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Abstract: Ghost imaging is a novel imaging technique that utilizes the intensity correlation property
of an optical field to retrieve information of the scene being measured. Due to the advantages of
simple structure, high detection efficiency, etc., ghost imaging exhibits broad application prospects
in the fields of space remote sensing, optical encryption transmission, medical imaging, and so on.
At present, ghost imaging is gradually developing toward practicality, in which ghost imaging of
moving targets is becoming a much-needed breakthrough link. At this stage, we can improve the
imaging speed and improve the imaging quality to seek a more optimized ghost imaging scheme for
moving targets. Based on the principle of moving target ghost imaging, this review summarizes and
compares the existing methods for ghost imaging of moving targets. It also discusses the research
direction and the technical challenges at the current stage to provide references for further promotion
of the instantiation of ghost imaging applications.

Keywords: ghost imaging; moving blur; correlation imaging; moving imaging

1. Introduction

Ghost imaging (GI), also known as correlation imaging, differs significantly from
conventional imaging in localized nature. In conventional imaging, the target image infor-
mation is obtained by recording the light intensity distribution of the radiation field with
focal plane arrays [1,2], while GI records the light intensity values with a barrel detector
that does not have spatial resolution [3,4] and computes the correlation with the modu-
lation patterns to reconstruct the image of the target object. To simplify the GI system,
researchers have proposed computational ghost imaging (CGI) [5] and single-pixel imaging
(SPI) [4,6,7], which require only one optical path to achieve image reconstruction of the
target object. The resolution limit is related to the coherent intensity of the optical field, and
the image resolution can exceed the Rayleigh diffraction limit, while the application of com-
pressive perception theory [8] to GI enables low Nyquist frequency sampling. Numerous
advantages of GI make it promising for applications in space remote sensing [9], optical
encryption [10,11], LiDAR [12–14], medical imaging [15–17], near-infrared imaging [18], ter-
ahertz imaging [19,20], broadband and hyperspectral imaging [21], X-ray imaging [22–24],
and imaging of scattering media [25–27].

Many practical applications are inseparable from the imaging of moving objects, but
the relative motion between the object and the imaging system will inevitably affect the
imaging. For traditional imaging, the elative motion between the object and the imaging
system causes the resolution of the image to decrease. GI requires multiple measurements
to reconstruct the object image, and the relative motion between the object and the imaging
system also causes motion blur and increases the difficulty of imaging. Imaging of moving
objects is an important part of GI towards practical use, such as LiDAR, space remote
sensing, security monitoring, autonomous driving, etc. At present, how to improve the
performance of moving target ghost imaging is one of the key problems to be solved. The
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purpose of this review is to summarize the research and applications of GI technology for
moving targets, and analyze the key problems and development trends of GI for moving
targets, providing references for in-depth research of this technology.

2. Theoretical Basis of GI

GI achieves reconstruction of target characteristic parameters by correlating the two-
dimensional light field intensity distribution of the light source and the total light intensity
value of the echo light field carrying the target modulation information. Through the
introduction of light field fluctuation modulation and computational reconstruction, GI
not only has higher information acquisition efficiency, but also has improved flexibility
of image information acquisition. The basic idea of GI can be traced back to the Hanbury
Brown–Twiss (HBT) experiment in 1956 [28], which enabled the measurement of the
angular diameter of a star by correlating the intensity correlation of the probe light. Early
GI used an entangled light source, so its image mechanism was considered to be a quantum
entanglement effect. However, Boyd et al. [29] reproduced GI using a classical light source
in 2002, the first theoretical analysis and experimental verification of the feasibility of
classical light fields for GI experiments; generally common GI are two-arm conventional
GI [30,31], CGI [29,32–34] and SPI [34–36].

The two-arm conventional GI system has two branches, shown in Figure 1. The light
from the laser is passed through the light source modulator to obtain the scattered light
field for GI, after the beam splitter is divided into a signal branch and a reference branch.
The barrel detector in the signal branch receives the reflected or refracted light from the
target object and records a light intensity value. The reference branch uses a charge-coupled
device to collect the light field information. The image of the target object is reconstructed
by associating the light intensity information of the two branches [37].
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Figure 1. Schematic diagram of a two-arm conventional GI system.

