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Abstract: In this study, we introduce an innovative hybrid artificial neural network model incorporat-
ing astrocyte-driven short-term memory. The model combines a convolutional neural network with
dynamic models of short-term synaptic plasticity and astrocytic modulation of synaptic transmission.
The model’s performance was evaluated using simulated data from visual change detection experi-
ments conducted on mice. Comparisons were made between the proposed model, a recurrent neural
network simulating short-term memory based on sustained neural activity, and a feedforward neural
network with short-term synaptic depression (STPNet) trained to achieve the same performance level
as the mice. The results revealed that incorporating astrocytic modulation of synaptic transmission
enhanced the model’s performance.

Keywords: short-term memory; convolutional neural network; machine learning; neuron–glial
interaction

1. Introduction

Short-term memory, also referred to as working memory, is a fundamental cogni-
tive process crucial for temporary storage and manipulation of information. It plays an
important role in attention, learning, problem-solving, and decision-making. The multi-
component model proposed by Baddeley and Hitch [1] suggested that short-term memory
consists of the phonological loop, visuospatial sketchpad, and central executive. Empir-
ical studies, such as Miller’s research [2], supported the concept of limited capacity in
short-term memory, which can be understood in terms of “working memory chunks” [3].
Neuroimaging studies employing fMRI identified brain regions such as the dorsolateral
prefrontal cortex, parietal cortex, and posterior regions involved in short-term memory [4].
Various factors such as interference, time, and individual differences can influence short-
term memory performance [5–7].

Recent experimental and computational research indicated that persistent neural ac-
tivity, facilitated by local recurrent connections or cortical–subcortical loops, was capable of
storing information [8–10]. Sustained and sequential persistent activity has been observed
in various tasks and brain regions, including the prefrontal cortex (PFC) [11]. Another
mechanism for maintaining short-term memories involves short-term synaptic facilitation,
utilizing residual calcium as a memory buffer [12,13]. However, recent experiments indi-
cated that excitatory synapses in early sensory areas, such as the mouse primary visual
cortex, primarily undergo synaptic depression [14]. This synaptic depression influenced
visual processing by providing temporal context to distinguish between familiar and
novel stimuli [14]. Additionally, adaptation at the synaptic level and intrinsic firing rate
adaptation [15,16] may play a significant role in brain functioning.
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Visual change detection tasks were extensively employed in cognitive psychology
and neuroscience to investigate short-term memory for visual information. In these tasks,
participants were presented with a set of visual stimuli that briefly disappear, and one or
more stimuli undergo changes. Participants must detect and identify the item(s) changed.
This paradigm was utilized in numerous studies exploring various aspects of short-term
memory, including capacity, encoding processes, and the effects of attention. For example,
Luck and Vogel [17] found that participants could reliably remember and detect changes
in approximately three to four objects in a display. Hollingworth and Henderson [18]
demonstrated a crucial role of attention in maintaining and updating visual information
in short-term memory. Neuroimaging studies utilized visual change detection tasks to
investigate the neural mechanisms underlying short-term memory, with Vogel et al. [19]
using electroencephalography (EEG) to examine the neural correlates of visual change
detection. Visual change detection tasks have provided valuable insights into the capacity,
attentional processes, and neural mechanisms involved in visual short-term memory.

Astrocytes, traditionally considered as supportive cells in the brain, have emerged as
active participants in various brain functions, including memory processes. Recent research
suggested that astrocytes play a role in modulating short-term memory [20]. Various
studies demonstrated their involvement in regulating synaptic transmission [21], promoting
metabolic interactions for long-term memory formation [22], and organizing inhibitory
circuits in the cerebellum [23]. These findings indicated that astrocytes exert influence on
short-term memory processes participating in the complex dynamics of memory formation
and maintenance.

