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Abstract: Simultaneous localization and mapping (SLAM) is one of the crucial techniques applied in
autonomous robot navigation. The majority of present popular SLAM algorithms are built within
probabilistic optimization frameworks, achieving high accuracy performance at the expense of high
power consumption and latency. In contrast to robots, animals are born with the capability to ef-
ficiently and robustly navigate in nature, and bionic SLAM algorithms have received increasing
attention recently. Current bionic SLAM algorithms, including RatSLAM, with relatively low accuracy
and robustness, tend to fail in certain challenging environments. In order to design a bionic SLAM
system with a novel framework and relatively high practicality, and to facilitate the development
of bionic SLAM research, in this paper we present LFVB-BioSLAM, a bionic SLAM system with a
light-weight LiDAR-based front end and a bio-inspired vision-based back end. We adopt a range
flow-based LiDAR odometry as the front end of the SLAM system, providing the odometry estimation
for the back end, and we propose a biologically-inspired back end processing algorithm based on
the monocular RGB camera, performing loop closure detection and path integration. Our method is
verified through real-world experiments, and the results show that LFVB-BioSLAM outperforms Rat-
SLAM, a vision-based bionic SLAM algorithm, and RF2O, a laser-based horizontal planar odometry
algorithm, in terms of accuracy and robustness.

Keywords: simultaneous localization and mapping (SLAM); bionic robotics; loop closure detection;
path integration

1. Introduction

The last 3 decades have witnessed remarkable progress in the research area of au-
tonomous robot navigation. Simultaneous localization and mapping (SLAM), as one of
the fundamental techniques utilized by robots to perform navigation tasks, refers to the
process of constructing the map of the unknown environment that the robot is exploring
and estimating the pose of the robot within it simultaneously [1–3]. As illustrated in the
survey [4], the architecture of a SLAM system can be divided into two major parts: the
front end and the back end. The front end receives sensor data and converts it into models
suitable for robot state estimation, while the back end conducts inference on the abstracted
data generated by the front end.

Currently, most popular SLAM algorithms typically conduct the back-end inference
under probabilistic filtering or nonlinear optimization framework [5]. The sensor modalities
they utilize to obtain environmental information include LiDARs [6], radars [7], cameras
(e.g., standard RGB cameras [8], RGB-D cameras [9], infrared cameras [10] and event-based
cameras [11]), and inertial measurement units (IMUs). Moreover, multi-sensor fusion
approaches have attracted growing attention.
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The LiDAR and radar enhance the reliability of spatial distance information by actively
transmitting and receiving signals (laser beams and radio waves), thereby improving the
accuracy of the SLAM algorithm at the expense of higher power consumption. LiDAR-
based SLAM algorithms mainly include LOAM [12], LIO-SAM [6], and Fast-LIO2 [13].

SLAM algorithms based on standard RGB cameras use the data association between
multiple frames of images to accomplish robot ego-motion estimation and environment
mapping. Representative visual SLAM (vSLAM) algorithms include ORB-SLAM [8,14,15],
DSO [16], and VINS-Mono [17]. The robustness and accuracy of vSLAM are constrained by
environmental lighting conditions, making it challenging to handle scenarios with motion
blur and high dynamic range (HDR) lighting conditions.

The event camera, as a novel type of biologically-inspired visual sensor modality,
generates asynchronous pulse event outputs only when significant illumination changes
are detected at each independent pixel. Consequently, event-based SLAM algorithms, such
as EVO [18], ESVO [11], and Ultimate-SLAM [19], offer advantages including low power
consumption, low latency, high dynamic response speed, and resistance to motion blur [20].
However, there is still a long way to go for the community to advance the development of
event-based SLAM.

As described by Cadena et al. in their survey [4], the development of SLAM has
gone through three main periods: the classical age (1986–2004), the algorithmic-analysis
age (2004–2015), and the robust-perception age (since 2016). Despite the considerable
development of SLAM research over the last 30 years, the robustness of SLAM algorithms
still falls short when dealing with challenging environments, significantly limiting their
applications in practice. Moreover, traditional SLAM techniques heavily rely on sufficient
computing resources and power supply, further restricting their applicability.