To simplify the GI system, a CGI method was proposed by Shapiro [5] in 2008 and
Bromberg [3] experimentally validated CGI in the following year. CGI is an indirect imaging
method that uses a single pixel photodetector without spatial resolution to reconstruct
the image of a target object type. Unlike two-arm conventional GI, CGI has only one
branch, as shown in Figure 2a. The key to modulate the scattered light field is to use a
digital micromirror device (DMD) or a spatial light modulator (SLM) [5], then to rely on a
bucket detector with no spatial resolution to receive light intensity information. CGI can
improve image quality by designing scatter patterns, which has advantages over two-arm
conventional GI [34].
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There is another optical path design based on spatial light modulation for GI, as shown
in Figure 2b, where the light beam from the light source is reflected or refracted by the
target object [4,6,7] and modulated by a DMD. Then, the resulting light field is detected by
a single-pixel detector, and the image of the target object is reconstructed by correlating the
light intensity value with the modulation patterns, which is the SPI proposed by Baraniuk
et al. [4,6,7] in 2008. SPI is a new imaging method that uses a single pixel detector and an
SLM to obtain images through reconstruction. Compared with traditional array detector
imaging, SPI has the advantages of high sensitivity and anti-interference, and has a very
broad application prospect in many fields [38].

In 2008, CGI and SPI concepts were proposed almost simultaneously. From the per-
spective of technology development history, CGI and SPI are two independently developed
technologies, but their theoretical basis, implementation methods, and reconstruction algo-
rithms have many similarities. From an optical point of view, CGI and SPI are essentially
the same; the only difference is the order of the SLM (or DMD) and the image object in the
light path. In the CGI optical path, the way that light is modulated through SLM and then
illuminated to the object is called structural lighting [34]. In the SPI optical path, the light
passes through the imaging object and is modulated by an SLM, which is called structured
detection [38]. Nowadays, CGI and SPI are completely universal in imaging principle,
modulation strategy, and reconstruction methods [6].

3. Research Status of Moving Target GI

Moving target GI differs from stationary target GI in that it has higher requirements
for temporal and spatial resolution. The typical problems common to moving target GI
are twofold: the limited processing speed of the image system leading to the inability
to image in real time, and the image blurring problem caused by the relative moving
between the object and the image system. In conventional imaging, moving blur occurs if
the object moves on a light-sensitive surface at a distance larger than the pixel size during
the exposure time of the camera; a shorter exposure time is usually used to solve this
problem. In GI, the relative moving between the target object and the optical axis causes
the lateral resolution of the image reconstructed by GI to deteriorate, which produces
moving blur, as demonstrated theoretically and experimentally by Han et al. [39] who
proved it both theoretically and experimentally in 2015. At present, most reviews of ghost
imaging focus on stationary targets, and there have been few articles on the status of
moving targets. This paper focuses on the existing problems of moving target GI and
divides the existing research methods into two major parts: improving the image speed and
the quality. To improve reconstructed image speed, researchers use six methods, namely,
improving light source modulation methods, selecting the adaptive image region, selecting
a suitable number of samples, estimating motion inter-frame information, developing new
reconstruction algorithms, and tracking the target without image reconstruction. Designing
novel modulation patterns and moving the compensation for modulation patterns are
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used to improve image quality. Researchers use these methods to reduce the image blur
caused by the relative moving of the object and the image system, and to improve the
image quality.

4. Improving Image Speed

Image speed is quantified by image time. The shorter the image time, the faster is
the image speed. The image time of GI is the sum of the data acquisition time and the
reconstructed image time [38], where the data acquisition time can be expressed as the ratio
of the number of modulated scatter spots to the modulation rate. Therefore, this paper
details below the contributions made by researchers in improving the image speed of GI of
moving targets in the six aspects mentioned.

4.1. Improved Light Source Modulation Method

In GI, image information can be obtained and processed flexibly by designing the
modulation mode of the light source. In early pseudo-thermal light source GI, a rotating
piece of gross glass was placed in front of the light source to Gaussian modulate the light
source [29]. With the advent of CGI, researchers began to modulate the light source using a
projector, a spatial light modulator (SLM), and a digital micro-mirror device (DMD) [3]. Up
to 60 patterns per second can be projected with the projector. Even the most advanced DMD
modulation speeds can reach 22 kHz, but the speed drops dramatically when multi-gray
patterns are produced [38].

