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Abstract: Distribution network reconfiguration involves altering the topology structure of distribu-
tion networks by adjusting the switch states, which plays an important role in the smart grid since
it can effectively isolate faults, reduce the power loss, and improve the system stability. However,
the fault reconfiguration of the distribution network is often regarded as a single-objective or multi-
objective optimization problem, and its multimodality is often ignored in existing studies. Therefore,
the obtained solutions may be unsuitable or infeasible when the environment changes. To improve
the availability and robustness of the solutions, an improved discrete multimodal multi-objective
particle swarm optimization (IDMMPSO) algorithm is proposed to solve the fault reconfiguration
problem of the distribution network. To demonstrate the performance of the proposed IDMMPSO
algorithm, the IEEE33-bus distribution system is used in the experiment. Moreover, the proposed al-
gorithm is compared with other competitors. Experimental results show that the proposed algorithm
can provide different equivalent solutions for decision-makers in solving the fault reconfiguration
problem of the distribution network.

Keywords: distribution network; fault reconfiguration; smart grid; multimodal multi-objective
discrete optimization; evolutionary computation

1. Introduction

With the rapid development of industry and technology, the complexity of the distri-
bution network is higher due to access to distributed energy sources and other factors [1].
Moreover, the fault rate of the distribution network is increasing [1], which has a direct im-
pact on the safety of the power supply and satisfaction of customers. Additionally, this can
have negative effects on the economic interests of power supply enterprises. An effective
method is to reconfigure the distribution network [2] via adjusting the network’s topology
when faults occur. Generally, the reconfiguration of distribution networks can be classified
into two distinct categories [3]: (1) reconfigure the distribution networks during normal
conditions to enhance economic efficiency; (2) fault reconfiguration. The fault reconfigura-
tion is to change the topology structure of the distribution network by adjusting switch
states when faults occur. The objective [4] of the fault reconfiguration in the distribution
network is to enhance the self-healing capability. Therefore, the fault reconfiguration in the
distribution network is a crucial approach for improving the reliability [5] and optimizing
the distribution of the power flow [6]. In addition, it is a complex and challenging optimiza-
tion problem. However, most existing studies regarded such problems as a single-objective
or multi-objective optimization problem to solve. For example, to effectively solve the
distribution network reconfiguration (DNR) problem, Wang et al. [7] proposed a parallel
slime mold algorithm (PSMA), in which the multi-objective DNR model is transformed

Biomimetics 2023, 8, 431. https://doi.org/10.3390/biomimetics8050431 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8050431
https://doi.org/10.3390/biomimetics8050431
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0009-0005-6819-669X
https://orcid.org/0000-0002-8603-5161
https://doi.org/10.3390/biomimetics8050431
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8050431?type=check_update&version=2