In contrast to robots, animals possess the innate capability to navigate efficiently and
robustly in natural environments by leveraging a range of sensory cues. Consequently, there
has been a growing interest in developing SLAM algorithms that draw inspiration from
the neural mechanisms employed by animals during navigation. By emulating the neural
activities underlying animals’ navigation, these bionic SLAM algorithms strive to enhance
the performance and adaptability of robotic systems in challenging real-world scenarios.

RatSLAM [21,22] is a bio-inspired SLAM algorithm that derives insights from the
hippocampal model of rodents and abstracts the concept of pose cells to represent the
position and orientation of a mobile robot in a 2D environment. The RatSLAM system can
be deployed in real robots and has successfully accomplished autonomous localization and
mapping tasks in indoor office environments [23] and outdoor suburban areas [24].

Following RatSLAM, a series of relevant studies have been completed. Inspired
by the three-dimensional navigation neural representation mechanisms found in birds
and bats, Yu et al. proposed a four-degree-of-freedom NeuroSLAM [25] system as an
extension of RatSLAM for mapping 3D environments. In order to address RatSLAM’s
sensitivity to perceptual aliasing caused by the low-dimensional sensory template matching,
the LatentSLAM [26] system proposes an unsupervised representation learning method
generating low-dimensional latent state descriptors and improves the robustness of the
SLAM system by combining multiple sensors.

Spiking neural networks (SNNs) offer a suitable solution for feature extraction and
descriptor representation for loop closure detection in SLAM. Safa et al. fused the data from
an event camera and a radar, which is preprocessed by an SNN with continual spike-timing-
dependent plasticity (STDP) learning, with the output used as feature descriptor encoding
for loop closure detection and map correction in the SLAM architecture [27]. SNNs can
also be applied in template matching and image-based place recognition. Hussaini et al.
proposed a high-performance dual-layer SNN model with a novel weighted assignment
scheme for visual place recognition (VPR) tasks, which can provide robust, energy-efficient,
and low-latency robot localization [28].

SLAM algorithms running on neuromorphic hardware have been developed recently.
Tang et al. proposed a brain-inspired SNN architecture that solves the uni-dimensional
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SLAM problem by introducing spike-based reference frame transformation, visual like-
lihood computation, and Bayesian inference [29]. Integrated to Intel’s Loihi processor,
it performs well in terms of accuracy and energy-efficiency. Kreiser et al. introduced
an SNN-based one-dimensional path integration architecture and implemented it on the
neuromorphic hardware ROLLS [30]. Subsequently, Kreiser et al. extended this work to
achieve two-dimensional path integration and map formation using an SNN architecture
that comprises spiking neurons and plastic synapses, demonstrating the feasibility of the
neuromorphic realization of SLAM [31].

In this paper, we propose LFVB-BioSLAM, a first-of-its-kind bionic SLAM system
with a light-weight LiDAR-based front end and a bio-inspired vision-based back end. A
range flow-based LiDAR odometry algorithm is adopted as the front end of the SLAM
system, providing essential odometry estimation information for the back end, and a bio-
inspired back-end processing algorithm based on the monocular RGB camera is proposed,
performing loop closure detection and path integration. Experiments on the platform of a
ground mobile robot are carried out to validate the feasibility of the proposed algorithm.
The experimental results show that LFVB-BioSLAM outperforms RatSLAM [21,22], a vision-
based bionic SLAM algorithm, and RF2O [32], a laser-based horizontal planar odometry
algorithm, in terms of accuracy and robustness.

The main contributions of this paper are outlined below:

• We employ a lightweight range flow-based LiDAR odometry as the front end of our
SLAM system, which quickly generates horizontal planar odometry output using the
3D LiDAR point cloud input.

• Our SLAM system incorporates a bio-inspired visual loop closure detection and path
integration algorithm as the back end, which utilizes the odometry estimation from
the front end, along with image input, to generate the robot’s pose and construct the
environmental map.

• We propose a novel bionic SLAM system called LFVB-BioSLAM, which combines the
aforementioned front and back end components. Through real-world experiments, we
validate the feasibility of LFVB-BioSLAM and demonstrate its superior performance
in terms of accuracy and robustness.

2. Materials and Methods

We herein describe the proposed LFVB-BioSLAM, the system architecture of which is
illustrated in Figure 1, in detail as follows. Section 2.1 introduces the light-weight range
flow-based LiDAR odometry algorithm, which is the front end of the LFVB-BioSLAM
system. Section 2.2 describes the bio-inspired visual loop closure detection and path
integration algorithm, which constitutes the back end of LFVB-BioSLAM.