To improve the light source modulation speed, Song et al. [40] in 2016 utilized LCD
to generate structured pseudo-random patterns with a size of 128 × 128 pixels. This
method simplifies the control process of the light source, can greatly reduce the number of
measurements required for image reconstruction, and can be clearly imitated even if there
is an external light source. In 2018, Sun et al. [41] developed a 32 × 32 pixels high-speed
LED illumination module, with a light field refresh rate up to 500 kHz; the schematic
of which is shown in Figure 3, using Hadamard patterns as the modulation patterns. It
was able to display them at half the LED switching rate, achieving a continuous image
at a frame rate of 1000 Hz, about two orders of magnitude greater than other existing GI
systems. The object they used was a black disc with ten numbers uniformly engraved
from 0 to 9, which rotated at a specified speed, recorded light intensity information with
a single-pixel detector, a data acquisition card that was synchronized with the LED array,
and then transmitted the intensity data to a computer for image reconstruction. In the same
year, a Spanish group [42] used an LED light source with a refresh rate of 10 kHz to achieve
a 32 × 32 pixels 3D object image at a frame rate of 10 Hz, resulting in an SNR of 53 dB
for color images and 62 dB for monochrome images. In 2019, Chen et al. [43] achieved a
video image at a 1.4 MHz frame rate using an LED array light source with a refresh rate
up to 100 MHz. The LED array works at a frame rate of 1 MHz, the imaging frame rate
is changed to 5 kHz, the light intensity value is detected using a single-photon detector
(SPD), and when the photon reaches the detector, the SPD generates an electronic pulse as
a count. However, a single SPD has the problem of not being able to represent the number
of photons and having a dead time, so an eight-mode SPD detection system was built. In
this system, eight multi-mode fibers with a core diameter of 50 microns are tightly packed
at one end, and their other end is connected to an SPD. The signal collected by the detector
is fed into the time-correlated-single-photon-counter, and the arrival time of each signal
can be obtained, thus obtaining the number of photons in each time window. In the same
year, Inoue et al. [44] proposed the use of an optical correlator as a spatial modulator to
acquire a reconstructed image using 1000 random binary patterns and obtained an image
frame rate of 133.7 fps. By improving the modulation of the light source, the modulation
speed of the light source is improved, and the time required for data acquisition is reduced,
which is important for the early realization of real-time GI of moving objects.
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4.2. Selecting the Adaptive Image Region

Typically, the object to be imaged occupies only a fraction of the entire region, and
if SPI is performed only for the target region, the number of modulated patterns can
be significantly reduced without degrading the image quality. In 2017, Zhao et al. [45]
proposed an adaptive region SPI method for the case where the object occupies part of the
illuminated region; the schematic diagram is shown in Figure 4. This method obtains slices
of Fourier coefficients by projecting vertical and horizontal two-dimensional sinusoidal
patterns. On the projected line of the scene, however, the position of the object edge changes
due to the different grayscale distribution of the object and background. Therefore, the
Fourier slice theorem and the edge detection algorithm can be used to adaptively localize
the target region, and the Fourier SPI method can be applied to reconstruct the target image
for the target region. This then places the reconstructed image at the location of the object
in the scene to generate the full image. It can greatly reduce the number of modulation
patterns and improve the image speed.

Biomimetics 2023, 8, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 3. High-speed LED lighting module experimental schematic [41]. 

4.2. Selecting the Adaptive Image Region 
Typically, the object to be imaged occupies only a fraction of the entire region, and if 

SPI is performed only for the target region, the number of modulated patterns can be sig-
nificantly reduced without degrading the image quality. In 2017, Zhao et al. [45] proposed 
an adaptive region SPI method for the case where the object occupies part of the illumi-
nated region; the schematic diagram is shown in Figure 4. This method obtains slices of 
Fourier coefficients by projecting vertical and horizontal two-dimensional sinusoidal pat-
terns. On the projected line of the scene, however, the position of the object edge changes 
due to the different grayscale distribution of the object and background. Therefore, the 
Fourier slice theorem and the edge detection algorithm can be used to adaptively localize 
the target region, and the Fourier SPI method can be applied to reconstruct the target im-
age for the target region. This then places the reconstructed image at the location of the 
object in the scene to generate the full image. It can greatly reduce the number of modu-
lation patterns and improve the image speed. 

