

  biomimetics-08-00354




biomimetics-08-00354







Biomimetics 2023, 8(4), 354; doi:10.3390/biomimetics8040354




Article



Application of an Enhanced Whale Optimization Algorithm on Coverage Optimization of Sensor



Yong Xu, Baicheng Zhang and Yi Zhang *[image: Orcid]





College of Electrical and Computer Science, Jilin Jianzhu University, Changchun 130119, China









*



Correspondence: zhangyi@jlju.edu.cn







Academic Editor: Heming Jia



Received: 20 July 2023 / Revised: 1 August 2023 / Accepted: 2 August 2023 / Published: 9 August 2023



Abstract

:

The wireless sensor network (WSN) is an essential technology of the Internet of Things (IoT) but has the problem of low coverage due to the uneven distribution of sensor nodes. This paper proposes a novel enhanced whale optimization algorithm (WOA), incorporating Lévy flight and a genetic algorithm optimization mechanism (WOA-LFGA). The Lévy flight technique bolsters the global search ability and convergence speed of the WOA, while the genetic optimization mechanism enhances its local search and random search capabilities. WOA-LFGA is tested with 29 mathematical optimization problems and a WSN coverage optimization model. Simulation results demonstrate that the improved algorithm is highly competitive compared with mainstream algorithms. Moreover, the practicality and the effectiveness of the improved algorithm in optimizing wireless sensor network coverage are confirmed.
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1. Introduction


The rapid development of Internet of Things (IoT) technology has significantly improved people’s lives and productivity [1,2] in recent years. Fifth-generation mobile communication technology (5G) advancement will further propel societal development [3]. Wireless sensor networks (WSN) consist of sensor nodes with sensing and communication capabilities and are fundamental components of the IoT [4]. These nodes can perceive, process, and transmit information within a target area, enabling monitoring across various terminals and transforming human interaction with nature. Consequently, WSN research has garnered increasing attention. WSNs have substantial research and application value in diverse fields, such as healthcare, environmental protection, meteorological monitoring, and military defense [5], and have profoundly impacted global technological progress. To effectively monitor a target area, WSNs must provide sufficient coverage. The optimal deployment of sensor nodes to cover a larger area with fewer nodes has become a research hotspot in WSN optimization [6].



Many scholars have used various methods to address the coverage problem in wireless sensor networks. Yoon Y. and Kim Y. H. [7] derived the upper and lower bounds on the coverage of a 2D deployment of static sensors. They used these bounds to construct a method of estimating the coverage of a deployment by assuming that there are only pairwise intersections between the disks representing the range of each sensor. This MA outperforms the previous techniques regarding both speed and coverage achieved. Liu, C and Du H [8] propose an algorithm named 2-partition sweep coverage (2-PSC) based on a partition of the coverage time requirements and positions to achieve t using a K-sweep coverage with the minimum number of mobile sensor nodes, where t is the sweep period constraint to complete the entire coverage process and K is the set of coverage time requirements. Wang W.M. et al. [9] proposed a k-equivalent radius enhanced virtual force algorithm (k-ERVFA) to optimize uneven regional coverage for different k-coverage requirements. Theoretical analysis and simulation experiments are carried out to demonstrate the effectiveness of our proposed algorithm. Paulswamy S.L. et al. [10] proposed a new disc shape deployment strategy. The proposed deployment strategy provides desirable coverage and requires an increased number of sensor nodes when compared with the hexagon shape deployment strategy. The authors employed different methods to achieve a network coverage of sensors, and with the rise of artificial intelligence, more viable solutions have been proposed for this type of problem.