Convolutional neural networks (CNNs) are a type of deep learning architecture specif-
ically designed for processing grid-like data, such as images and videos. CNNs are inspired
by the visual processing mechanism of the human brain and are particularly effective in
tasks such as image recognition, object detection, and image segmentation [24]. The appli-
cations of CNN are extremely wide and include medical data analysis [25,26], autonomous
vehicles [27], natural language processing [28], image style transfer [29], computational
chemistry [30], and environmental monitoring control systems [31]. There is no direct
relationship between CNNs and short-term memory (STM) in the cognitive sense. CNNs
do not have memory components that function as human STM. However, recurrent neural
networks (RNNs) [24] are a different type of neural network architecture that is often used
for tasks involving sequential data and can exhibit memory-like behavior. Unlike CNNs,
RNNs have internal memory cells that can store and process information across time steps,
which makes them suitable for tasks where the order and context of data matter, such
as natural language processing. Adding memory-like behavior to CNNs can expand the
possibilities of their applications.

This study proposes a novel hybrid model of short-term memory that incorporates
short-term synaptic plasticity, astrocytic modulation of synaptic transmission, and a convo-
lutional neural network. When compared to the recurrent neural network, the proposed
model demonstrates better efficiency in the implementation of short-term memory.

The structure of the paper is as follows. Section 2 outlines the mathematical model and
methodology employed in this investigation. In Section 3, we present the primary findings
from our examination of the model, both with and without the influence of astrocytic
modulation on neuronal activity. We also compare our model to a recurrent neural network
and experimental data, demonstrating that incorporating astrocytic modulation yields
better alignment with the experimental results. Section 4 engages in a discussion of the
obtained results and proposes potential avenues for further research. Finally, Section 5
provides a concise summary of the study’s outcomes.

2. Materials and Methods

We used experimental data obtained from mice during the visual change detection
task using natural “Go”/“Catch” images, as described in the study by Hu et al. [32]. In
that paper, the mice underwent a multi-step learning process, progressing from static
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bars to flashing bars, and eventually to natural images [33]. Spherically deformed stimuli
were employed to account for variations in the distance from the eye to the monitor
periphery (undistorted stimuli were used for simplicity in visualization). A set of eight
contrast-normalized natural images, all with the same average brightness, was presented
in grayscale (Figure 1). All figures were taken from the CIFAR-10 dataset.

Figure 1. Sample of 8 images used for training.

During the training phase, the mice were trained to drink water whenever a change
occurred in the presented picture sequence. Each image was shown for 250 ms, followed
by a 500 ms inter-stimulus interval with a medium gray brightness (see Figure 2). A small
percentage (5%) of image presentations were randomly omitted, ensuring that these omis-
sions never happened before an actual change in the image (referred to as “Go” trials) or a
fictitious change in the image (referred to as “Catch” trials). Importantly, these omissions
were only present during visualization sessions and not during the actual training sessions.
Correct responses were rewarded with water, while premature licking triggered a “time-
out” period during which the probe logic timer was reset. In “Go” trials, the images were
switched, and the mice had to indicate the change to receive a water reward. Conversely,
“Catch” trials involved unchanged images and were used to measure false alarms.

Figure 2. Scheme of image recognition task.

2.1. Dynamic Synapse Model

In this study, we employed an approach described in several references [34–36] to
investigate the dynamics of astrocytes, which are a type of glial cell. In this context, the
activation of excitatory neurons triggers the release of neurotransmitters, represented by the
variable x(t), with the probability of neurotransmitter release denoted as u. Subsequently,
when the neurotransmitter binds to receptors on the astrocyte membrane, a series of
biochemical reactions occur, leading to the release of gliotransmitters. The dynamics of
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gliotransmitters are captured by the variable y(t). As a result, the proposed model can be
formulated as a system of ordinary differential equations (ODEs).

dx
dt

=
1− x

τD
− uxτ(ti),

dy
dt

=
−y
τy

+ βHy(x),
(1)

Hy(x) =
1

1 + e−20(x−xthr)
(2)

u(y) = u0 +
∆u0

1 + e−50(y−ythr)
(3)

In Equation (1), the variable τD represents the time constant governing synaptic
depression. The term τ(t) signifies the presynaptic activity at time ti, and τy corresponds
to the relaxation time of the gliotransmitter. The activation function Hy(x) is determined
by Equation (2), and xthr denotes the activation threshold.