 
Figure 4. Adaptive area SPI method [45]. (a) Schematic representation of image reconstruction. The 
three images are the ARSI reconstructed ground object image, the localized target region, and the 
fully reconstructed image. (b) Experimental diagram of image reconstruction. The three images are, 
respectively, the target object, the localized object region illuminated by the digital projector, and 
the full reconstructed image [45]. 

4.3. Selecting a Suitable Number of Samples 
Typically, moving targets are sparse, and vehicles traveling on roads have small scat-

tering interfaces and spatial sparsity with respect to the surrounding buildings. Choosing 
the appropriate sampling number can effectively reduce the data acquisition time [38] and 
improve the image efficiency of GI. 

Figure 4. Adaptive area SPI method [45]. (a) Schematic representation of image reconstruction. The
three images are the ARSI reconstructed ground object image, the localized target region, and the
fully reconstructed image. (b) Experimental diagram of image reconstruction. The three images are,
respectively, the target object, the localized object region illuminated by the digital projector, and the
full reconstructed image [45].

4.3. Selecting a Suitable Number of Samples

Typically, moving targets are sparse, and vehicles traveling on roads have small scat-
tering interfaces and spatial sparsity with respect to the surrounding buildings. Choosing
the appropriate sampling number can effectively reduce the data acquisition time [38] and
improve the image efficiency of GI.
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In 2019, Liu et al. [46] proposed a temporal intensity difference correlation GI scheme,
which exploits the spatial sparsity of moving targets and can acquire high-quality images
of moving objects in complex scenes with fewer samples. It only requires a linear algorithm
and significantly reduces the reconstruction time of the image, which is important for
tracking. This method can handle the relative motion of multiple moving objects and
remains effective even when the shape of the moving object changes. Experimentally,
the tracking and imaging of two moving objects with different speeds and orientations
was implemented. In 2021, feedback GI strategy to reduce the number of samples was
proposed [47], shown in Figure 5. It adaptively adjusts the field-of-view and scatter size
based on the image and concentrates the high-resolution scatter in the edge regions. It can
extract more side information and requires a much smaller number of samples than regular
GI due to the reduced field of view. Choosing the right number of samples can greatly
reduce the time required for sampling, which correspondingly reduces the time for the
correlation operations and improves the image speed of GI.
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Figure 5. Feedback GI. (a) Schematic diagram of experimental apparatus [47]. (b) The entire scene
is illuminated, and the reflected intensity of the measured target is GI0 with resolution S0 = n. The
following four steps are then followed sequentially: edge search, sampling, generation of illumination
pattern, and image update. The arrows show the steps and the direction of the data. The red arrow in
Step 3 also indicates that the illumination pattern is illuminated onto the target. (c) The reconstructed
images with sample rates of 5829, 10,528, 17,984, and 21,056.

4.4. Estimating Moving Inter-Frame Information

The high-resolution tracking of moving objects can be achieved by associating each
moment of a moving object with an associative operation and obtaining the shape and
position information of the object at the corresponding moment through the different
images of adjacent moments. However, this increases the data volume and time cost of the
association operation. To solve this problem, researchers have divided the object moving
into multiple moving frames and achieved GI of the target object through estimation of the
information between moving frames.
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In 2019, Liu et al. [48] proposed Gradual GI of moving objects by tracking based on
cross correlation. The experimental setup and experimental results are shown in Figure 6,
which uses less sampling to obtain blurred images of objects, calculates the image correla-
tion to obtain the displacement of the object at the corresponding instant, and then gradually
reconstructs a high-quality image during the object’s motion. The moving inter-frame in-
formation estimation reduces the amount of data in the multi-frame image transmission
channel and improves the image speed. This method works well when 300 flash samples
are taken per time frame, but it will not work well if the object is moving too fast and the
number of samples per time frame is reduced to 200.
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Figure 6. Moving objects by tracking based on cross correlation [48]. (a) Schematic diagram of
experimental apparatus. Both CCD1 and DMD are located in the Fourier plane of lens L1. (b) Recon-
structed images, where the first act is a car in a different location, the second act is a blurred image
sampled 400 times per frame, and the third act is a CBGI reconstruction of the image. (c) Sample real
trajectories and calculated trajectories for different times per frame. When the number of samples N
is more than 300, there are good results, but when N is less than 200, the ME between RT and ET is
larger than the resolution of the image, then the method will not work well.