The wireless sensor coverage optimization problem is solvable with optimization strategies. Recently, numerous researchers have begun to propose different swarm intelligent optimization algorithms (SIA) to tackle such problems. SIAs are meta-heuristic algorithms that simulate the behavior of animal groups such as fish, birds, bees, and wolves, optimizing outcomes through simple, limited interactions between individuals and information exchange and cooperation within groups. Priyadarshi, R and Gupta, B [11] introduced an improved particle swarm optimization (PSO) algorithm to optimize coverage with minimal nodes. Zhu, WB et al. [12] suggested a dual-tuned simplified group optimization (SSO) algorithm to maximize coverage areas and improve WSN performance. Nematzadeh S et al. [13] presented a mutant GWO (MuGWO) to enhance resource utilization by maximizing coverage and maintaining connectivity. Dao, TK et al. [14] proposed an improved Archimedes optimization algorithm (EAOA) to address optimal node coverage in unbalanced WSN distribution during random deployment. ZainEldin, H et al. [15] developed an improved dynamic deployment technique based on a genetic algorithm (IDDT-GA) to maximize coverage with minimal nodes and reduce overlapping areas between adjacent nodes. Although these intelligent optimization algorithms have somewhat improved target area coverage in WSNs, they have limitations, such as low search accuracy and susceptibility to locally optimal solutions in PSO and GWO, high time complexity in ALO, and sensitivity to parameter settings in AOA. The whale optimization algorithm (WOA) is a meta-heuristic optimization algorithm that simulates humpback whale hunting behavior, and was proposed by Mirjalili, S and Lewis, A. D [16]. Compared with other commonly used swarm intelligent optimization algorithms, WOA uses random or optimal search agents to simulate whale hunting behavior and a spiral mechanism to mimic the humpback whale’s bubble net attack method. The algorithm has a simple mechanism, few parameters, and strong optimization capabilities, widely recognized in the industry. However, WOA still requires improvement when solving optimization problems, driving researchers to study it further and to propose various enhancement strategies for it. Zhang, J and Wang, J.S. [17] introduced an improved WOA based on nonlinear adaptive weight and golden sine operator (NGS-WOA) to enable search agents to adaptively explore the search space and balance development and exploration phases. Liu, J.X. et al. [18] proposed an enhanced global exploration WOA (EGE-WOA) to improve convergence behavior and global exploration efficiency. Kaur, G and Arora, S [19] incorporated chaos theory into WOA to improve global convergence speed and performance. Bozorgi, SM and Yazdani, S [20] combined WOA’s development with DE’s exploration to offer a promising candidate solution. Luo, J, and Shi, BY [21] proposed a hybrid WOA called MDE-WOA, embedding an improved differential evolution operator to accelerate convergence and improve accuracy.



Mafarja M. et al. [22] introduced SWOA and VWOA and used them as search strategies in a wrapper feature selection model. They tested the algorithms on nine different high-dimensional medical datasets, with a low number of samples and multiple classes. Their results reveal superior performance of the VWOA over the SWOA and other approaches used for comparison purposes. Zhang M.L. et al. [23] proposed an efficient, intelligent prediction model based on the machine learning approach, which combines the improved whale optimization algorithm (RRWOA) with the k-nearest neighbor (KNN) classifier to offer early identification and intervention of critical illnesses in patients. The model offers a scientific framework to support clinical diagnostic decision making. Shivahare B.D. and Gupta S.K. [24] addressed automated segmentation and classification of COVID-19 and normal chest CT scan images. They introduced a variant of the whale optimization algorithm named the improved whale optimization algorithm (IWOA). The IWOA is efficient and achieved better segmentation evaluation measures and better segmentation masks than other methods. It can detect COVID-19 disease from chest CT scan images within a shorter period and can help doctors to start COVID-19 treatment at the earliest.



In the process of improving the WOA algorithm, many scholars have also incorporated ideas from other intelligent optimization algorithms and combined one or more different algorithms with WOA to form new algorithms. Tong W.Y. [25] embedded the DE/rand/1 operator of differential evolution (DE) and the mutation operator of the backtracking search optimization algorithm (BSA) into WOA to form two new algorithms under the proposed framework, called WOA-DE and WOA-BSA. WOA-DE and WOA-BSA are competitive compared with some state-of-the-art algorithms. Prabhakar D. and Satyanarayana M. [26] combined salp swarm optimization (SSA) and whale optimization algorithm (WOA) to propose a new algorithm called salp swarm whale optimization algorithm (SSWOA). In this new algorithm, the SSA algorithm guides the evolution and the WOA algorithm provides assistance. This new algorithm exhibits high convergence accuracy and fast convergence speed. Mohammed H. and Rashid T. [27] have proposed a new algorithm called WOAGWO based on the whale optimization algorithm (WOA) and grey wolf optimization (GWO). They embedded GWO’s hunting mechanism into the development phase of WOA and added a new technique in the exploration phase to improve the solution after each iteration. Their experimental results also confirm that the algorithm performs well and can achieve optimal solutions. All of the above algorithms have shown good optimization performance on existing problems.