Biomimetics 2023, 8, 431 2 of 13

into a single objective problem via the analytic hierarchy process (AHP) method. The
experimental results demonstrate that the PSMA is an effective approach to address DNR
problems. Badran et al. [8] proposed a simultaneous optimization approach to effectively
address the network reconfiguration problem. The experimental results demonstrate that
the proposed approach performs well in realizing optimal network configuration and
distributed generation output. Yang et al. [9] developed a fault recovery reconstruction
model for the distribution network, whose objective is to minimize the network loss. Then,
a differential evolution algorithm with enhanced coding and mutation strategies is pro-
posed to solve the above proposed problem. The effectiveness of the proposed method
is validated through the IEEE33-bus distribution system. Mahdavi et al. [10] proposed a
reconfiguration model with the objective of mitigating the power loss of the distribution
network. Moreover, an innovative computational technique is proposed to improve power
efficiency and voltage characteristics. Additionally, the proposed technique is combined
with the whale optimization algorithm to solve the model. The experimental results demon-
strate that the proposed approach is effective in solving the reconfiguration problems of
the distribution network. Different from the above studies, Eldurssi et al. [11] proposed
an improved fast nondominated sorting genetic algorithm to solve the reconfiguration
problem of the distribution system. Moreover, a novel mutation operator and a verifica-
tion method of the system radiality are presented. The experimental results demonstrate
that the proposed approach is competitive. Zhong et al. [12] proposed a multi-objective
reconfiguration problem of the distribution network. Then, an improved multi-objective
Bayesian learning-based evolutionary algorithm is utilized to solve the proposed problem.
The experimental results demonstrate that the proposed algorithm can efficiently converge
using a small population. Nguyen et al. [13] proposed a runner root algorithm (RRA) to
address the DNR problem. In the RRA, random jumps and re-initialization strategies are
incorporated to prevent trapping into local optima. The experimental results show that the
RRA has an excellent performance in solving the DNR problem. Li et al. [14] proposed an
integrated optimization method for addressing the dynamic reconstruction of an active dis-
tribution network (ADN). Moreover, a multi-objective sparrow search algorithm (MOSSA)
is proposed to solve the above problem. The experimental results demonstrate that the
MOSSA can enhance the stability of the ADN. To enhance the operational efficiency of
the distribution network, Qi et al. [15] proposed a multi-objective optimization problem
to reduce the power loss, balance the load, and improve the voltage profile. Moreover,
an innovative optimization approach, in which a local search method is combined with
a multi-objective particle swarm optimization algorithm, is introduced to achieve the
above objectives. The experimental results indicate that the proposed method is effec-
tive. Evidently, the reconfiguration problem in the distribution network is considered as a
single-objective or multi-objective optimization problem in the above-mentioned studies;
thus, its multimodality is neglected. Therefore, the obtained solutions may be infeasible or
unsuitable when the environment changes.

In the real world, many multi-objective optimization problems (MOPs) have equivalent
solutions, which are called multi-modal MOPs (MMOPs). To effectively solve MMOPs,
Fan et al. [16] proposed a zoning search (ZS) method to reduce the search difficulty to find
more equivalent solutions. Subsequently, Fan et al. [17] proposed the ZS with adaptive
resource allocating (ZS-ARA) method to enhance the search efficiency of the ZS method.
To find more equivalent solutions for multi-robot task allocation (MRTA) problems, Miao
et al. [18] proposed an improved multimodal multi-objective differential evolutionary
algorithm hybrid with a simulated annealing algorithm. Clearly, MMOPs can be found
in different fields. For the fault reconfiguration of the distribution network, there may be
multiple equivalent schemes corresponding to the same objective in some cases. Therefore,
finding these equivalent schemes is an important and challenging task to enhance the
reliability and safety of the distribution network. To carry out the above objectives, an
improved discrete multimodal multi-objective particle swarm optimization (IDMMPSO)
algorithm is proposed in the current study. In the IDMMPSO algorithm, a novel decision
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space crowding distance calculation method based on the Hamming distance is utilized to
compute the distances among individuals. Moreover, an enhanced environment selection
method is used to improve the population diversity in the decision space. To demonstrate
the performance of the proposed algorithm, three famous multi-objective evolutionary
algorithms (i.e., NSGA-II [19], SPEA2 [20], and MOPSO [21]) are selected in experiments.
Additionally, the IEEE33-bus distribution system [22] is utilized to test the performances of
all competitors.

The main contributions of this paper are follows:

(1) Different from previous studies, the current study considers not only the multi-
objective in the fault reconfiguration of the distribution network but also its mul-
timodality. Therefore, more equivalent schemes can be provided in the proposed
algorithm, which can help decision-makers address the fault reconfiguration problem
of distribution networks in uncertain/dynamic environments.

(2) Although various multimodal multi-objective evolutionary algorithms have been
proposed in existing studies, most of them are not applicable to solve discrete opti-
mization problems. To alleviate this issue, an improved multimodal multi-objective
particle swarm algorithm is proposed in the current study. In the proposed algorithm,
the Hamming distance is employed to evaluate the similarity of discrete vectors in
the decision space.