4.5. Developing New Reconstruction Algorithms

The GI obtains the reconstructed image of the target object through the reconstruction
algorithm, so the computational efficiency of the reconstruction algorithm plays a decisive
role in the image reconstruction time; advanced imaging algorithms can greatly reduce the
number of samples required for imaging, which can improve the image speed.

In 2021, Sagi Monin et al. [49] proposed an algorithm to estimate the moving between
consecutive frames and integrate it into a model matrix for SPI. It improves the numerical
efficiency of the algorithm by estimating the global motion of the target object from the
measured data via a circular model matrix without any image reconstruction. They used
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this method to track and image the global motion and local motion of the object respectively.
In the same year, Zhang et al. [50] proposed a real-time classification method for fast
moving objects without image acquisition; the schematic diagram and simulation results
are shown in Figure 7. The key point is to directly obtain the target features using structural
illumination and single-pixel detection and train a convolutional neural network to learn
the target features. It then feeds the single-pixel measurements into a trained convolutional
neural network to achieve accurate and real-time classification of fast-moving objects. It
can be performed in a 45 mm × 45 mm field of view and can successfully classify objects
with a speed of 3.61 m/s. The achievable temporal resolution is 1.68 ms. Each classification
requires only 1680 bytes of data. The computation time is 1.43 ms. This method is both
data efficient and computationally efficient, allowing real-time and long-time classification.
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Figure 7. Target classification schematics based on CNN and examples of training images [50].
(a) Structure of the proposed CNN. Similar to traditional CNN, the CNN proposed in this paper
consists of an image input layer, which accepts images as input during network training. The
convolutional kernels in the trained CNN are used as patterns for structured illumination; different
from traditional CNN, when the CNN proposed in this paper is used for object classification. (b) The
feature map becomes the input layer that takes single-pixel measurements as input. A single pixel
measurement is obtained by using a convolution kernel to illuminate a moving object. (c) This
requires high-speed photography, and this approach achieves object classification without acquiring
images. (d) The first row is the original image and the second row is the randomly shifted and rotated
image laterally.

4.6. Tracking Target without Image Reconstruction

Target tracking methods include image-based and image-free methods. Image-based
tracking methods rely on continuous image acquisition and subsequent processing, and
have low tracking efficiency, while image-free target tracking methods detect and track
fast-moving objects in real time.

In 2019, Shi et al. [51] proposed a fast target tracking technique based on SPI. The key
point of this approach was to construct modulation information that satisfies the projection
condition, transforming the 2D image into a 1D projected curve. The tracking of the moving
target is achieved by acquiring the 1D projected curve of the moving target in real time
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with high accuracy, which provides the location information of the moving target. They
also proposed a background subtraction technique for tracking moving objects, which can
remove static components in the scene and speed up the tracking of SPI. They used this
method to track moving objects with less than 0.2% of the measurements established by
the Nyquist criterion, and it presents 256 × 256 pixels at ~177 fps. In the same year, Zhang
et al. [52] proposed an image-free, real-time tracking method for fast moving objects, shown
in Figure 8. They used six Fourier fundamental patterns for structured light modulation
to measure only two Fourier coefficients in the complete Fourier spectrum of the object
image. Then they used SLM and single-pixel detection to acquire spatial information
of the target object, but not the image for target detection and tracking. A temporal
resolution of 1/1666 s was achieved by using a 10,000 Hz DMD, but only a moving object
which tracked in just two dimensions could be detected. The following year, this research
group [53] implemented an image-free 3D tracking method. It used six single-cycle Fourier
basis patterns for illuminating a moving target, and used only two single-pixel detectors
and a high-speed SLM for data acquisition, then used the corresponding single-pixel
measurements to resolve and calculate the position of the target. It can detect and track
fast-moving targets at a frame rate of 1666 frames per second on a 10,000 Hz DMD. In 2022,
Yu et al. [54] proposed an image-free real-time target tracking scheme which is based on
discrete cosine transform and single-pixel detection. This approach uses complementary
modulation to reduce measurement noise and background phase subtraction to enhance
contrast. It can avoid the computation of all phase values and drastically reduce the number
of samples. This method can track moving targets under a complex background, and the
sampling rate is less than 0.59% of the Nyquist–Shannon criterion; the fastest tracking
speed can reach 208 fps.
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(d–f) for obtaining the light intensity value of the object on the y-axis.

