed. The experimental 

results demonstrate that the bionics-based BatNet architecture achieves a state-of-the-art 

trade-off between performance and inference efficiency compared to other methods. 
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Conventional transformer-based methods typically use two fully connected layers as 

feed forward layers, but our proposed network block uses convolutional neural layers. 

The ablation studies show that our proposed convolutional layers outperform typical feed 

forward layers, not only for segmentation accuracy, but also for inferential efficiency. To 

validate the superiority of our two proposed attention mechanisms, we implement the 

different attention mechanisms under identical experimental conditions. We find that 

neuro-like attention outperforms other forms of multi-head-based external attention, and 

is much more efficient than the traditional self-attention mechanism. When we replaced 

the attention mechanism with dual-resolution attention in the high-resolution branch, the 

accuracy improved further, with reasonable latency. The ablation experiment implies that 

our proposed two attention mechanisms achieve a better trade-off between segmentation 

accuracy and inferential efficiency than multi-head-based attention mechanisms on neural 

computing platforms. 

6.1.3. Comparison with State-of-the-Art Approaches 

We compare the segmentation accuracy and inference speed of our proposed BatNet 

with previous state-of-the-art real-time neural networks on the CamVid test set. A detailed 

description is exhibited in Table 3. Model performances are evaluated with a single crop 

of 960 × 720, and FPS is estimated under the same input scale. On CamVid with the input 

size of 960 × 720, BatNet achieved the highest image segmentation accuracy, while its 

lightweight variant, BatNet-tiny, achieved the fastest inference speed. The experimental 

results demonstrate that the bionics-based BatNet architecture achieves a state-of-the-art 

trade-off between performance and inference efficiency compared to other methods. 
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Conventional transformer-based methods typically use two fully connected layers as 

feed forward layers, but our proposed network block uses convolutional neural layers. 

The ablation studies show that our proposed convolutional layers outperform typical feed 

forward layers, not only for segmentation accuracy, but also for inferential efficiency. To 

validate the superiority of our two proposed attention mechanisms, we implement the 

different attention mechanisms under identical experimental conditions. We find that 

neuro-like attention outperforms other forms of multi-head-based external attention, and 

is much more efficient than the traditional self-attention mechanism. When we replaced 

the attention mechanism with dual-resolution attention in the high-resolution branch, the 

accuracy improved further, with reasonable latency. The ablation experiment implies that 

our proposed two attention mechanisms achieve a better trade-off between segmentation 

accuracy and inferential efficiency than multi-head-based attention mechanisms on neural 

computing platforms. 

6.1.3. Comparison with State-of-the-Art Approaches 

We compare the segmentation accuracy and inference speed of our proposed BatNet 

with previous state-of-the-art real-time neural networks on the CamVid test set. A detailed 

description is exhibited in Table 3. Model performances are evaluated with a single crop 

of 960 × 720, and FPS is estimated under the same input scale. On CamVid with the input 

size of 960 × 720, BatNet achieved the highest image segmentation accuracy, while its 

lightweight variant, BatNet-tiny, achieved the fastest inference speed. The experimental 

results demonstrate that the bionics-based BatNet architecture achieves a state-of-the-art 

trade-off between performance and inference efficiency compared to other methods. 
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Conventional transformer-based methods typically use two fully connected layers as 

feed forward layers, but our proposed network block uses convolutional neural layers. 

The ablation studies show that our proposed convolutional layers outperform typical feed 

forward layers, not only for segmentation accuracy, but also for inferential efficiency. To 

validate the superiority of our two proposed attention mechanisms, we implement the 

different attention mechanisms under identical experimental conditions. We find that 

neuro-like attention outperforms other forms of multi-head-based external attention, and 

is much more efficient than the traditional self-attention mechanism. When we replaced 

the attention mechanism with dual-resolution attention in the high-resolution branch, the 

accuracy improved further, with reasonable latency. The ablation experiment implies that 

our proposed two attention mechanisms achieve a better trade-off between segmentation 

accuracy and inferential efficiency than multi-head-based attention mechanisms on neural 

computing platforms. 