2. Fault Reconfiguration Model of Distribution Network

The fault reconfiguration in the distribution network is a complex and large-scale
nonlinear programming problem. Moreover, to reduce the power loss and the voltage
deviation, a novel fault reconfiguration problem of the distribution network is proposed in
the present study. More details are given as follows.

2.1. Objective Function

Based on Refs. [22–25], power loss and voltage deviation are commonly used as
objective functions in the reconfiguration of the distribution network. These two objectives
can help to reduce the system losses and maintain the network stability. Therefore, the
power loss and the voltage deviation are two objective functions in the present study.

2.1.1. Power Loss

The formula of the power loss can be described as follows:

f1 = min
M

∑
ij=1

kijRij
P2

ij + Q2
ij

U2
j

, (1)

where M represents the number of branches; kij denotes the switching state of branch ij;
Rij refers to the impedance of branch ij; Pij and Qij represent the active and reactive power
flowing through branch ij, respectively; and Uij is the terminal voltage of branch ij and is
the actual voltage of node j.

2.1.2. Voltage Deviation

The formula of the voltage deviation can be expressed as follows:

f2 = min
N

∑
j=1

∣∣Uj −Uj,a
∣∣

Uj,a
, (2)

where N refers to the number of nodes; Uj is the actual voltage of node j; and Uj,a is the
rated voltage of node j.
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2.2. Constraints
2.2.1. Power Balance Constraint

Mathematically, the power balance constraint can be defined as follows:
Pi −Ui ∑

j∈i
Uj
(
Gij cos θij + Bij sin θij

)
= 0

Qi −Ui ∑
j∈i

Uj
(
Gij sin θij + Bij cos θij

)
= 0

, (3)

where Pi and Qi are the active and reactive power injected into node i, respectively; Gij,
Bij, and θij are the conductance, electrical susceptance, and phase angle difference between
node i and node j, respectively.

2.2.2. Node Voltage Constraint

The limitation of the node voltage can be described as follows:

Umin
i ≤ Ui ≤ Umax

i , (4)

where Umin
i and Umax

i are the lower and upper voltage limits at node i, respectively.

2.2.3. Branch Current Constraint

The branch current constraint can be expressed as follows:

Iij ≤ Imax
ij , (5)

where Iij is the actual current of branch ij and Imax
ij is the upper limit of Iij.

2.2.4. Topology Constraint

The radial topology of the distribution network can be described as follows:

hk ∈ Hk, (6)

where hk is the reconfigured network topology, and Hk is the network topology that
conforms to the operation rules of the distribution network.

3. The Proposed Algorithm

Because the fault reconfiguration problem of the distribution network is a discrete
multimodal multi-objective optimization problem (DMMOP), a novel discrete multimodal
multi-objective particle swarm optimization algorithm is proposed in the current study. In
the proposed algorithm, the binary PSO [26] is used as the search engine. Moreover, the
ring topology strategy [27] is utilized to maintain the population diversity. Additionally, an
improved crowding distance calculation method, which is well suited for discrete space, is
proposed to assess the crowding degree between individuals.

3.1. Encoding Method

Because the topology structure of the distribution network can be changed by clos-
ing or opening switches, switches are used as optimization variables. Clearly, the fault
reconfiguration of the distribution network is a discrete optimization problem, in which the
variables are the states of switches. Therefore, in the proposed algorithm, “0” represents an
open switch state, while “1” represents a closed switch state.

3.2. Crowding Distance in the Decision Space Based on Hamming Distance

Since the fault reconfiguration of the distribution network is a discrete optimization
problem, it is difficult to measure the crowding degree of individuals in the decision
space. To solve the above issue, the Hamming distance method [28] is utilized to measure
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the similarity of two discrete vectors in the decision space. For each individual in the
population, its decision space crowding distance is calculated as follows:

Step 1: Randomly select an individual xj from the population and then calculate
the distances between xj and remaining individuals in this population via the Hamming
distance method.