2.1. Front End: A Light-Weight Range Flow-Based LiDAR Odometry Algorithm

This section introduces the LiDAR odometry algorithm, which generates horizontal
planar odometry output, i.e., the linear and angular velocity of the robot, from the 3D
LiDAR point cloud input.

First, the required horizontal single-ring point cloud is extracted from the 3D LiDAR
point cloud input. Next, a range flow constraint equation is established, with the horizontal
planar velocities of the robot as variables. Finally, a robust cost function is applied to mini-
mize the geometric constraints derived from the constraint equation, thereby generating
the odometry estimation output.
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Figure 1. The LFVB-BioSLAM system architecture. The front-end range flow-based LiDAR odometry
takes the 3D LiDAR point cloud as input, calculating the horizontal planar odometry estimation. The
back-end bio-inspired visual loop closure detection and path integration algorithm takes both the
monocular RGB image and the odometry estimation as input, outputting the pose of the robot and
the map of the environment.

2.1.1. Horizontal Single-Ring Point Cloud Extraction

In order to use the results of the 3D LiDAR odometry (LO) algorithm as the benchmark
for validating the designed algorithm, we adopt an Ouster 3D LiDAR in our sensor system.
Within the input 3D multi-ring LiDAR point cloud (as shown in Figure 2a), the extraction
of the required horizontal single-ring point cloud (as shown in Figure 2b) is performed,
aiming to achieve a similar effect to that obtained by using a horizontal laser scanner.

Additionally, since our ground mobile robot platform equipped with the sensor system
lacks corresponding planning and control algorithms and requires remote control by an
operator, points generated by the robot itself and the operator are removed during the
extraction process.

(a) 3D multi-ring LiDAR point cloud. (b) Extracted horizontal single-ring point cloud.

Figure 2. An example of horizontal single-ring point cloud extraction.

Let P denote the multi-ring LiDAR point cloud in one scan and L denote the hor-
izontal single-ring point cloud. Let Pi represent the point cloud on the ith ring, i.e.,
Pi =

{
pi,1, pi,2, . . . , pi,ni

}
, where ni is the number of points on the ith ring and pi,j de-

notes the jth point on the ith ring. The required horizontal single-ring point cloud, L, can
be expressed as
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L =
m⋃

i=1

Li =
m⋃

i=1

{
pi,j| − h0 ≤ h(pi,j) ≤ h0, d(pi,j) ≥ d0

}
(1)

where m is the number of rings, and Li is horizontal single-ring point cloud extracted from
the ith ring, i.e., the points on the ith ring with their heights between −h0 and h0 and their
distances from the LiDAR no less than d0. h0 and d0 are positive thresholds for height and
distance, respectively.

2.1.2. Range Flow Constraint Equation

The following horizontal planar LO algorithm adopted in this paper draws inspiration
from RF2O [32], a fast and precise laser-based horizontal planar odometry algorithm that
estimates the 2D odometry based on consecutive range scans from a laser scanner.

At time t, the position of a scanned point P in {L}, the local reference frame of the Li-
DAR, is determined by its polar coordinates P(r, θ), with r ∈ (0,+∞), and θ ∈

[
− Fov

2 , Fov
2

]
,

where Fov is the field of view of the horizontal planar single-ring point cloud. The scan
range of point P can be expressed as R(t, θ) = r.

Assuming the scan range function R is differentiable, we apply a first-order Taylor
expansion to the scan range of point with the polar angle θ + δθ in the subsequent scan:

R(t + δt, θ + δθ) = R(t, θ) +
∂R
∂t

(t, θ) · δt +
∂R
∂θ

(t, θ) · δθ + o(δt, δθ) (2)

where δt denotes the time interval between two adjacent scans and δθ denotes the change
in polar angle of the considered point. By ignoring the higher-order infinitesimal term
o(δt, δθ) and dividing both sides of the equation by δt, the scan gradients can be related to
the changes in range and polar angle within the time period [t, t + δt]:

δR
δt

= Rt + Rθ
δθ

δt
(3)

where Rt =
∂R
∂t (t, θ) and Rθ = ∂R

∂θ (t, θ) represent the scan gradients for t and θ, respectively.
When the time interval δt between two adjacent scans is sufficiently small, the changes

in scan range and polar angle within the time period [t, t + δt] divided by δt can be
approximated by their corresponding derivatives, respectively, i.e., δR

δt = ṙ, δθ
δt = θ̇. Thus,

we have
ṙ = Rt + Rθ θ̇ (4)

which is the range flow constraint equation [33].
Next, Equation (4) will be transformed into the constraint equation for the robot’s

planar motion velocity (linear and angular velocity). First, the polar representation will be
converted to its equal Cartesian representation. Let the Cartesian coordinates of point P in
the local reference frame of the LiDAR be (x, y), and assuming that the LiDAR is stationary,
the velocity of point P in the x and y directions are denoted by ẋ and ẏ, respectively, as
illustrated in Figure 3. Therefore, we have

[
ṙ
θ̇

]
=

 cos θ sin θ

− sin θ

r
cos θ

r

[ẋ
ẏ

]
(5)

Considering the assumption of a static and rigid environment, the change in obser-
vation is in fact caused by the ego-motion of the LiDAR (both translational and rotational
motion). Let the velocity of the LiDAR in the x and y directions be denoted as vx and vy,
respectively, and the angular velocity be denoted as ω. Then, we have
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[
ẋ
ẏ

]
=

[
−1 0 y
0 −1 −x

]vx
vy
ω

 (6)

Figure 3. The vertical view of the local reference frame of the LiDAR. Assuming the LiDAR is
stationary, the change in observation is caused by the motion from point P to point P′ after a time
interval δt.

By substituting the velocity transformation (6) into the polar-Cartesian transforma-
tion (5) and substituting ṙ and θ̇ into the range flow constraint Equation (4), we have(

cos θ +
Rθ sin θ

r

)
· vx +

(
sin θ − Rθ cos θ

r

)
· vy − Rθ ·ω + Rt = 0 (7)

which is the range flow constraint equation, with the LiDAR’s planar motion velocities
(linear velocity vx, vy, and angular velocity ω) being the variables.

2.1.3. Estimation of Odometry

It is evident that in Equation (7), three sets of linearly independent constraints are
theoretically sufficient to estimate the robot’s motion velocity. However, in practice, this
approach is not feasible due to scan noise, linear approximation errors, and interference
from moving objects in dynamic environments. These factors prevent Equation (7) from
being an exact equality in typical situations. Therefore, we formulate the estimation of
odometry as an optimization problem.

Let the robot’s planar motion velocity be denoted as v = [vx, vy, ω]T . For each
observed point in the scan and a given v to be optimized, a range-flow residual can be
constructed as

ψ(v) =
(

cos θ +
Rθ sin θ

r

)
· vx +

(
sin θ − Rθ cos θ

r

)
· vy − Rθ ·ω + Rt (8)

The optimal estimate v∗ can be obtained by minimizing the sum of robust cost func-
tions of all range-flow residuals:

v∗ = arg min
v

N

∑
i=1

F(ψi(v)) (9)

with N denoting the number of scanned points, and the robust cost function F(ψ) defined as

F(ψ) =


ψ2

k2

(
1− ψ2

2k2

)
, if |ψ| < k,

1
2

, if |ψ| ≥ k.

(10)

where k is a tunable positive parameter for decreasing the effects of outliers.
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The optimization problem is then solved using the iteratively reweighted least squares
(IRLS) algorithm. In each iteration, it re-computes the residuals and updates the weights
until convergence is achieved.

2.2. Back End: A Bio-Inspired Visual Loop Closure Detection and Path Integration Algorithm

This section introduces the bio-inspired visual loop closure detection and path in-
tegration algorithm based on a monocular RGB camera, building upon the light-weight
front-end odometry estimation algorithm discussed in Section 2.1.

First, the monocular RGB image is passed to the local view cell module, where the
visual template corresponding to that specific scene is generated. Then, the odometry
estimation and the visual template are jointly passed to the pose cell network module,
which outputs topological graph instructions (creating new nodes, creating new edges, or
setting nodes). Finally, the odometry estimation and the topological graph instructions are
jointly passed to the experience map module, where map construction, graph relaxation,
and path integration are performed, outputting the robot’s pose and the constructed
environmental map.