6.1.3. Comparison with State-of-the-Art Approaches 

We compare the segmentation accuracy and inference speed of our proposed BatNet 

with previous state-of-the-art real-time neural networks on the CamVid test set. A detailed 

description is exhibited in Table 3. Model performances are evaluated with a single crop 

of 960 × 720, and FPS is estimated under the same input scale. On CamVid with the input 

size of 960 × 720, BatNet achieved the highest image segmentation accuracy, while its 

lightweight variant, BatNet-tiny, achieved the fastest inference speed. The experimental 

results demonstrate that the bionics-based BatNet architecture achieves a state-of-the-art 

trade-off between performance and inference efficiency compared to other methods. 
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Conventional transformer-based methods typically use two fully connected layers as 

feed forward layers, but our proposed network block uses convolutional neural layers. 

The ablation studies show that our proposed convolutional layers outperform typical feed 

forward layers, not only for segmentation accuracy, but also for inferential efficiency. To 

validate the superiority of our two proposed attention mechanisms, we implement the 

different attention mechanisms under identical experimental conditions. We find that 

neuro-like attention outperforms other forms of multi-head-based external attention, and 

is much more efficient than the traditional self-attention mechanism. When we replaced 

the attention mechanism with dual-resolution attention in the high-resolution branch, the 

accuracy improved further, with reasonable latency. The ablation experiment implies that 

our proposed two attention mechanisms achieve a better trade-off between segmentation 

accuracy and inferential efficiency than multi-head-based attention mechanisms on neural 

computing platforms. 

6.1.3. Comparison with State-of-the-Art Approaches 

We compare the segmentation accuracy and inference speed of our proposed BatNet 

with previous state-of-the-art real-time neural networks on the CamVid test set. A detailed 

description is exhibited in Table 3. Model performances are evaluated with a single crop 

of 960 × 720, and FPS is estimated under the same input scale. On CamVid with the input 

size of 960 × 720, BatNet achieved the highest image segmentation accuracy, while its 

lightweight variant, BatNet-tiny, achieved the fastest inference speed. The experimental 

results demonstrate that the bionics-based BatNet architecture achieves a state-of-the-art 

trade-off between performance and inference efficiency compared to other methods. 
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Conventional transformer-based methods typically use two fully connected layers as 

feed forward layers, but our proposed network block uses convolutional neural layers. 

The ablation studies show that our proposed convolutional layers outperform typical feed 

forward layers, not only for segmentation accuracy, but also for inferential efficiency. To 

validate the superiority of our two proposed attention mechanisms, we implement the 

different attention mechanisms under identical experimental conditions. We find that 

neuro-like attention outperforms other forms of multi-head-based external attention, and 

is much more efficient than the traditional self-attention mechanism. When we replaced 

the attention mechanism with dual-resolution attention in the high-resolution branch, the 

accuracy improved further, with reasonable latency. The ablation experiment implies that 

our proposed two attention mechanisms achieve a better trade-off between segmentation 

accuracy and inferential efficiency than multi-head-based attention mechanisms on neural 

computing platforms. 

6.1.3. Comparison with State-of-the-Art Approaches 

We compare the segmentation accuracy and inference speed of our proposed BatNet 

with previous state-of-the-art real-time neural networks on the CamVid test set. A detailed 

description is exhibited in Table 3. Model performances are evaluated with a single crop 

of 960 × 720, and FPS is estimated under the same input scale. On CamVid with the input 

size of 960 × 720, BatNet achieved the highest image segmentation accuracy, while its 

lightweight variant, BatNet-tiny, achieved the fastest inference speed. The experimental 

results demonstrate that the bionics-based BatNet architecture achieves a state-of-the-art 

trade-off between performance and inference efficiency compared to other methods. 
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Conventional transformer-based methods typically use two fully connected layers as 

feed forward layers, but our proposed network block uses convolutional neural layers. 

The ablation studies show that our proposed convolutional layers outperform typical feed 

forward layers, not only for segmentation accuracy, but also for inferential efficiency. To 

validate the superiority of our two proposed attention mechanisms, we implement the 

different attention mechanisms under identical experimental conditions. We find that 

neuro-like attention outperforms other forms of multi-head-based external attention, and 

is much more efficient than the traditional self-attention mechanism. When we replaced 

the attention mechanism with dual-resolution attention in the high-resolution branch, the 

accuracy improved further, with reasonable latency. The ablation experiment implies that 

our proposed two attention mechanisms achieve a better trade-off between segmentation 

accuracy and inferential efficiency than multi-head-based attention mechanisms on neural 

computing platforms. 