As a dynamic synapse model (Equation (1)), we employ a mean-field model based
on the Wilson–Cowan formalism [37] (which does not consider spiking dynamics but
focuses on averaged neuronal activity) along with the Tsodyks–Markram model [38]. In
this context, presynaptic activity, τ(t), essentially reflects the average neuronal activity,
which, within our framework, can be described as follows:

τ(ti) = n× outL
i. (4)

In Equation (4), the variables are interpreted as follows: τ(t) represents a vector denot-
ing presynaptic activity at distinct time points ti. Each element of the vector corresponds to
a specific time point. The variable n signifies the total number of experiments conducted.
outL

i refers to the activation function of the i-th element within the FC-64 layer of the
convolutional neural network (depicted in Figure 3). Equation (4) describes how τ(t)
changes over time, influenced by the number of experiments conducted (n) and the output
from the FC-64 layer of the CNN (outL).

Figure 3. Model STPNet includes only short-term synaptic adaptation, whereas STPANet also
contains astrocytic regulation in modulating synaptic dynamics. RNN refers to a recurrent neural
network. The convolutional layers are denoted as “conv<receptive field size>-<number of channels>”.
The term “maxpool” indicates the use of max pooling with a 2 × 2 window and a stride of 2. “FC”
represents fully connected layers with a specified number of units, while “RC” signifies recurrent
layers with a specified number of units.

The activity of astrocytes leads to the release of gliotransmitter, which, upon bind-
ing to the membrane receptors of the presynaptic neuron, modulates the probability of
neurotransmitter release according to Equation (3). In this context, u(y) represents the
influence of astrocytes on the likelihood of glutamate release from the presynaptic neuron.
Additionally, u0 denotes the probability of neurotransmitter release in the absence of glial
interaction, ∆u0 signifies the change in release probability influenced by astrocytes, and
ythr represents the activation threshold.

We adopted the standard parameters from the Tsodyks–Markram model [38] , which
are widely used to characterize neural activity. For the neurotransmitter and gliotransmitter
parameters, we followed the tripartite synapse model proposed in previous studies [36,39].
Specifically, we set τD to 6. The values for the neurotransmitter and gliotransmitter pa-



Biomimetics 2023, 8, 422 5 of 16

rameters were the following: u0 = 0.23, ∆u0 = 0.305, τy = 1.8, β = 0.4375, xthr = 0.5, and
ythr = 0.573.

2.2. Connection of the Dynamic Synapse Model with an Artificial Neural Network

Differential Equations (1)–(3) are used in this model, including astrocytic regulation, to
describe the dynamics of chemical concentrations and their interactions in a neural network.
In this model, diffuse equations describe the distribution of neuromodulators that act as
mediators between neurons and astrocytes.

As can be seen in Figure 4a, the STPANet model consists of two submodels: a CNN
and a dynamic synapse model. The output layer with CNN Equation (14) with stored
weights plays the role of presynaptic activity τ(t) Equation (1). Further, according to
Algorithm 1, we train a dynamic synapse model, which consists of three layers: an input
layer with 64 neurons, a hidden layer with 16 neurons, and an output neuron. The model
weights were trained using backpropagation. Equations (1)–(3) are used in the conversion
step between layers of 64 neurons and 16 neurons. We emphasize that this plasticity is
presynaptic, but it can interact with the weight updates from backpropagation during
neural network training.

Algorithm 1 Learning algorithm for dynamic synapse model

Input: matrix of preprocessed input objects, initial distribution of weights, neuron
parameters, plasticity parameters, vector of classes.
Parameter: N_epochs, Adam optimizer, BSE loss function, threshold, patience.
Output: distribution of weights of the neural network, spike times of the output.