The bio-inspired back-end processing algorithm implemented in this paper draws
inspiration from RatSLAM [21], emulating the neural processes in the hippocampus of
mammalian brains during navigation. It utilizes image data from a monocular RGB
camera and combines it with the odometry estimation from the front-end LiDAR odometry
algorithm to perform loop closure detection and path integration, outputting the robot’s
pose and the constructed environmental map.

2.2.1. Local View Cell

Each local view cell is associated with a unique visual scene in the environment, which
is intended to determine whether the current scene in the current view is a new scene or a
previously seen one by comparing the input RGB image. In practice, we first preprocess
the monocular RGB image, converting it into a corresponding visual template, based on
which the determination of whether the current visual scene is new or previously seen is
conducted. The image preprocessing procedure is illustrated in Figure 4.

Figure 4. The image preprocessing procedure. First, we crop the image. By removing areas such as
skies and roads, we focus on the regions of interest that are rich in environmental features, which
can better repressent the visual scene of the environment. Next, we downsample the cropped
image, reducing its size while preserving important visual information of the environment. Last, we
perform both global and local normalization on the downsampled image to minimize the effect of the
illumination variation and ensure consistency of the visual template.

After the preprocessing steps, the local view cell compares the visual template Vtn+1
representing the current scene with all the historical visual templates (Vt1, Vt2, . . . , Vtn).
The similarity comparison is based on the sum of absolute differences (SAD) between the
current visual template and each historical visual template. For examlpe, the SAD between
visual templates Vtp and Vtq, denoted as Sp,q, is computed as

Sp,q =
H−1

∑
i=0

W−1

∑
j=0
|pi,j − qi,j| (11)
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where pi,j and qi,j are the pixel values of Vtp and Vtq respectively, with H and W being the
height and width of the visual templates, respectively, which can be further illustrated in
Figure 5.

Figure 5. Computation of similarity between two visual templates Vtp and Vtq.

If the minimum SAD among all the historical visual templates is below a predeter-
mined threshold, then the current visual template is supposed to represent the same visual
scene as the corresponding historical visual template. Otherwise, if all SAD values are
above the threshold, then the current visual template is added to the historical visual
templates as a representation of the current new visual scene.

2.2.2. Pose Cell Network

The pose cell network draws inspiration from cells related to navigation (e.g., grid
cells [34], place cells [35] and head direction cells [36]) found in the hippocampus of mam-
malian brains. It is built in the form of a continuous attractor network (CAN), as illustrated
in Figure 6.

Figure 6. The pose cell network. Individual pose cells are interconnected with either excitatory or
inhibitory connections. This network represents the three dimensions of a ground mobile robot’s
pose, i.e., x, y, and θ.

The pose cell network has artificial dynamics designed to guide its behavior. When the
network reaches a stable state, a cluster of activated pose cells forms a single energy packet,
as shown by the dark blue region in Figure 6. The centroid of the energy packet represents
the optimal estimate of the robot’s current pose within the network. The dynamics mecha-
nism is implemented through the local excitation and global inhibition of the continuous
attractor network, achieved by weighted connections with three-dimensional Gaussian
distribution excitation coefficients εexc

a,b,c and inhibition coefficients εinh
a,b,c, respectively, which

are defined as

εexc
a,b,c = e

− a2+b2
kexc
p · e−

c2
kexc
o (12)
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εinh
a,b,c = −e

− a2+b2

kinh
p · e

− c2

kinh
o (13)

where kp and ko are constants related to the spatial distribution variance of the pose cell
network, and the subscripts “p” and “o” represent “position” and “orientation”, respectively.

Consequently, guided by the internal dynamics of the pose cell network, the changes
in pose cell energies resulting from local excitation and global inhibition mechanisms are
given by

δPexc
x,y,θ = ∑

i,j,k

(
Pi,j,k · εexc

a,b,c

)
(14)

δPinh
x,y,θ = ∑

i,j,k

(
Pi,j,k · εinh

a,b,c

)
− φinh (15)

Px,y,θ ← Px,y,θ + δPexc
x,y,θ + δPinh

x,y,θ (16)

where φinh is an additional global inhibition constant used to suppress the energies of other
pose cell clusters with relatively high energies.