This paper presents a novel enhanced WOA (WOA-LFGA) based on the Lévy flight and genetic algorithm optimization problem mechanism applied to the coverage optimization problem of wireless sensor networks.



The remainder of this paper is organized as follows: The remaining part of this section covers the traditional WOA concept and mathematical model, the basic principles of Lévy flight, the genetic algorithm’s crossover and mutation processes, and the wireless sensor coverage optimization model; Section 2 presents the basic framework of the new enhanced WOA (WOA-LFGA) based on Lévy flight and genetic algorithm optimization problem mechanism; Section 3 tests the improved algorithm using 29 standard test functions and applies it to the wireless sensor coverage optimization problem, comparing the proposed algorithm with other mainstream swarm intelligent optimization algorithms; Section 4 concludes the paper and proposes future work.



The main contributions of this paper include:



1. The proposal of an improved WOA called WOA-LFGA, based on Lévy flight and genetic algorithm optimization problem mechanism, significantly enhancing the global optimization ability and convergence accuracy of the algorithm.



2. The introduction of a WSN coverage optimization method based on WOA-LFGA. Simulation results demonstrate that, compared with other mainstream algorithms, the proposed algorithm exhibits strong competitiveness, further validating the practicability and effectiveness of WOA-LFGA in optimizing wireless sensor network coverage.



1.1. Wireless Sensor Network Coverage Model


Assume that m sensor nodes are deployed in a two-dimensional monitoring area S = {s1, s2,…, sm}, where the coordinate of si is denoted by (xi, yi) and that i = 1, 2, …, m. This paper adopts the Boolean model as the node perception model, and the monitoring area is discretized into a rectangle with L × W pixels. The probability of the monitoring point tj being perceived by node si is:


  p    s i  ,  t j    =       1         i f   d    s i  ,  t j    ≤  r s        0         o t h e r w i s e                        



(1)




where, rs is the sensing radius of the sensor, and   d    s i  ,  t j      is the Euclidean distance between the sensor node and the monitored node, expressed as:


  d    s i  ,  t j    =        x i  −  x j     2  +      y i  −  y j     2     



(2)







Then the probability of tj being covered in WSN is:


  P   S ,  t j    = 1 −   ∏   i = 1  m    1 − p    s i  ,  t j       



(3)




where, S is all wireless sensor nodes in the region. Assuming that the monitoring area is equivalent to L × W pixel points, and the coverage rate of the sensor deployment area can be defined as:


  f =     ∑   i = 1  L    ∑   j = 1  W  P   S ,  t    i − 1   W + j       L × W    



(4)







To further evaluate the algorithm’s performance, we introduce a coverage efficiency metric C, which is defined as the ratio of the total coverage area of all nodes to the total sensing area of all sensor nodes in a wireless sensor network. Formula (5) describes its definition.


  C =   f × L × W   N × π ×  r s 2     



(5)







The coverage efficiency metric C quantitatively reflects the redundancy of deployed sensor nodes, where a higher value of C indicates a lower redundancy of nodes and a more even distribution of nodes, while a lower value of C indicates a higher redundancy of nodes and more node clustering.



In this optimization model, our objective is to maximize f and C by altering the positions of the wireless sensors, denoted as S. The range of S is constrained by the region size, which means that the wireless sensor nodes must move within a specified space.