1. Initialize a stimulus generator and define the input dimension of the feature vector.
2. Create a neural network model based on the dynamic synapse model.
3. Define the loss function and optimizer.
4. Initialize tracking variables for loss and d-prime.
5. for in N_epochs do
6. Generate train batch.
7. Execute a forward pass within the model.
8. Compute the loss function by comparing the predicted values with the target.
9. Perform backpropagation.
10. end for
11. Append the loss and d-prime values to the corresponding lists for tracking.
12. if d− prime < threshold
13. Reset the wait_count.
14. else
15. Increase the wait_count.
16. if wait_count ≥ patience
17. Break the training loop
18. end if
19. end if
20. Finish the algorithm execution.

By incorporating differential equations, the STPANet model captures the temporal
dynamics and spatial distribution of chemical substances, enabling a more comprehensive
understanding of how neuromodulators propagate and affect neural activity.

In summary, the inclusion of differential equations, along with astrocytic regulation, in
the STPANet model provides a more comprehensive framework for studying the dynamics
of chemical interactions within neural networks. These equations enable the modeling of
neuromodulator diffusion, synaptic plasticity, and the impact of astrocytes, contributing to
a deeper understanding of the complex mechanisms underlying neural network behavior
and plasticity.
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(a) (b)

(c)

Figure 4. Block diagram of the work carried out. (a) STPANet, (b) STPNet, (c) RNN.

2.3. Numerical Simulation Method

Numerical integration was performed using the Euler method. The implementation
of numerical methods and data analysis utilized the Python [40] programming language,
along with the PyTorch library [41] for model simulation, NumPy [42] for arrays, and the
Matplotlib library [43] for data visualization and analysis. As a discretization step, a value
was obtained, which is derived from this equation:

t =
length

time_step
(5)

where length is the duration of each experiment in milliseconds = 50,000 ms and time_step
is simulation time step, which is numerically equal to the time one image is shown = 250 ms.
Therefore, we compare models in the range of 200 conventional units, where 1 conventional
unit corresponds to the sampling step, i.e., the time of displaying one image.

2.4. D-Prime Metric

To evaluate the efficacy of our model compared to a neural network architecture that
incorporates only short-term synaptic depression and a recurrent network, we utilized the
d-prime metric (detectability index). A higher value of this index indicates better signal
recognition. This metric, originally introduced in the study by Hu et al. [32], was employed
to assess the capacity to retain and recall a sequence of images.
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The d-prime index is calculated using the following formula:

d =
(µ(hit_rate)− µ( f alse_rate))

σ
(6)

where σ is the standard deviation and µ(hit_rate) and µ( f alse_rate) are “Go” and “Catch”
trial distributions, respectively.

Distributions of “Go” and “Catch” are obtained in several stages:

1. A sigmoid activation function is fed to the output layer from the model so that the
output takes values strictly from 0 to 1:

S(ω) =
1

1 + e−ω
(7)

where ω is an array of the “Go” values or “Catch” values.
2. After applying the activation function, draw binary random numbers (0 or 1) from a

Bernoulli distribution. The i-th element of the prediction will draw a value according
to the i-th probability value given in output:

predictioni ∼ Bernoulli(p = outputi) (8)

3. Introduce the notation for “Go” and “Catch” experiments:
“Go”: labels ≡ 1
“Catch”: labels ≡ −1
After that, we can evaluate µ(hit_rate) and µ( f alse_rate):

µ(hit_rate) = ∑(prediction× (labels ≡ 1))
∑(labels ≡ 1)

(9)

µ( f alse_rate) = ∑(prediction× (labels ≡ −1))
∑(labels ≡ −1)

(10)

2.5. Calculate Matrix Asymmetry

The metric utilized is the ratio of the difference between the symmetric and anti-
symmetric matrices to the sum of their norms. The formula for this metric is as follows:

Q =
||Msym −Mantisym||
||Msym −Mantisym||

(11)

• Compute the symmetric matrix (Msym) by taking the average of the input matrix and
its transpose:

Msym =
1
2
× (Matrix + Matrix.T) (12)

• Compute the anti-symmetric matrix (Mantisym) by taking the difference between the
input matrix and its transpose divided by 2:

Mantisym =
1
2
× (Matrix−Matrix.T) (13)

The resulting asymmetry metric (Q) provides a measure of the asymmetry between the
symmetric and anti-symmetric components of the matrix. A higher value indicates greater
asymmetry, while a value close to zero suggests a more balanced or symmetric matrix.