6.1.3. Comparison with State-of-the-Art Approaches 

We compare the segmentation accuracy and inference speed of our proposed BatNet 

with previous state-of-the-art real-time neural networks on the CamVid test set. A detailed 

description is exhibited in Table 3. Model performances are evaluated with a single crop 

of 960 × 720, and FPS is estimated under the same input scale. On CamVid with the input 

size of 960 × 720, BatNet achieved the highest image segmentation accuracy, while its 

lightweight variant, BatNet-tiny, achieved the fastest inference speed. The experimental 

results demonstrate that the bionics-based BatNet architecture achieves a state-of-the-art 

trade-off between performance and inference efficiency compared to other methods. 
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Conventional transformer-based methods typically use two fully connected layers as 

feed forward layers, but our proposed network block uses convolutional neural layers. 

The ablation studies show that our proposed convolutional layers outperform typical feed 

forward layers, not only for segmentation accuracy, but also for inferential efficiency. To 

validate the superiority of our two proposed attention mechanisms, we implement the 

different attention mechanisms under identical experimental conditions. We find that 

neuro-like attention outperforms other forms of multi-head-based external attention, and 

is much more efficient than the traditional self-attention mechanism. When we replaced 

the attention mechanism with dual-resolution attention in the high-resolution branch, the 

accuracy improved further, with reasonable latency. The ablation experiment implies that 

our proposed two attention mechanisms achieve a better trade-off between segmentation 

accuracy and inferential efficiency than multi-head-based attention mechanisms on neural 

computing platforms. 

6.1.3. Comparison with State-of-the-Art Approaches 

We compare the segmentation accuracy and inference speed of our proposed BatNet 

with previous state-of-the-art real-time neural networks on the CamVid test set. A detailed 

description is exhibited in Table 3. Model performances are evaluated with a single crop 

of 960 × 720, and FPS is estimated under the same input scale. On CamVid with the input 

size of 960 × 720, BatNet achieved the highest image segmentation accuracy, while its 

lightweight variant, BatNet-tiny, achieved the fastest inference speed. The experimental 

results demonstrate that the bionics-based BatNet architecture achieves a state-of-the-art 

trade-off between performance and inference efficiency compared to other methods. 
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Conventional transformer-based methods typically use two fully connected layers as 

feed forward layers, but our proposed network block uses convolutional neural layers. 

The ablation studies show that our proposed convolutional layers outperform typical feed 

forward layers, not only for segmentation accuracy, but also for inferential efficiency. To 

validate the superiority of our two proposed attention mechanisms, we implement the 

different attention mechanisms under identical experimental conditions. We find that 

neuro-like attention outperforms other forms of multi-head-based external attention, and 

is much more efficient than the traditional self-attention mechanism. When we replaced 

the attention mechanism with dual-resolution attention in the high-resolution branch, the 

accuracy improved further, with reasonable latency. The ablation experiment implies that 

our proposed two attention mechanisms achieve a better trade-off between segmentation 

accuracy and inferential efficiency than multi-head-based attention mechanisms on neural 

computing platforms. 

6.1.3. Comparison with State-of-the-Art Approaches 

We compare the segmentation accuracy and inference speed of our proposed BatNet 

with previous state-of-the-art real-time neural networks on the CamVid test set. A detailed 

description is exhibited in Table 3. Model performances are evaluated with a single crop 

of 960 × 720, and FPS is estimated under the same input scale. On CamVid with the input 

size of 960 × 720, BatNet achieved the highest image segmentation accuracy, while its 
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6.1.3. Comparison with State-of-the-Art Approaches

We compare the segmentation accuracy and inference speed of our proposed BatNet
with previous state-of-the-art real-time neural networks on the CamVid test set. A detailed
description is exhibited in Table 3. Model performances are evaluated with a single crop of
960 × 720, and FPS is estimated under the same input scale. On CamVid with the input
size of 960 × 720, BatNet achieved the highest image segmentation accuracy, while its
lightweight variant, BatNet-tiny, achieved the fastest inference speed. The experimental
results demonstrate that the bionics-based BatNet architecture achieves a state-of-the-art
trade-off between performance and inference efficiency compared to other methods.