1.2. Overview of Whale Optimization Algorithm (WOA)


In the whale optimization algorithm, the position of each whale represents a feasible solution to the problem. During whale hunting, each humpback whale’s hunting methods fall into two categories: encircling the prey and using a bubble net attack, spiraling up to repel and encircle the prey. During each iteration, the whales randomly choose to prey with one of these two behaviors. The algorithm generates a random number p, in the range of [0, 1]. When p < 0.5, the whale performs the encircling behavior as described by Formulas (7) or (9). When p ≥ 0.5, the whale attacks the prey using bubble net as described by Formula (12). In the process of encircled humpback whale hunting, whales will choose to move towards the best-known individual whale in the current population when |A| < 1, which can be described by Formulas (6) and (7), or randomly select a whale and move in its direction when |A| ≥ 1, which can be described by Formulas (8) and (9). In the following formula, we define    X →     t    as the position vector of the whale in the current iteration, and    X →      t + 1     as the new position vector of the whale in the next iteration.


     D 1   →  =    C →  ·    X *   →     t  −  X →     t     



(6)






   X →      t + 1   =    X *   →    t   −  A →  ·    D 1   →   



(7)






     D 2   →  =    C →  ·    X  r a n d    →  −  X →     t     



(8)






   X →      t + 1   =    X  r a n d    →  −  A →  ·    D 2   →   



(9)




where t is the current iteration number; the dot notation “·” is an element-by-element multiplication; | | is the absolute value;   A →   and   C →   are coefficient vectors;      X *   →    is used to obtain the current position of the optimal individual whales;      X  r a n d    →    is used throughout the whale populations to obtain randomly selected individual whale position vectors. The coefficient vector   A →   and   C →   computation formula is as follows:


   A →  = 2  a →  ·  r →  −  a →   



(10)






     C →  = 2  r →   



(11)







Including   a →   in an iterative process, linear cut from 2 to 0;   r →   is the range of random vectors between [0, 1].



Bubble net hunting is another method by which humpback whales hunt. While using bubble net to drive away prey, whales will constantly update their position. This process stimulates the spiral attack of the whales, and the formula is as follows:


   X →      t + 1   =   D ′  →  ·  e  b l   · cos   2  π l    +    X *   →     t   



(12)






    D ′  →  =      X *   →     t  −  X →     t     



(13)




where b is the constant used to define the shape of the logarithmic spiral and l is a random number in the range [−1, 1].




1.3. The Lévy Flight Method


Lévy flight has been widely used in various optimization algorithms, and the results show that it can provide good global search capability for algorithms. The Lévy flight method not only ensures the diversity of the population but also improves the convergence speed and accuracy of the algorithm. During the flight, short-distance movements with smaller steps and long-distance movements with larger steps are carried out alternately. This is conducive to increasing the diversity of the population and avoiding the algorithm falling into a local optimal solution. In this paper, we integrate the Lévy flight method [28] into the exploration phase of WOA, the formula improved by Lévy flight can be expressed as:


   X →      t + 1   =       s i g n   r a n d −  1 2    · α ·      X  r a n d    →  −  X →     t    ⊕ L é v y  s          i f    p 2  > 0.95          X *   →      t   +   F →   · α ·      X *   →      t   −  X →     t    ⊕ L é v y  s                                  o t h e r w i s e        



(14)




where p2 is a random number within the range of [0, 1], Lévy flight is a non-Gaussian random process with smooth increments obeying Lévy stable distribution, and its formula is expressed as (15).


   L é v y     s  ∼    s    − 1 − β   ,         0 < β ≤ 2  



(15)




where s refers to the Lévy flight of step length and β the index, which we will assign to 1.5. s can be calculated by the formula as follows:


   s    =  u     v     1 β      ,         u ~ N   0 ,  σ u    ,         v ~ N   0 ,  σ v     



(16)




where, u and v are subject to normal distributions, enabling individuals to obtain effective positioning in the search space and thus enhancing the algorithm’s exploration ability.     σ u      and      σ v      are expressed in the following formula:


   σ u  =       Γ   1 + β   · sin     π β  2      β · Γ     1 + β   / 2   ·  2    β − 1   / 2          1 β     



(17)






   σ v  = 1  



(18)




where, Γ is the standard gamma function.