The pose cell network takes two types of inputs:

1. Visual templates from the local view cell module;
2. Odometry estimation from the front-end LiDAR odometry algorithm.

For the visual template input, there are two kinds of operations depending on whether
the visual template is new or a historical one. If it is a new visual template, then it will be
associated with the centroid of the current energy packet in the pose cell network. If it is a
historical one, then the corresponding energy will be injected into the pose cells previously
associated with that visual template through the excitatory connection coefficient γexc:

δPx,y,θ = α ·∑
j

(
γexc

j,x,y,θVj

)
(17)

where the constant coefficient α determines the degree of influence of visual information
input on robot pose estimation. P and V represent the energy values of pose cells and local
view cells, respectively.

For the odometry estimation input, we first perform the aforementioned local excita-
tion and global inhibition steps, injecting and then removing a certain amount of energy
around each active pose cell. Then, we normalize the energy of the whole pose cell net-
work, maintaining its stability. Next, path integration is implemented using odometry
information from the front end. Energy is transferred within the pose cells, facilitating the
movement of the energy packet, the centroid of which in the current pose cell network is
identified as the optimal estimate of the robot’s current pose within the network.

After these steps, the pose cell network outputs topological graph instructions and
passes them to the experience map module. The topological graph instructions include:

1. Creating a new node (along with creating an edge from the previous node to the
new node);

2. Creating an edge between two existing nodes;
3. Setting the current pose as an existing node.

2.2.3. Experience Map

The experience map represents the map in the form of a graph, combining information
from the pose cell network and local view cells to uniquely estimate the robot’s pose. The
node in the experience map is defined as

ei = {Pi, Vi, pi} (18)
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where Pi and Vi represent the energy values of the pose cells and local view cells, re-
spectively, and pi represents the pose in the experience map space. And the edge in the
experience map is defined as

lij =
{

δpij, δtij
}

(19)

where δpij and δtij represent the relative differences in pose and time between two experi-
ence nodes ei and ej.

The experience map is updated based on the topological graph instructions given by
the pose cell network, which include creating nodes, creating edges, or setting nodes.

Additionally, a graph relaxation algorithm is applied to reduce the drift of the odome-
try estimation, where the pose pi is modified as

δpi = ξ ·
(

∑
j

(
pj − pi − δpij

)
+ ∑

k
(pk − pi − δpki)

)
(20)

pi ← pi + δpi (21)

where ξ is the relaxation factor, ej represents any experience node that ei points to, and
ek represents any experience node that points to ei, whose connection relationships are
illustrated in Figure 7.

Figure 7. Connection relationships of the experience map. ej1, ej2, . . . , ejn are experience nodes that ei

points to, and ek1, ek2, . . . , ekm are experience nodes that point to ei.

3. Results

In this section, we validate the proposed LFVB-BioSLAM through the following real-
world experiments using evaluation metrics that are designed to assess its localization and
mapping performance.

3.1. Experimental Setup

The ground mobile robot platform equipped with the sensor system is illustrated in
Figure 8.

The experimental field was chosen as a courtyard with a length of approximately 50 m
and a width of approximately 20 m. Two groups of experiments (denoted as Exp. 1 and
Exp. 2) were conducted, in each of which the ground mobile robot was remotely operated
along a corresponding predetermined route (denoted as Route 1 and Route 2, respectively)
to collect data from the sensors. The bird’s-eye view of the experimental field along with
the starting and ending positions of the two routes are shown in Figure 9.
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Figure 8. The ground mobile robot platform for data collection. The sensor system consists of a
3D LiDAR, an inertial measurement unit (IMU, not used in this implementation), and a monocular
camera. The platform is equipped with an NUC mini PC running the necessary sensor drivers and
collecting the datasets.

Figure 9. The bird’s-eye view of the experimental field with the starting and ending positions of the
two routes corresponding to Exp. 1 and Exp. 2, respectively.