3. Results

In general, the work can be divided into several parts, as presented in the block
diagram below (Figure 4).
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In study [32], an experiment was conducted from which we obtained data for further
research. Subsequently, two neural network models were constructed: a convolutional
neural network and a dynamic synapse model. Based on the predictions obtained from
these models, the results were summarized.

In this paper, we study the STPANet model, which consists of a convolutional neural
network (CNN) model and a dynamic synapse model. The dynamic synapse model,
Equations (1)–(3), is a short-term memory model with the addition of astrocytic regulation.

3.1. Hybrid Artificial Neural Network Model

A feed-forward neural network was utilized to encode a collection of natural images
into a lower-dimensional feature space (see Figures 3 and 5). The convolutional neural
network (CNN) underwent training using a grayscale version of the CIFAR-10 dataset [44]
and consisted of two convolutional layers followed by two fully connected layers. Once the
training process was completed, the weights of the network were saved. For the dynamic
synapse model, the input data were obtained by extracting the output of the last fully
connected layer, which precedes the classifier.

Figure 5. CNN: Image features were extracted from the last fully connected layer of a pre-trained
convolutional neural network (CNN) trained on a grayscale version of the CIFAR-10 object recognition
task. This CNN serves as an encoder network, mapping the input image to a lower-dimensional
feature space, which is used as input data for the model. Dynamic synapse model: The model
represents a neuron–glia network with short-term synaptic plasticity. It consists of three layers: an
input layer with 64 neurons, a hidden layer with 16 neurons, and an output neuron. The model
weights were trained using backpropagation.

The STPNet model incorporates only short-term synaptic adaptation, while the
STPANet model includes additional astrocytic regulation for modulating synaptic dy-
namics. The RNN abbreviation stands for recurrent neural network, and the convolutional
layers are labeled as “conv<receptive field size>-<number of channels>”. The term “max-
pool” indicates the utilization of max pooling with a 2 × 2 window and a stride of 2. “FC”
denotes fully connected layers with a specific number of units, while “RC” represents
recurrent layers with a specified number of units. At the output of the convolutional neural
network, we have a layer of size 64, all weights are saved, and in this form the data are fed
to the input of one of three models: STPANet, RNN, STPNet.

CNN: In order to obtain image features, a pre-trained convolutional neural network
(CNN) was utilized, which had been trained on a grayscale variation of the CIFAR-10
object recognition task. This CNN functioned as an encoder network, responsible for
mapping the input image to a lower-dimensional feature space. These extracted features
were then employed as input data for the subsequent stages of the model. By leveraging
the pre-trained CNN’s learned representations, the model could effectively capture and
utilize the rich visual information present in the images, enhancing its overall performance.
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Dynamic synapse model: The architecture of the model encompasses a neuron–glia
network that incorporates short-term synaptic plasticity. It comprises 3 distinct layers,
starting with an input layer comprising 64 neurons, followed by a hidden layer housing
16 neurons, and culminating in an output neuron. The model’s weights were trained using
the backpropagation algorithm, which facilitated the iterative adjustment of the weights
based on the computed error signals. This training process enabled the model to learn
and adapt its synaptic connections, optimizing its ability to process and generate accurate
outputs. The utilization of short-term synaptic plasticity within the model allows for
the dynamic modulation of synaptic strength, leading to more sophisticated information
processing capabilities and enhancing the model’s overall performance.

The dynamic synapse model received an input represented by a matrix denoted as M:

M(τ(t)× s). (14)

In Equation (14), the variables have the following interpretations: τ(t) presynaptic
activity and s indicate the size of the output layer obtained from the CNN.