In this study, to enhance the global exploration capability of the improved algorithm, we replaced Formula (8) in the original algorithm with Formula (14). In other words, when the conditions p < 0.5 and |A| ≥ 1 are satisfied, the algorithm employs Equation (14) to update the position of the whales. This equation is specifically utilized to perform position updates using a Lévy flight approach, which enhances the algorithm’s global exploration capabilities.




1.4. Genetic Algorithm


The genetic algorithm is a swarm intelligent optimization algorithm based on Darwinian evolution. Its main idea simulates the natural selection law of survival of the fittest. In the genetic algorithm, each solution is encoded as a chromosome, and the fitness function in the optimization algorithm calculates the adaptability of each chromosome to the living environment. The better the fitness value is, the stronger the adaptability of the individual to the environment, and the higher the probability of being retained in nature; conversely, the worse the fitness value is, the weaker the adaptability of the individual to the environment, and the easier it is to be eliminated in the process of iteration. The genetic algorithm evolves the optimal solution of the problem through N generations of heredity, variation, crossover, and replication. Crossover and mutation are at the heart of the algorithm.



Mutation refers to randomly replacing values on a chromosome with other values and comparing the mutated chromosome with the original, keeping the one with better fitness. The process can be clearly shown in Figure 1.





2. Proposed WOA-LFGA


This section introduces the details of WOA-LFGA, an improved algorithm based on WOA. The improvement of WOA in this paper includes the initialization phase, development phase, genetic optimization mechanism, and boundary processing strategy. The mathematical model and pseudo code of WOA-LFGA are presented.



2.1. Initialization Based on Chaotic Map


This section introduces the details of an improved algorithm WOA-LFGA based on WOA. Although WOA has a good convergence rate, it still cannot perform well in the global search process. Therefore, to ensure that individual whales have strong searching abilities at the beginning, this paper introduces chaotic mapping to initialize the population. Chaotic mapping has randomness, ergodicity, and initial value sensitivity, which can make the algorithm converge faster. In [19], 10 different chaotic maps are described. After conducting multiple experiments, we ultimately selected tent mapping to generate chaotic sequences and initialize the population, so that the initial solutions are distributed as evenly as possible in the solution space. This paper’s improvements to WOA include the initialization phase, development phase, genetic optimization mechanism, and boundary processing strategy. The mathematical model and pseudo code of WOA-LFGA are presented.


     X  t + 1  k   →  =          X t k   u  ,             0 ≤  X t k  − l b ≤   u b − l b   ∗ u         1 −  X t k    1 − u   ,                                                                         o t h e r w i s e        



(19)




where k is the population dimension; t is the number of current iterations; lb is the lower boundary value of the search space; and ub is the upper boundary value of the search space. To maintain the randomness of the initialization information of the algorithm, the value of u in this algorithm is, after many experiments, 0.3.




2.2. Enhanced Exploitation Phase


The Lévy flight method can provide the algorithm with a good global search capability. In this paper, we integrate the Lévy flight method into the exploration phase of WOA, so that individual whales can have a relatively high probability of taking long strides in the iterative process, to expand the search scope and to improve the global search capability of the algorithm. To a certain extent, the introduction of the Lévy flight can also accelerate the cover algorithm’s convergence rate. The iterative formula improved by Lévy flight can be expressed as Equation (14).



Where t is the number of current iterations;      X  r a n d    →    is used throughout the whale populations to obtain randomly selected individual whale position vectors;   r a n d   and   p 2   are random numbers in the range [0, 1];   F →   is the length and    X →     t    is the same random vector ( t ), in the range [2, 2]; The specific mathematical model of Lévy(s) has been introduced in the previous section; α is step size parameter, which can be expressed in the following formula:


   α    = r a n d ( 1 ,   d i m ) ∗    α   0   



(20)




where the value of    α 0    is 1.6, the rand (1, dim) ranges in a random number between 1 and whale individual dimension value.