5. Improving Image Quality

The image quality of GI is inextricably related to the modulation patterns; the mod-
ulation sequence of the Hadamard matrix sequence has a significant effect on the image
quality [55]; the resolution of the reconstructed image can be adjusted by controlling the
transverse cohere length of patterns [17], and the contrast of the reconstructed image can be
improved by using a scattered light field with super Rayleigh distribution [56]. For moving
target GI, the design of new modulation patterns and the moving compensation of the
modulation patterns can improve the image quality.

5.1. Designing New Modulation Patterns

In 2022, our group [57] proposed a time-variant retina-like computational ghost imag-
ing (VCGI) for axially moving targets; the schematic diagram of which is shown in Figure 9.
It uses 64 × 64 pixels retinal-like patterns with a variable central concave region radius
to reconstruct axially moving targets; the target moves evenly along the optical axis, and
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the total movement distance is 5 mm. It is worth mentioning that the radius of the central
concave region can be modified according to the axial movement of the target. It provides
good control of the light field during the movement of the target, resulting in high-quality
reconstructed images. In the same year, Shi et al. [58] proposed a moving-compensated
SPI method based on time-division multiplexing. It uses geometric moment patterns and
Hadamard patterns to time-division multiplex the target position information and uses
image information alternate encoding to localize moving objects at high frame rates. It
improves the performance of moving blur-resistant SPI and meets the demand for SPI
in more moving scenes without additional hardware to localize or estimate the moving
state of the object. When the object angular velocity is as high as 0.5 rad/s, the positioning
frame rate can reach 5.55 kHz, and the image of 512 × 512 pixels can be reconstructed.
In the same year, Fu et al. [59] proposed an effective method for image random moving
targets based on geometric moment analysis. Each frame was divided into 20 slices and the
moving state of each slice could be obtained by using cake cut-order Hadamard patterns
and low-order geometric moment patterns, to obtain high-quality video streams of targets
moving at different translational and rotational speeds. This method can reconstruct a
randomly moving object with a rotational speed of 1800 revolutions per minute. In the
following year, Li et al. [60] proposed a method to obtain the relative displacements and
images of translational objects simultaneously. It uses four binary Fourier patterns and
two differential Hadamard patterns as shown in Figure 10 to modulate one frame of the
target. The method does not require any a priori knowledge to obtain the relative dis-
placement and image of the object, and the quality of the reconstructed image improves
rapidly and stabilizes as the number of measured frames increases. The method achieves
the relative displacement of the moving targets at 3332 Hz frame rate at a spatial resolution
of 128 × 128 pixels.
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Figure 9. Schematic diagram of the experimental setup for time-varying retinal-like computational
GI of axially moving targets [57]. The images on the right are RGI and VRGI reconstructed images
of axially moving objects at sampling numbers 1024, 1229, 1434, and 1638. Here, RGI stands for the
CGI method with retina-like patterns. The number of samples here refers to the number of patterns
required to reconstruct an image. r0 in the figure is the radius of the fovea region.
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Figure 10. Schematic diagram of the experimental setup and pattern design [60]. On the right is
the design of the pattern. Each moving frame corresponds to six patterns, four of which are binary
Fourier based patterns and two are differential Hadamard patterns. The Fourier patterns of all
frames are the same, and the corresponding phases are 0 and π/2 respectively. According to the total
variation (TV) sorting method, the Hadamard patterns corresponding to different moving frames
are sorted.

5.2. Moving Compensation for Modulation Patterns

The image blurring problem can be attenuated by moving compensation, which can
be broadly divided into three types: mechanical compensation, optical compensation, and
electronic compensation [61]. Mechanical compensation presents many difficulties in the
design and control process of the device, and the quality of the reconstructed image is
affected by the compensation accuracy. Electronic compensation, such as image restoration
techniques, requires a large number of numerical operations, and the errors present in the
computation process also affect the image quality. Optical compensation, however, can
improve the resolution of the optical system and reduce the dependence on post-processing.