Step 2: Designate xj as the first individual and sort the remaining individuals in this
population according to their Hamming distances via Step 1. If there are individuals with
the same distance, they will be randomly sorted from front to back.

Step 3: Set the decision space crowding distance of the first individual xj to 0, denoted as
CDj,x (CD1,x); and the decision space crowding distance of the last individual to 1, denoted as
CDn,x. The crowding distance of the remaining individuals is calculated as follows:

CDk,x =


0 , if k= 1
(xk−1⊕xk)+(xk⊕xk+1)

HMmax
, if 1 < k < n

1 , if k = n
, (7)

where CDk,x is the decision space crowding distance of individual xk; xk−1 ⊕ xk refers to
the Hamming distance between xk−1 and xk; HMmax refers to the maximum Hamming
distance in Step 1; and n is the size of this population.

3.3. Environment Selection Method

The distribution network system needs to comply with a radial topology [22]; thus,
the graph theory [29] and a branch-exchange method [22] are employed to describe its
structure and handle the topology constraint, respectively. Moreover, the conventional
power flow calculation method [30] is utilized to calculate the voltage and current values
for each node in the distribution network system. Furthermore, the obtained results may
be infeasible. To solve this issue, the penalty method [31] is used in the proposed algorithm.
In other words, if the constraints are violated, a large penalty will be given.

Besides the above issues, one of the challenges in the multimodal multi-objective op-
timization is to preserve individuals with a small objective space crowding distance but
a large decision space crowding distance during the environment selection [32]. Different
from general MOPs, MMOPs aim to find more equivalent solutions in the decision space.
Based on Ref. [33], the non-dominated_scd_sort method is utilized to balance the population
diversity of the objective space and decision space in the current study. Note that the original
non-dominated_scd_sort method is not applicable to solve discrete optimization problems.
Therefore, according to Section 3.2, the Hamming distance is utilized to calculate the crowding
distance in the non-dominated_scd_sort method, which is named as the INSCD.

3.4. Overall Implementation of IDMMPSO Algorithm

To effectively solve the fault reconfiguration problem of the distribution network, the
IDMMPSO algorithm is proposed in the current study. It should be noted that some oper-
ators in the IDMMPSO algorithm are similar as those in the MO_Ring_PSO_SCD [33],
such as the search engine (i.e., PSO) and environmental selection method (i.e., non-
dominated_scd_sort method). The velocity and position of the binary particle are updated
as follows:

vt+1
i,d = ω · vt

i,d + c1r1(pbestt
i,d − xt

i,d) + c2r2(nbestt
i,d − xt

i,d), (8)

xt+1
i,d =

{
1 , i f rand < logsig(vt+1

i,d )

0 , i f rand ≥ logsig(vt+1
i,d )

, (9)

where vt
i,d and xt

i,d denote the velocity and position of the d-th dimension of the i-th particle
at the t-th generation, respectively; ω is the inertia factor; c1 and c2 are the learning factors;
r1 and r2 are two random values independently in the interval [0, 1]; pbest and nbest are
the positions of historical and neighborhood optimal particle, respectively; logsig is a



Biomimetics 2023, 8, 431 6 of 13

commonly used activation function that maps input values to outputs between 0 and 1.
The pseudocode of the IDMMPSO is shown in Algorithm 1.