2.3. An Improved Method Based on Genetic Algorithm


The genetic algorithm simulates the process of natural selection, and its core is crossover and variation. We integrate the ideas of crossover and mutation in genetic algorithm into WOA. Crossover can improve the local optimization ability of the algorithm, and mutation can improve the random search ability of the algorithm. At the end of each iteration, the algorithm will select the top 10% of individuals with the best fitness in the population as elite individuals and the bottom 20% of individuals with the worst fitness as elimination individuals. Through crossover and mutation strategies, new chromosome vectors are generated to replace the chromosome vectors of eliminated individuals. In the selected individuals, the variation rate was 0.2.



The crossover process involves randomly selecting two chromosomes from elite individuals’ chromosomes, one for the father and one for the mother. The two chromosomes are then cut off at one point and spliced together to create a new chromosome. This new chromosome contains both a certain amount of the father’s genes and a certain amount of the mother’s genes. The process of mutation uses Formula (21) to update the new position of the eliminated individual:


   X →      t + 1   =   u b − l b   ∗ exp    t  m a x i t e r     + l b  



(21)




where t is the number of current iterations; maxiter is the total number of iterations; lb is the lower boundary value of the search space; and ub is the upper boundary value of the search space. The curve of Equation (20) can be visualized in Figure 2.



Through many experiments, we found that, for the optimization of a problem, it is best to introduce a genetic algorithm optimization mechanism when the number of iterations of that algorithm reaches 20% of the maximum number of iterations.




2.4. Boundary Processing Strategy


When the individual whale exceeds the boundary, which strategy to employ to pull the individual whale back into the search space becomes a problem that all variation strategies must deal with. The processing strategy of the original WOA is to place the offending whale individuals on the boundary or the multiple of the boundary, which causes a problem. After the completion of an iteration, many whale individuals will be reset on the boundary, and the number of whale individuals in the search space will be reduced. Equation (22) is used in this paper to deal with individual whales that cross the boundary. This strategy will ensure that the entire whale population is randomly distributed in the space, increasing the utilization rate of the entire whale population.


   X →      t + 1   =    X →      t   − l b     %     u b − l b   + l b  



(22)




where t is the number of current iterations; lb is the lower boundary value of the search space; ub is the upper boundary of the search space and % is the mod operator.



The pseudocode of the improved algorithm WOA-LFGA can be described by Algorithm 1.



	Algorithm 1: WOA-LFGA



	Input: Fitness function

Output: Available optimal solution

(i) Initialization process

Step1: Initialize parameter and variable values used in the algorithm.

Step2: Initialize the whales population X = Xi (i = 1, 2,…, N) using chaotic mapping by Equation (19).

Step3: Calculate the fitness for X and select the best individual and assign it to X*.

Step4: Set the iteration counter to t = 0.

(ii) Iterative process

Step5: While t < maxiter, Do.

Step6: Update the position for Xi by Equation (7) (if p < 0.5 and |A| < 1) or Equation (14) (if p < 0.5 and |A| ≥ 1) or Equation (12) (if p ≥ 0.5).

Step7: Select the best 10% and the worst 20% of individuals and use crossover and mutation strategies to update individuals for the worst 20% based on the best 10% of individuals.

Step8: Return the search agents that go beyond the boundaries of the search space using Equation (22).

Step9: Calculate the fitness for X and update X* if there is a better solution.

Step10: Iterate the counter t = t + 1.

End.

(iii) Results obtained

Step11: Output the best agent X*.

The end.










3. Results and Discussion


In this section, we use MATLAB R2016 to conduct simulation experiments. The algorithm runs on Windows 10 64-bit system with 8GB memory. The improved algorithm is tested with 29 standard test functions and applied to the wireless sensor coverage optimization problem. The improved algorithm proposed in this paper is compared with several other mainstream swarm intelligent optimization algorithms.