Our model was evaluated in the context of the change detection task (Figure 2). The
input activity provided to the model was sparse, aligning with the observed responses in a
comprehensive survey conducted on the mouse visual cortex at a large scale (Figure 6).

Figure 6A depicts the activity patterns observed during the change detection task in
response to the input stimuli. Each image in the sequence was presented for a duration of
250 ms, which corresponds to a single time step, followed by a 500 ms interval of a gray
screen, spanning two time steps. In the left block of Figure 6A, the responses to a single
image are relatively weak, indicating lower levels of neural activity. Moving to the central
block, responses to two images are illustrated, with one of the images evoking a stronger
response compared to the other. This discrepancy in response strengths signifies the neural
discrimination between the presented stimuli. The right block of Figure 6A showcases
a gradual increase in responses to four images, suggesting a progressive accumulation
of neural activity over time. This gradual response pattern indicates the integration of
information from multiple image presentations. To facilitate interpretation, color-coded
segments displayed above each plot indicate the specific time points of image presentation,
aiding in the visualization of the temporal dynamics of neural activity. By examining these
activity patterns, we can gain insights into the temporal processing and encoding of visual
information within the neural network involved in the change detection task.

The units depicted in panel A exhibit dynamic changes in synaptic efficacy, specifically
through a process of synaptic depression, which is influenced by the input they receive
(Figure 6B). These changes in synaptic efficacy are crucial for shaping the overall function-
ing of the neural network. As the units receive input, their synaptic connections undergo
modifications, leading to the attenuation or reduction in the strength of synaptic transmis-
sion. This process of synaptic depression allows for the network to adapt to varying levels
of input and maintain stability by preventing excessive neural activity. By dynamically
adjusting synaptic efficacy, the network can effectively regulate the flow of information
and optimize its response to the incoming stimuli. Understanding the mechanisms un-
derlying synaptic depression provides valuable insights into the neural circuit’s ability to
process and encode information, ultimately contributing to our understanding of neural
computation. The activity of the units displayed in panel A is subject to modulation by
short-term activity dynamics (Figure 6C). Short-term activity refers to the transient changes
in neural firing rates and synaptic efficacy that occur over relatively brief time intervals. In
the context of the depicted units, the input activity they receive is influenced and regulated
by these short-term activity dynamics. By incorporating short-term activity modulation,
the units are capable of flexibly adjusting their responsiveness to incoming input, allowing
for dynamic processing and adaptation to changing environmental conditions. This modu-
lation enhances the network’s ability to encode and integrate information, enabling more
nuanced and context-dependent computations. The dynamics of gliotransmitters refers to
the temporal changes and interactions of signaling molecules released (Figure 6D).
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Figure 6. (A) The figure illustrates the input activity during the change detection task. Each image
was presented for a duration of 250 ms (one time step), followed by a 500 ms (two time steps) gray
screen. In the left block, weak responses to a single image are observed. The central block shows
responses to two images, with one image eliciting a stronger response than the other. The right
block gradually responds to four images. The time of image presentation is indicated by color-coded
segments displayed above each plot. (B) The synaptic efficacy (depression) of the units depicted in
panel A undergoes changes based on the received input. (C) The input activity of the units shown in
panel A is modulated by short-term activity. (D) The dynamics of gliotransmitters.

3.2. Learning Process

Algorithm 2 trains a convolutional neural network model on the CIFAR-10 dataset. It
utilizes the stochastic gradient descent (SGD) algorithm to optimize the model parameters.
The model comprises several convolutional layers, pooling layers, and fully connected
layers. Training is conducted using the cross-entropy loss function.

Algorithm 2 Learning algorithm for CNN model.