An initial population is generated in line 1, and the historical optimal archive HOA
and the neighbor optimal archive NOA are initialized in line 2. HOA{i} is used to store the
historical optimal positions of the i-th individual, while NOA{i} is employed to save the
optimal positions within the neighbors of the i-th individual. Line 4 is used to judge the
termination condition of the IDMMPSO algorithm. Line 6 is to sort all particles in HOA
and NOA via the INSCD method. In line 7, pbesti and nbesti are selected from HOA{i} and
NOA{i}, respectively. Line 8 updates Pi(t) to Pi(t + 1) via Equations (8) and (9). Subse-
quently, the environmental selection method (see Section 3.3) is used to select individuals.
Specifically, the conventional power flow calculation method [30] is utilized to calculate
the voltage and current values for each node of Pi(t + 1) in line 9. Moreover, the penalty
method [31] is utilized to handle the infeasible individual in lines 10–12. Line 13 is to save
Pi(t + 1) in HOA{i}. The INSCD method is utilized to update the HOA {i} in line 14. In lines
16–18, select non-dominated individuals from HOA {i − 1}, HOA {i}, and HOA {i + 1} then
store them in NOA{i} (i.e., the ring topology strategy). Finally, output all non-dominated
individuals in NOA, i.e., the states of switches in the distribution network.

Algorithm 1: Framework of IDMMPSO.

Input: the size of population: NP; the dimension of particle: D; maximum number of iterations: T;

1: Initialize the population P(0);
2: Initialize the historical optimal archive HOA and neighbor optimal archive NOA;
3: t = 1;
4: while t < T do
5: for i = 1: NP do
6: Sort all particles in HOA and NOA via the INSCD method;
7: pbesti and nbesti are selected from the first particle in HOA{i} and NOA{i},

respectively;
8: Update Pi(t) to Pi(t + 1) via Equations (8) and (9);
9: The voltage and current values for each node of Pi(t + 1) are calculated by the

power flow calculation method;
10: if Pi(t + 1) violates constraints then
11: Give Pi(t + 1) a large penalty via the penalty method;
12: end
13: Save Pi(t + 1) in HOA{i};
14: Update HOA{i} via the INSCD method;
15: end for
16: for i = 1: NP do
17: Select non-dominated individuals from HOA{i − 1}, HOA{i}, and HOA{i + 1}

and save them in NOA{i};
18: end for
19: t = t + 1;
20: end while

Output: All the non-dominated individuals in NOA.

4. Experimental Comparisons and Analysis

The performance of the IDMMPSO algorithm is compared with other state-of-the-art
multi-objective algorithms on the IEEE 33-bus distribution system [22]. Five performance
metrics are utilized to assess the performance of all competitors, which are the hypervolume
metric (HV) [34], the binary coverage metric (C) [35], the spacing metric (SP) [36], the
inverted generational distance based on the synthetic optimal Pareto front (IGD-CF) [37],
and an improved PSP-D metric based on the Pareto set proximity (PSP) [33] and Hamming
distance [28]. Similar to the HV, a larger C value and PSP-D value means the performance
of the algorithm is better. Conversely, a smaller SP value and IGD-CF value denote that the
performance of the algorithm is superior.
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4.1. Parameter Settings

In order to verify the effectiveness and superiority of the IDMMPSO algorithm, the
IEEE 33-bus distribution system [22] shown in Figure 1 is used in the experiments, which
contains 33 nodes, 32 section switches, and 5 interconnection switches. Moreover, the
IDMMPSO algorithm and the other three algorithms are implemented with MATLAB
2021a. The base voltage of the IEEE 33-bus distribution system is 12.66 kV. The initial state
of the distribution network before a fault occurs is shown in Figure 2. It can be observed
from Figure 2 that the switches 33, 34, 35, 36, and 37 are opened, and the remaining switches
are closed. Moreover, the initial power loss and voltage deviation are 191 kW and 0 p.u.,
respectively. More details can be found in [22]. The parameters of the search engine PSO are
the same as the original Ref. [26]. For all the compared algorithms, the maximum numbers
of function evaluations and population size are set to 10,000 and 100, respectively.
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4.2. Comparison with Other Competitors

To verify the superiority of the IDMMPSO algorithm, it is assumed that branch
9 faults occur. The performance of the IDMMPSO algorithm is compared with that of three
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other competitive discrete multi-objective optimization algorithms, namely the NSGA-
II [19], the MOPSO [21], and the SPEA2 [20]. The experiment is conducted with each
algorithm running 21 times, and the best results are highlighted in bold. The Wilcoxon
non-parametric test [38] is utilized to analyze the experimental data. The symbols “+”, “−“,
and “≈” indicate whether the IDMMPSO algorithm outperformed, underperformed, or
was comparable with the compared algorithms.