3.2. Experimental Results

We adopt DLO (direct LiDAR odometry) [37], which is among the state-of-the-art
(SOTA) algorithms in the field of LiDAR odometry and LiDAR SLAM, to obtain the
relatively accurate robot odometry results using the 3D LiDAR point cloud data. The
results of DLO serve as a benchmark against which the performance of the following three
algorithms are evaluated:

1. RatSLAM [21], a classical bio-inspired visual SLAM, with a similar bio-inspired back-
end processing mechanism to our LFVB-BioSLAM;

2. RF2O [32], a range flow-based horizontal planar laser odometry, with a similar pro-
cessing mechanism to the front-end odometry estimation algorithm in our LFVB-
BioSLAM;

3. LFVB-BioSLAM proposed by us, with a LiDAR-based front end and a vision-based
bio-inspired back end.

The best parameter configurations for different algorithms are listed in Table 1. The
poses and trajectories of the robot, as well as the constructed environment maps generated
by these algorithms, are shown using RViz in Figure 10. Moreover, the open-source
EVO [38] toolkit is used for the further visualization of robot trajectories obtained by each
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algorithm, as shown in Figure 11, providing an intuitive understanding of the accuracy
performance of each algorithm.

Table 1. Parameter configurations.

Algorithm Parameter Meaning Value

RF2O & LFVB-BioSLAM
lct f coarse-to-fine levels 5
iirls IRLS iterations 5
m Gaussian mask (0.0625, 0.25, 0.375, 0.25, and 0.0625)

RatSLAM & LFVB-BioSLAM

ym max y for image cropping 1000
thvt visual template matching threshold 0.03
xvt x size of visual template 60
yvt y size of visual template 10
stvt visual template matching step 1
nvt visual template normalization factor 0.4
xpc x size of pose cell 2

spc
side length of (x, y) plane of pose cell

network 100

lexp
experience map graph relaxation loops per

iteration 20

(a) (b)

(c) (d)

Figure 10. Results of robot poses and trajectories and environment maps generated by each algorithm.
(a) Exp. 1, DLO. (b) Exp. 1, RF2O (in yellow) and LFVB-BioSLAM (in red). (c) Exp. 2, DLO. (d) Exp.
2, RF2O (in yellow) and LFVB-BioSLAM (in red).

It is worth mentioning that RatSLAM fails to produce reliable results in both Exp. 1
and Exp. 2 as it exhibits significant drift, resulting in localization failure. Therefore, the
results obtained from the RatSLAM algorithm are not depicted in these figures.
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(a) Exp. 1, visualization of trajectories. (b) Exp. 2, visualization of trajectories.

Figure 11. Visualization of robot trajectories generated by each algorithm in Exp. 1 and Exp. 2.
The result of DLO, RF2O, and LFVB-BioSLAM are denoted as DLO, LiDAR_Front_End, and Li-
DAR_Front_End_Plus_Bio_Back_End, respectively.

In order to quantitatively evaluate the accuracy performance of the aforementioned
algorithms, the translational absolute pose error (Trans. APE) and rotational absolute pose
error (Rot. APE) are selected as the evaluation metrics. The maximum error (max), mean
error (mean), and root mean square error (RMSE) are calculated to compare the errors
between the results of each algorithm and the benchmark values obtained from DLO. The
comparison results of Translational APE and Rotational APE are illustrated in Table 2 and
Table 3, respectively, which can also be visualized in Figure 12.

Table 2. The comparison results of Translational APEs.

Experiment Trajectory Length [m] Algorithm
Trans. APE [m]

Max Mean RMSE

Exp. 1 74.76
RatSLAM * / / /

RF2O 1.3116 0.5484 0.6366
LFVB-BioSLAM 1.0280 0.5347 0.5835

Exp. 2 101.76
RatSLAM * / / /

RF2O 1.8066 0.3913 0.4838
LFVB-BioSLAM 0.5480 0.2967 0.3136

* Failure due to significant localization drift.

Table 3. The comparison results of Rotational APEs.

Experiment Number Trajectory Length [m] Algorithm
Rot. APE [◦]

Max Mean RMSE

Exp. 1 74.76
RatSLAM * / / /

RF2O 8.3100 1.6831 1.8798
LFVB-BioSLAM 2.8556 1.6128 1.7079

Exp. 2 101.76
RatSLAM * / / /

RF2O 4.9346 1.3323 1.6260
LFVB-BioSLAM 2.8120 1.0148 1.1193

* Failure due to significant localization drift.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Visualization of the Translational and Rotational APEs of RF2O and LFVB-BioSLAM using
the results of DLO as benchmark values for reference. (a) Exp. 1, Trans. APE of RF2O. (b) Exp. 1, Rot.
APE of RF2O. (c) Exp. 1, Trans. APE of LFVB-BioSLAM. (d) Exp. 1, Rot. APE of LFVB-BioSLAM.
(e) Exp. 2, Trans. APE of RF2O. (f) Exp. 2, Rot. APE of RF2O. (g) Exp. 2, Trans. APE of LFVB-BioSLAM.
(h) Exp. 2, Rot. APE of LFVB-BioSLAM.