In 2014, Han et al. [37] successfully reconstructed a tangential moving target by trans-
lating the light intensity distribution on the reference optical path. In 2015, they [39]
proposed a deblurring method based on speckle-resizing and speed retrieval. It obtains
the velocity of a target with unknown motion parameters by retrieving the velocity, while
the size of the patterns can be adjusted according to the nature of the different positions. It
can overcome the effect of moving blur on the resolution of reconstructed images. In 2019,
Sun et al. [62] proposed a moving estimation and quality enhancement scheme for a single
image in dynamic SPI. When the motion state of the object is known, it is possible to build
a model of the motion of the object. At this point, the object is assumed to be at rest, and
then the modulated pattern is made equivalent to the motion along the opposite direction,
resulting in a high-quality reconstructed image. In 2020, Yang et al. [63] proposed a tracking
compensation method based on CGI; the schematic diagram is shown in Figure 11. This
method allows accurate estimation of the target’s trajectory and the ability to move or
rotate the illumination pattern preloaded on the DMD, compensating for angular velocities
up to 5.45 µrad/s. It can eliminate moving blur and obtain high-quality reconstructed
images with high signal-to-noise ratio. In 2022, Wu et al. [64] proposed a moving target
tracking image method based on compressed perception and low-order moment estimation.
It extracts the motion information of the target through low-order moments, gradually
performs motion estimation and compensation during image processing, and finally re-
constructs the image of the moving target using a compression-aware algorithm. It can
effectively overcome moving blur and reduce the number of measurements required for
each moving estimation.
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At present, the research methods for ghost imaging of moving targets can be roughly
divided into the above eight categories. In order to facilitate the understanding and compar-
ison of different methods, we summarized the principles, advantages, and disadvantages
of the above methods as well as the development direction in Table 1.

Table 1. Comparison of research methods.

Classification Improve Imaging Speed Improve Image Quality

Core method

Improving
light source
modulation
method

Selecting the
adaptive
imaging
region

Selecting a
suitable
number of
samples

Estimating
motion
inter-frame
information

Developing
new
reconstruction
algorithms

Tracking
target without
image
reconstruction

Designing new
modulation
patterns

Moving
compensation
for
modulation
patterns

Principle Develop a new
LED array

Image the part
of the area
where the
target is
located, then
place it at the
location of the
object in the
scene

Select
appropriate
sampling
number with
the spatial
sparsity of
object

Divide the
motion into
several frames
and estimate
the
information
between them

Introduce
another
algorithm or
neural
networks into
reconstruction
algorithm

Obtain spatial
information
about the
target object

Design the
structure of
patterns with
the movement
characteristics

Move patterns
to make it
remain
relatively
stationary
with the object

Advantages

Improve the
modulation
speed of the
light source

Reduce the
number of
patterns and
have high
numerical
efficiency
algorithm

Reduce
sampling time,
track and
image
multiple
moving
objects

Image moving
objects in
inaccessible
environments

Have
algorithms
that require
little
computation

Have high
speed
detection
and high
efficiency
calculation

Image objects
in unknown
motion states

Have a simple
structure and
does not
require
hardware
compensation

Disadvantages
The power is
unstable for a
long time

It is only
applicable to
single target in
the
background of
uniform gray
distribution

Peripheral
areas are not
imaged
properly

Objects
moving too
fast cannot be
imaged

Algorithms
related to deep
learning
require a lot of
training

Unable to get
an image of
the target
object

The imaging
effect on
rotating
objects is not
ideal

The specific
motion of the
object must be
known

Development
direction

Living
microscopy,
3D imaging,
light detection
and ranging

Local imaging

Target
tracking,
living tissue
imaging,
medical
imaging

Translational
or rotating
object imaging

Rapid
classification
of flowing
cells,
assembly-line
inspection,
aircraft
classification
in defense
applications

Remote
sensing
imaging,
biomedical
imaging,
Real-time
tracking
imaging

Remote
sensing
imaging,
unmanned
driving

Target
tracking,
remote
sensing
imaging,
medical
diagnosis

6. Challenges and Opportunities

In the past decade or so, with the research on moving target GI, the pace of GI
engineering has been accelerated, and the image quality and efficiency of moving target GI
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have been significantly improved. At present, moving target GI is developing toward large
field of view, long range, high resolution, and real-time. It is expected to be further applied
in real-time image [59], objects classification [50], spatial remote sensing [39,51], unmanned
driving [57], medical image [63], 3D image [59], and target tracking [53,60,63,65].