Table 1 presents the average and standard deviation values of five performance metrics
obtained by four comparison algorithms. From Table 1, it is observable that the IDMMPSO
algorithm outperforms the NSGA-II, MOPSO, and SPEA2 in terms of IGD-CF, HV, C,
and SP. This means that the IDMMPSO algorithm can find a high-quality Pareto front
approximation in the objective space in solving the fault reconfiguration problem of the dis-
tribution network. Moreover, it can be observed that the IDMMPSO algorithm outperforms
the NSGA-II, MOPSO, and SPEA2 in terms of PSP-D. This indicates that the IDMMPSO
algorithm can obtain more high-quality equivalent solutions in the decision space. The
main reason may be that the used search engine and the proposed environmental selec-
tion method can help the proposed IDMMPSO algorithm to find high-quality solutions
and maintain the population diversity. Therefore, it can be concluded that the proposed
IDMMPSO algorithm is a competitive method to solve the fault reconfiguration problem
of the distribution network and can help decision-makers address various complex or
uncertain scenarios.

Table 1. Results of all comparison algorithms in terms of IGD-CF, HV, C, SP, and PSP-D.

Metrics NSGA-II MOPSO SPEA2 IDMMPSO

IGD-CF 7.11 × 10−3 (1.56 × 10−3) + 5.33 × 10−3 (9.73 × 10−4) + 8.92 × 10−3 (1.65 × 10−3) + 3.98 × 10−3 (8.22 × 10−4)
HV 6.01 × 10 0 (7.21 × 10−2) + 6.04 × 10 0 (4.82 × 10−2) + 6.02 × 10 0 (7.34 × 10−2) + 6.06 × 10 0 (2.75 × 10−2)
C 9.38 × 10−1 (5.98 × 10−2) + 9.71 × 10−1 (5.03 × 10−2) + 9.54 × 10−1 (5.74 × 10−2) + 9.84 × 10−1 (3.09 × 10−2)
SP 2.28 × 10−2 (3.82 × 10−3) + 1.95 × 10−2 (2.58 × 10−3) + 2.12 × 10−2 (3.57 × 10−3) + 1.77 × 10−2 (3.38 × 10−3)

PSP-D 5.99 × 10 2 (5.20 × 10 1) + 7.52 × 10 2 (4.89 × 10 1) + 8.13 × 10 2 (5.00 × 10 1) + 1.14 × 10 3 (1.37 × 10 2)

+ 5 5 5
− 0 0 0
≈ 0 0 0

4.3. Multimodality of Solutions

As stated above, finding equivalent schemes is important in solving the fault re-
configuration problem of the distribution network. Therefore, the performance of the ID-
MMPSO algorithm is further demonstrated using the IEEE 33-bus distribution system in the
current experiment.