4. Discussion

In the experiments presented above, the performances of RatSLAM, RF2O, and the
proposed LFVB-BioSLAM are compared against each other using DLO as the benchmark
algorithm. Compared with the other two algorithms, the proposed LFVB-BioSLAM has
significant advantages in terms of accuracy and robustness. The qualitative comparison
results of computational complexity, accuracy, and robustness can be summarized in
Table 4.

Table 4. The qualitative comparison results of each algorithm.

Algorithm Computational Complexity Accuracy Robustness

RatSLAM + + +
RF2O ++ ++ ++

LFVB-BioSLAM +++ +++ +++
The greater the number of +, the higher the corresponding index.

In both groups of experiments, RatSLAM failed due to significant localization drift,
being incapable of performing localization and mapping tasks. The main reason is that
RatSLAM uses a monocular camera as its single sensor, which fails to meet the practical
navigation and localization requirements in certain experimental scenarios that are chal-
lenging for vision-based SLAM algorithms. For example, dynamic objects and drastic
lighting changes in the environment, as shown in Figure 13, may lead to significant errors
in the relatively simple front-end visual odometry and visual template matching steps of
RatSLAM. These errors are difficult to correct in subsequent modules such as the pose cell
network and the experience map, ultimately resulting in its failure with poor accuracy and
robustness.
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(a) Dynamic objects. (b) Drastic lighting changes.

Figure 13. Scenarios in our experiments that are challenging for vision-based SLAM algorithms.

The proposed LFVB-BioSLAM, with the inclusion of the bio-inspired back end for loop
closure detection and path integration, significantly outperforms RF2O in accuracy. The
major function of the RF2O-like light-weight LiDAR odometry, which is the front end of
LFVB-BioSLAM, is to provide fast and rough odometry estimation with low computational
resource consumption, which will be further optimized by the bio-inspired back end. LFVB-
BioSLAM also demonstrates good performance in the face of dynamic or partially degraded
scenes with strong robustness.

5. Conclusions and Future Work

In this paper, we present LFVB-BioSLAM, a first-of-its-kind SLAM system consisting
of a light-weight LiDAR-based front end and a bio-inspired vision-based back end, which,
to the best of our knowledge, has not been previously proposed. The experimental results
demonstrate that LFVB-BioSLAM outperforms RatSLAM, a vision-based bionic SLAM algo-
rithm, and RF2O, a laser-based horizontal planar odometry algorithm, in terms of accuracy
and robustness, validating the feasibility of the proposed bionic SLAM architecture.

In summary, the proposed bionic SLAM system, featuring an innovative framework,
demonstrates commendable performance and practicality. This, to a considerable extent, fa-
cilitates the development of bionic SLAM research and lays a solid foundation for the future
evolution of bionic SLAM systems tailored for fully autonomous robot navigation tasks.

For future work, more research on bionic SLAM remains to be done. On the one hand,
from the perspective of bionics principles, bionic SLAM algorithms hold immense potential.
By drawing inspiration from the latest theories about the animal navigation mechanisms in
neural science, such as navigation cell collaboration mechanisms, it might be possible to
construct a novel SLAM framework. The implementation of such a framework could poten-
tially lead to breakthroughs in theoretical and technological advancements. On the other
hand, neuromorphic hardware exhibits promising advantages, including asynchronous
computing and event-based communication, along with ultra-low energy consumption,
high parallelism, and efficiency. The application of neuromorphic hardware in bionic SLAM
systems can provide assurance for achieving high real-time and energy-efficient perfor-
mance, so the exploration of bionic SLAM algorithms based on neuromorphic hardware
also carries significant research value.
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Abbreviations
The following abbreviations are used in this manuscript:

SLAM Simultaneous localization and mapping
IMU Inertial measurement unit
HDR High dynamic range
SNN Spiking neural network
STDP Spike-timing-dependent plasticity
VPR Visual place recognition
LO LiDAR odometry
SAD Sum of absolute differences
CAN Continuous attractor network
SOTA State-of-the-art
RMSE Root mean square error
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