Input: a grayscale image, represented as a single-channel image.
Parameter: N_epochs, Batch_size, SGD optimizer, Cross-entropy loss function.
Output: the probabilities of the image belonging to each of the classes.
1. Initialize the neural network with a specific architecture (layers and connections) and

initial weights.
2. Load the data and set up the training parameters.
3. for in N_epochs do
4. Set the neural network in training mode.
5. for Batch_size in training dataset do
6. Transfer the data and target values to the device (GPU or CPU) based on the

settings.
7. Reset the gradients of the optimizer.
8. Perform a forward pass through the model to obtain the output values.
9. Calculate the loss function between the predicted and target values.
10. Perform backpropagation of gradients to compute them for each model pa-

rameter.
11. Update the model weights using the SGD optimizer.
12. end for
13. end for
14. Finish the algorithm execution.
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Algorithm 1 presents the implementation of a training algorithm for a neural network.
The algorithm incorporates the definition of the dynamic synapse model class, which is
a neural network model that incorporates the dynamics of STPNet, astrocytic regulation,
and spike generation. Additionally, the algorithm calculates the d-prime index.

3.3. Experimental Simulation

Based on the results obtained from training the STPANet model, accuracy and error
graphs were generated (Figure 7).

From these graphs, the following conclusions can be drawn:

• Overtraining and undertraining are not observed.
• The optimal value of error and accuracy is reached at about 4000 epochs.

(a)

(b)

Figure 7. The graphs display the model’s (a) loss (error dependence on the number of epochs) and
(b) accuracy (accuracy dependence on the number of epochs).

After around 4000 epochs, the model reached its peak performance, achieving the opti-
mal balance between error reduction and accuracy improvement. This implies that further
training iterations did not significantly contribute to enhancing the model’s performance.

The identification of this optimal point is crucial, as it allows for the selection of
an appropriate stopping criterion during the training process, preventing unnecessary
computational costs and saving resources. Additionally, it highlights the importance of
monitoring the training progression and evaluating the model’s performance at different
epochs to determine the point of convergence and achieve the desired level of accuracy.
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Furthermore, in addition to generating plots for model comparison, we present the
mean response probability matrices that illustrate the likelihood of a response for each of
the 64 potential image transitions during task execution. The STPANet response probability
matrix reveals an asymmetry in image detectability, which is also partially captured by the
STPNet model but remains unaccounted for by the RNN model (Figure 8). The experimental
data were obtained from the study by Hu et al. [32].

The confusion matrix serves as a valuable tool for evaluating the model’s perfor-
mance in correctly identifying and distinguishing between different image transitions.
This information aids in understanding the model’s capacity to learn and remember the
visual patterns associated with specific image transitions. The inclusion of the confusion
matrix allows for a comprehensive analysis of the model’s performance, facilitating the
identification of potential areas of improvement and informing further training strategies.

After constructing confusion matrices to compare the presented models with the ex-
periment, the asymmetry of the matrices was calculated for each model using Equation (11)
(Table 1).

Table 1. The table shows the asymmetry metrics of the matrices.

Model Mean Std

Experiment −0.066 0.054

RNN −0.201 0.356

STPNet −0.034 0.09

STPANet −0.041 0.09

Based on the obtained values (Table 1), it can be observed that the STPANet model
exhibits the strongest correlation with the experiment.

The calculated d-prime metric using Equation (6) for the three types of models is
presented in Table 2 below:

Table 2. The average d-prime metric values, accompanied by their respective standard deviations,
were computed for three models: RNN, STPNet, and STPANet.

Model Mean Std

RNN 1.33 0.578

STPNet 1.47 0.127

STPANet 1.53 0.125

The purpose of employing this metric was to demonstrate better classification accuracy
achieved by our neural network architecture, which incorporates astrocytic modulation,
for both familiar and novel images.

By utilizing this metric, we aimed to showcase the enhanced performance of our model
in accurately categorizing not only images that were previously encountered but also those
that were novel and unseen during the training phase. This ability to effectively generalize
and classify unfamiliar images is a significant advantage of our neural network architecture.

The integration of astrocytic modulation within our architecture offers additional
regulatory mechanisms that contribute to improved classification accuracy. The astrocytic
modulation allows for dynamic adjustments of synaptic strength and facilitates efficient
information processing and discrimination between different image categories.
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Figure 8. A confusion matrix is presented, which indicates the probability of responding to each of
the possible 64 image transitions during the task. In the matrix, a value of 1 indicates that the image
has not been shown before, while a value of 0 signifies that the image has already been shown.