Although moving target GI has developed rapidly in recent years, the issues of
blurred images and low real-time performance still exist, and how to improve the image
performance of moving target GI is a current research hotspot, which the following three
directions below, may give a breakthrough.

6.1. Stroboscopic Effect Introduced

At this stage, moving target GI is difficult for imaging high-speed objects or objects
with high self-oscillation frequency; a stroboscopic instrument can effectively solve this
problem. Stroboscopy, also known as transient light modulation (TLM) [66], refers to the
light modulation caused by electrical modulation. An LED strobe light source can emit
a specific frequency of light [67], and according to the estimated speed of the object in
adjusting the light source strobe time, it can obtain the target object with the equal interval
time displacement law. When the object moving speed is synchronized with the strobe
source, because visual transient can make the object look relatively stationary, the quality
improvement of the moving target GI can be achieved.

6.2. Modulation Pattern Combination

The key to GI is whether there is a rise and an attenuation of the optical field, and
different modulation patterns have different effects on the rise and fall of the optical field.
Hadamard patterns can improve the signal to noise ratio of the reconstructed image [68]; its
algorithm is fast and the modulation matrix is generated quickly without data storage [69].
Wavelet patterns are better than Hadamard patterns at a low sampling rate [55], and
the algorithm is efficient. The combination of Hadamard patterns and wavelet patterns
are expected to achieve fast and efficient image reconstruction for moving targets at low
sampling rates, improve the signal-to-noise ratio of the reconstructed images, and largely
alleviate the image blurring problem caused by the relative moving between the object and
the image system.

6.3. Reconstruction Algorithm Optimization and Innovation

The practical development of moving target GI requires the system to have real-time
image capability. Neural networks with self-learning ability and self-adaptive capability
can help GI achieve intelligence as early as possible, and GI can be realized at high speed
in the face of moving targets in complex environments, which will greatly promote the
improvement and development of unmanned technology. Combining GI reconstruction
algorithms with more advanced neural network models, such as fast super-resolution
convolutional neural network (FSRCNN) [70], is a useful way. FSRCNN extracts and
reconstructs the features of the target image by a series of convolutional layers and nonlinear
activation functions. It uses a jump connection technique which can reduce information
loss while retaining more image details and can quickly and accurately achieve image
reconstruction of the target object. This method is expected to improve the efficiency of the
image system of the GI system and solve the problem of poor real-time GI of moving targets.

7. Conclusions

GI is a novel imaging technology, which can image the target object in an inaccessible
environment, has characteristics of object image separation, advantages of high sensitivity,
strong anti-interference ability, etc. It has broad application prospects in LiDAR imaging,
remote sensing imaging, hyperspectral imaging, biomedicine, national defense, and mili-
tary fields. GI is developing towards higher resolution, larger working distance, and larger
field of view. Because of its flexible information acquisition and high detection sensitivity,
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it also brings new opportunities for moving object imaging in long distance, large field of
view, and weak echo scenes.

In this paper, we reviewed and summarized the key techniques of moving target
GI, introducing the existing research methods from the perspective of improving image
speed and improving image quality. Among them, improving light source modulation
can provide new solutions for in living microscopy, 3D imaging, and light detection and
ranging. Due to the limitation of the algorithm, selecting the adaptive imaging region only
images a single target in a background with uniform gray distribution. Selecting a suitable
number of samples can play good roles in target tracking, living tissue imaging, medical
imaging, and other fields. Estimating motion inter-frame information is appropriate for
translational or rotating object imaging. Developing new reconstruction algorithms can
be applied in rapid classification of flowing cells, assembly-line inspection, and aircraft
classification in defense applications. The potential applications of tracking a target without
image reconstruction include remote sensing imaging, biomedical imaging, and real-time
tracking imaging. Designing new modulation patterns can be applied in remote sensing
imaging and unmanned driving. Moving compensation for modulation patterns can play
a great role in target tracking, remote sensing imaging, and medical diagnosis. At the
same time, this paper also foresees the application areas and development directions of
moving target GI, thereby providing references for further promoting the instantiation of
GI applications.
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