Two typical equivalent solutions are shown in Table 2. It can be observed from Table 2
that, for the “equivalent solution 1”, their objective function values (i.e., the power loss and
the voltage deviation) in the objective space are similar while the Pareto optimal solutions
in the decision space are different. Three equivalent schemes are illustrated in Figure 3. It
can be observed from Figure 3 that, if the switch “6” in the scheme “6–9–32–34–37” cannot
be used, then two equivalent schemes “7–9–14–25–31” and “7–8–9–32–37” can achieve the
same objective. Furthermore, the node voltage values before and after reconfiguration of
the three schemes are shown in Figure 4. Because nodes 9 to 17 are de-energized due to the
fault in branch 9, the voltage values of these nodes are equal to 0 before reconfiguration.
However, Figure 4 shows that all de-energized nodes are restored, the minimum node
voltage has increased, and voltage quality of the power supply has improved after the
distribution network is reconfigured in all three schemes. Clearly, the proposed algorithm is
capable of adapting dynamic/uncertain environments. For the “equivalent solution 2”, we
can achieve the same conclusion to the “equivalent solution 1”, i.e., the obtained equivalent
solutions can assist decision-makers in addressing unexpected faults, thus completing the
fault reconfiguration of the distribution network without adjusting the objectives. The
equivalent schemes of the “equivalent solution 2” are illustrated in Figure 5. Additionally,
the node voltage values of these schemes before and after reconfiguration are illustrated in
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Figure 6. It can be observed that all de-energized nodes are restored and the node voltages
of the 33 nodes in the four schemes are within the range of [0.9, 1.1] p.u. [22,39]. Therefore,
the above four schemes are feasible after reconfiguring the distribution network.

Table 2. The equivalent solutions obtained by the proposed algorithm.

Solutions Power
Loss/100 kW

Voltage
Deviation/p.u.

Equivalent
solution 1

6 9 32 34 37 1.36 1.72
7 9 14 25 31 1.37 1.71
7 8 9 32 37 1.38 1.71

Equivalent
solution 2

3 9 15 21 28 1.91 1.07
3 9 16 21 27 1.91 1.08
3 9 27 35 36 1.89 1.08
3 9 16 21 28 1.92 1.06
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Based on the above analyses, we can conclude that the proposed algorithm can provide
equivalent schemes to help decision-makers to address the fault reconfiguration problem
of the distribution network in complex or uncertain environments. This can significantly
enhance the safety and reliable of the distribution network.
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4.4. Computational Time Analysis

The execution time and performance of an algorithm are two crucial performance
indicators for solving actual problems. Therefore, the execution time and the obtained
solutions of all compared algorithms are further investigated in this section. The parameter
settings are the same as those in Section 4.1. The experiment is conducted with each
algorithm running 21 times.

For all competitors, the average execution time and the number of obtained solutions
are presented in Table 3. It can be observed from Table 3 that the computational time of
the proposed algorithm is shorter than that of the MOPSO and SPEA2. Moreover, the
IDMMPSO algorithm can obtain more solutions when compared with the MOPSO and
SPEA2. Table 3 also indicates that, although the run time of the NSGA-II is shorter than that
of the proposed algorithm, the NSGA-II cannot find more solutions when compared with
the IDMMPSO algorithm. Additionally, the computational time of the proposed algorithm
is acceptable. Therefore, the IDMMPSO algorithm is an effective and available tool for
solving the fault reconfiguration problem in the distribution network.

Table 3. The average execution time and the number of solutions of all algorithms.

NSGA-II MOPSO SPEA2 IDMMPSO

The execution time (s) 35.27 64.32 63.91 59.84
The number of solutions 36 39 40 51

5. Conclusions

The fault reconfiguration of the distribution network is vital for enhancing the effi-
ciency and reliability of the smart grid. In this paper, an improved discrete multimodal
multi-objective particle swarm optimization (IDMMPSO) algorithm is proposed to solve the
fault reconfiguration problem of the distribution network. In the IDMMPSO algorithm, an
improved environment selection method is proposed to solve DMMOPs. To demonstrate
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the effectiveness of the IDMMPSO algorithm, it is compared with MOPSO, NSGA2 and
SPEA2 algorithms on the IEEE33-bus distribution system. The results demonstrate that the
IDMMPSO algorithm is a competitive tool to solve the fault reconfiguration problem of
the distribution network. Moreover, the IDMMPSO algorithm can obtain more equivalent
solutions for decision-makers to deal with emergencies and changing environments.
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