Table 3. Comparison with state-of-the-art approaches on the CamVid test set.

Model Backbone mIoU (%) Parameters FPS

BiSeNet Xception 62.4 5.8 M 75.3
BiSeNetV2 Booster 69.3 - 68.1

SFNet ResNet18 70.9 12.9 M 46.3
STDCSeg STDC1 68.8 14.2 M 85.3
STDCSeg STDC2 70.7 22.2 M 63.6

BatNet-tiny HybridBlock 77.9 4.9 M 114.4
BatNet HybridBlock 80.2 17.1 M 68.3

To further evaluate the real-time performance of BatNet, we also conducted experi-
ments on the high-resolution Cityscapes dataset. It can be seen from Table 4 that BatNet
achieved 76.1% mIoU, far surpassing other semantic segmentation models. At the same
time, the lightweight variant of BatNet, BatNet-tiny, achieved 49.6 FPS with only 4.9 M
parameters. These experimental results demonstrate that the BatNet architecture maintains
an excellent balance among accuracy, model capacity, and operational efficiency, even when
applied to high-resolution images.

Table 4. Comparison with state-of-the-art approaches on the Cityscapes validation set. The model
performances are estimated with a single crop of a 2048 × 1024 resolution.

Model Backbone mIoU (%) Parameters FPS

BiSeNet Xception 66.1 5.8 M 49.4
BiSeNetV2 Booster 70.5 - 45.2

SFNet ResNet18 72.9 12.9 M 8.2
STDCSeg STDC1 71.7 14.2 M 38.3
STDCSeg STDC2 73.2 22.2 M 33.5

BatNet-tiny HybridBlock 73.3 4.9 M 49.6
BatNet HybridBlock 76.1 17.1 M 27.2
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To validate the generalization ability of scene-understanding models on large-scale
datasets, we conducted comparative experiments with other state-of-the-art models on
ADE20K. Due to the large number of images and excessive categories, ADE20K is almost
unfeasible for lightweight scene-understanding models. Table 5 presents the comparison of
BatNet with state-of-the-art scene-understanding models, including both efficient convolu-
tional neural networks and lightweight vision transformer-based models, and reports the
results for accuracy, model size, and inference speed. As the results show, BatNet achieves
superior comprehensive characteristics on large-scale datasets, and outperforms other
state-of-the-art methods, not only for mIoU, but also for model size, while maintaining a
competitive edge in FPS.

Table 5. Comparison with state-of-the-art approaches on the ADE20K validation set.

Model Backbone mIoU (%) Parameters FPS

FCN MobileNetV2 18.1 9.8 M 47.4
DeepLabV3 MobileNetV2 30.5 15.4 M 32.9
BiSeNetV2 Booster 31.4 - 95.3
SegFormer MiT-B0 35.7 3.8 M 42.8
BatNet-tiny HybridBlock 32.8 4.9 M 138.1

BatNet HybridBlock 38.5 17.1 M 69.2

6.2. Scene Representation
6.2.1. TSDF-Based Volumetric Scene Reconstruction

Surface mesh production is a common means of scene description, and realizes scene
representation by iterative reconstruction of entities in the environment. Next, we qualita-
tively demonstrate the performance of our proposed TSDF-based method by reconstructing
the V1 sequence in the EuRoC database. The EuRoC datasets [43] are collected from a
stereo camera and a synchronized inertial measurement unit carried by an agile unmanned
aerial vehicle (UAV). We use the stereo image matching toolbox contained in the robot
operating system (ROS) to convert binocular vision into spatial pointclouds. We employ
the self-developed LDMF state estimation system [35] as the odometer for UAV pose esti-
mation. All operations in this section were executed using an NVIDIA Jetson Xavier NX
Embedded computer. The voxel size in TSDF was set to 20 cm, truncation distance was set
to 1 meter, max ray length was equal to 6 meters, and maximum weight Wmax = 10,000 for
Formula (12). The qualitative reconstruction is shown in Figure 11.
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Figure 11. The qualitative reconstruction result with TSDF-based surface mesh production from the
EuRoC_v1 sequence.