4. Discussion

Based on analyzing neural and behavioral data related to the visual change detection
problem [32], we constructed hybrid neuron network models targeting the implementation
of the short-term memory features. Specifically, these models were utilized to test predic-
tions of various short-term memory mechanisms. Our findings verified that adaptation
mechanisms, rather than sustained activity, were employed for detecting changes in natu-
ral images. Additionally, we eventually demonstrated that accounting for the astrocytic
regulation in the dynamical synapses led to better performance in the implementation of
image processing tasks.

Our models indicate that short-term plasticity may support short-term memory in
early sensory cortex neural circuits, acting as the main memory source in the change detec-
tion task. Multiple lines of evidence support our proposed model, including behavioral
responses, neural response adaptation, and responses to omitted image presentations.
Image repetition causes synapse adaptation, reducing information about image identity.
Presentation of a change image activates a new set of input units, influencing hidden unit
responses and facilitating image change decoding. Plasticity with astrocyte modulation acts
as a temporal filter, enabling comparison of repeated and novel stimuli. Behavioral asym-
metry results from different saliency levels, impacting stimulus processing. Models without
bottom-up attention lack this behavior. While models with persistent neural activity can
solve the task, they are less consistent with observed data. Recurrent neural networks tend



Biomimetics 2023, 8, 422 14 of 16

to show symmetric responses, requiring further investigation. Depressing synapses on
sensory input neurons may sufficiently capture neural dynamics in early sensory cortex
for the change detection task. Causal optogenetic perturbations are needed to confirm
our results.

In the context of the proposed approach, which involves the integration of an artificial
neural network and a dynamic model, which can be used for constructing a spiking neural
network, it is pertinent to delve into the distinctions between an artificial neural network
and a spiking neural network. Spiking neural networks (SNNs) are distinctive due to their
utilization of spiking neuron models, which transmit information through discrete spikes.
These spikes carry temporal information and are well-suited for tasks involving precise
timing, such as event-based vision. SNNs often employ spike-timing-dependent plasticity
(STDP) for learning, capturing biological learning mechanisms [45–47].

On the other hand, artificial neural networks (ANNs), particularly convolutional neu-
ral networks (CNNs), are widely used for various image tasks such as image classification,
object detection, and image segmentation. ANNs rely on continuous activation functions
and gradient-based optimization methods for training [24]. This allows them to capture
complex features and patterns within images, but they might lack the temporal precision
inherent in SNNs.

While SNNs offer advantages in handling temporal information and energy efficiency
through sparse spiking, they may require specialized hardware for efficient computation [48].
ANNs, on the other hand, are more established and practical due to their familiarity and
widespread adoption. Furthermore, approaches are under development regarding the uti-
lization of supervised, biologically plausible perceptron-based learning for spiking neural
networks (SNNs). These approaches aim to construct deep SNNs and create hybrid models
that combine convolutional neural networks (CNNs) with spiking neural networks [45].

5. Conclusions

Short-term memory, also known as working memory, is an essential cognitive process
that involves temporarily storing and manipulating information. It plays a crucial role
in attention, learning, problem-solving, and decision-making. This study presents a new
hybrid model for short-term memory that combines short-term synaptic plasticity, astrocytic
modulation of synaptic transmission, and a convolutional neural network. By comparing it
with a recurrent neural network, the research demonstrates that the proposed model offers
improved efficiency in accurately representing short-term memory.

Currently, convolutional neural networks are extensively utilized and, specifically, are
actively employed in analyzing medical data related to socially significant diseases [26,49].
The suggested architecture enables the incorporation of a short-term memory effect into a
convolutional neural network, thereby enhancing the capabilities of these architectures.

A possible future research direction could involve incorporating the regulation of
synaptic transmission by the brain’s extracellular matrix into the model. Experimental and
model studies suggest that this regulation can influence processes associated with memory
and neural network activity [50–52].
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