6.2.2. Bat-Inspired Volumetric–Semantic Scene Representation

After verifying the reconstruction effect in the previous section, we utilize BatNet-tiny
to achieve pixel-level image semantic segmentation, and semantically propagate a label
to each spatial mesh. Subsequently, each spatial voxel has a vector of semantic category
probabilities. We validated the environmental perception effect with BatNet-tiny and TSDF
using two publicly available datasets, uHumans2 and KITTI.
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uHumans2 is a virtual dataset created by a computer simulator, which is collected
by a photo-realistic Unity-based game engine provided by MIT Lincoln Laboratory. The
uHumans2 dataset provides RGB images, depth images, IMU, scan, and semantic anno-
tations of the scenario. In the uHumans2 dataset, we thoughtfully selected the “subway”
sequence, a super large-scale multi-floor scene, as the subject of environmental perception
experiments, which is very challenging for lightweight scene-understanding systems. Since
the dataset already contains semantically segmented images, we do not need to use BatNet-
tiny for image semantic segmentation. The voxel size in TSDF is set to 15 cm, the truncation
distance is set to 2, the max ray length is equal to 10 meters, and the maximum weight
Wmax = 10,000 for Formula (12). All operations were executed using an NVIDIA Jetson
Xavier NX Embedded computer. The qualitative reconstruction is shown in Figure 12.
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Figure 12. The qualitative reconstruction generated by our proposed volumetric–semantic scene
representation system. (a) The colorful image stream is manufactured by the “subway” sequence.
(b) The semantic image corresponds to (a), and the different colors in the semantic image represent
the corresponding categories. (c) Volumetric–semantic scene reconstruction.

KITTI is a challenging real-world computer vision dataset used for 3D object detection,
visual–inertial odometry, and stereo tracking, and is collected by two high-resolution
binocular cameras, a high-precision inertial measurement unit, a Velodyne laser, and a
RTK localization system. KITTI is captured by driving around a medium-scale urban
environment, on community streets and on highways. Limited by the computational power
of our NVIDIA Jetson Xavier NX chip, we used BatNet-tiny to asynchronously segment
images on a desktop computer with an NVIDIA GeForce 1660 GPU to obtain pixel-level
semantic annotations. Then, the obtained semantic image was aligned with the timestamp
of the original RGB image. The configuration related to TSDF reconstruction is identical to
that of the uHumans2 dataset. The top view of a reconstructed community street in KITTI
is shown in Figure 13.

6.2.3. Visualization of Hierarchical Scene Graph

In this section, we visualize the effect of time-varying vertices from layer 5 in the
hierarchical scene graph. As we mentioned in Section 5.1, we include three types of time-
varying vertices, i.e., agents, pet animals, and persons. Without loss of generality, here we
use pedestrians as a typical case to demonstrate the approach’s effectiveness. In order to
eliminate interference from other external factors, we choose the virtual uHumans2 created
by computer simulator for the experiment. As shown in Figures 14 and 15, when the “per-
son” vertices are discarded from layer 5 in the hierarchical scene graph, the corresponding
category of meshes in the scene also disappears.
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Figure 13. The top view of a reconstructed community street in the KITTI dataset. (a) The RGB image
stream. (b) The semantic image produced by our proposed BatNet-tiny. (c) Volumetric–semantic
scene reconstruction.

Biomimetics 2023, 8, x FOR PEER REVIEW 18 of 21 
 

 

Figure 13. The top view of a reconstructed community street in the KITTI dataset. (a) The RGB image 

stream. (b) The semantic image produced by our proposed BatNet-tiny. (c) Volumetric–semantic 

scene reconstruction. 

6.2.3. Visualization of Hierarchical Scene Graph 

In this section, we visualize the effect of time-varying vertices from layer 5 in the 

hierarchical scene graph. As we mentioned in Section 5.1, we include three types of time-

varying vertices, i.e., agents, pet animals, and persons. Without loss of generality, here we 

use pedestrians as a typical case to demonstrate the approach’s effectiveness. In order to 

eliminate interference from other external factors, we choose the virtual uHumans2 cre-

ated by computer simulator for the experiment. As shown in Figures 14 and 15, when the 

“person” vertices are discarded from layer 5 in the hierarchical scene graph, the corre-

sponding category of meshes in the scene also disappears. 

(a) (b) (c)  

Figure 14. The qualitative comparison of different results when discarding a vertex from layer 5 in 

the hierarchical scene graph. (a) The geometric scene reconstruction. (b) The geometric–semantic 

scene reconstruction. (c) The geometric–semantic scene reconstruction with HSG which removed 

“person” vertices from layer 5. 

(a) (b) (c)  

Figure 15. The qualitative comparison of masking for time-varying targets. (a) The geometric scene 

reconstruction. (b) The geometric–semantic scene reconstruction. (c) The geometric–semantic scene 

reconstruction with HSG which removed “person” vertices from layer 5. The pedestrians are mov-

ing from left to right when reconstructing this scene. 

6.3. Real-World Experiment 

In order to verify the practicability of our proposed scene-understanding method, we 

also conducted real-world semantic scene reconstruction in our office with a self-developed 

drone, as shown in Figure 16. We directly leveraged the stereo image matching kit to convert 

RGB and depth images collected by the ZED camera into spatial pointclouds. We employed 

the self-developed LDMF state estimation system [35] as the visual–inertial odometry for 

drone pose estimation. We utilized BatNet-tiny to achieve pixel-level image semantic segmen-

tation, and semantically propagated a label to each spatial mesh. Subsequently, each spatial 

voxel has a vector of semantic category probabilities. The voxel size in TSDF was set to 30 cm, 

truncation distance was set to 1, max ray length was equal to 5 m, and maximum weight Wmax 

= 10,000. 
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the hierarchical scene graph. (a) The geometric scene reconstruction. (b) The geometric–semantic
scene reconstruction. (c) The geometric–semantic scene reconstruction with HSG which removed
“person” vertices from layer 5.
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Figure 15. The qualitative comparison of masking for time-varying targets. (a) The geometric scene
reconstruction. (b) The geometric–semantic scene reconstruction. (c) The geometric–semantic scene
reconstruction with HSG which removed “person” vertices from layer 5. The pedestrians are moving
from left to right when reconstructing this scene.
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6.3. Real-World Experiment

In order to verify the practicability of our proposed scene-understanding method, we
also conducted real-world semantic scene reconstruction in our office with a self-developed
drone, as shown in Figure 16. We directly leveraged the stereo image matching kit to convert
RGB and depth images collected by the ZED camera into spatial pointclouds. We employed
the self-developed LDMF state estimation system [35] as the visual–inertial odometry for
drone pose estimation. We utilized BatNet-tiny to achieve pixel-level image semantic
segmentation, and semantically propagated a label to each spatial mesh. Subsequently,
each spatial voxel has a vector of semantic category probabilities. The voxel size in TSDF
was set to 30 cm, truncation distance was set to 1, max ray length was equal to 5 m, and
maximum weight Wmax = 10,000.
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Figure 16. The real-world geometric–semantic scene representation experiments. (a) The visual fea-
ture state is transmitted from the self-developed drone. (b) The drone is collecting scene information
in our office. (c) The RGB image frame was collected by the airborne ZED camera. (d) The semantic
image produced by the proposed BatNet-tiny. (e) The volumetric–semantic scene reconstruction.

7. Conclusions and Future Work

This article proposed a novel scene-understanding system that seamlessly captures
metric and semantic aspects of an unexplored environment. Our evaluation shows that the
proposed scene-understanding system achieves competitive performance in image semantic
segmentation and volumetric–semantic scene reconstruction. Moreover, to verify the practica-
bility of our proposed scene-understanding method, we also conducted real-world semantic
scene reconstruction in an indoor environment with our self-developed drone.

Although the algorithm proposed in this article was verified to a certain extent in
physical experiments, there is still a significant gap between it and consumer-grade robot
applications. With the gradual improvement in ethical constraints and legal regulations
related to robots in the future, the application of intelligent robots and autonomous vehicles
will become increasingly widespread.
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