3.1. WOA-LFGA for Function Optimization


In this section, the numerical efficiency of the WOA-LFGA algorithm that is improved in this paper is verified by solving 35 mathematical optimization problems. The 35 reference functions can be divided into three categories. Among these, F1–F10 is a single-mode reference function, which reflects the exploration performance of the algorithm. F11–F29 is a multi-modal reference function, which challenges the exploration capability of the algorithm and reflects the development capability of the algorithm. F30–F35 is a composite reference function proposed in CEC 2005. These reference functions are shift, rotation, expansion, and combination variables of some mathematical optimization problems, which are used to test the global optimization ability of the algorithm. These functions can reflect the ability of the algorithm to escape from the local optimal. We compare the WOA-LFGA algorithm with several other recently proposed population intelligent optimization algorithms. The search range space and optimal value f min of test functions and individuals are listed in Table 1, Table 2 and Table 3.



For each reference function, the number of iterations of the algorithm is set to 500 and the population size is 30. The program is repeated 30 times, and its mean and variance are calculated. We compared WOA-LFGA with PSO [29], AOA [30], GWO [31], SSA [32], and WOA, and reported the statistical results in Table 4 and Table 5.



The functions F1–F10 are single-mode reference functions with only one global optimal value in the search space. They are used to evaluate the development capability of the studied meta-heuristic algorithm. As can be seen from Table 4, WOA-LFGA has strong competitiveness compared with other meta-heuristic algorithms, especially the most effective optimization effect in functions F1–F5 and F8–F10, and the optimization effect in F6 and F7 are also more robust than most optimization algorithms. Therefore, WOA-LFGA has excellent exploration performance and local optimization ability.



Functions F11–F29 are multi-modal reference functions. Different from single-modal functions, multi-modal functions contain many locally optimal solutions, and the number of optimal local values increases exponentially with the increase of function dimension. Therefore, these functions are well suited to test the development capabilities of algorithms. As can be seen from Table 4, WOA-LFGA has excellent development capability in both multi-modal reference functions and fixed dimensional multi-modal reference functions. In most test problems, this algorithm is always either the most efficient, sub-optimal, or close to the optimal value. It has been proved that WOA-LFGA has good global search ability and can jump out of optimal local ability.



Functions F30–F35 are some composite reference functions, and optimizing such functions is challenging. According to the optimization data in Table 5, WOA-LFGA achieved the best fitness in three test problems and had strong competitiveness in the results of the remaining three tests. This proves that WOA-LFGA has strong global optimization ability.



The comparison of convergence curves between WOA-LFGA and other population intelligent algorithms is shown in Figure 3. To establish a more intuitive picture, a semi-logarithmic graph is used in this paper to reflect the decline rate of the fitness curve, meaning that the part not shown in the graph indicates the way in which its fitness value has declined to infinitesimal.



As seen in the figure, WOA-LFGA exhibits three distinct convergence trends during the iterative process. In some cases, the algorithm converges to the optimal global solution in less than half of the iterations. This is attributed to the introduction of the Lévy flight method, which enhances the global search scope and convergence speed of the algorithm. As a result, WOA with Lévy flight can locate the optimal global solution more quickly than other algorithms. This behavior is evident in F1, F3, F8, and F14. In other instances, the convergence rate accelerates when the algorithm is near 20% of the total iterations. This phenomenon results from the incorporation of the genetic algorithm optimization problem mechanism. The crossover strategy strengthens the algorithm’s local optimization ability near the optimal individual, while the mutation strategy increases the population’s diversity. This behavior is apparent in F4, F7, F9, and F28. Finally, rapid convergence in the initial steps of iteration is achieved due to the introduction of chaotic mapping for initialization. This approach allows whale individuals to distribute and search the space more evenly during initialization, thereby finding the optimal solution more quickly. This behavior is evident in F5, F11, F19, and F21. In summary, the results of this section show that the improved WOA’s global search and local optimization abilities have been significantly enhanced. Specifically, compared with other population-based intelligent algorithms, the fitness of the proposed algorithm decreases rapidly within fewer iterations and reaches the lowest fitness result more quickly.



To test the scalability of WOA-LFGA, we conducted experiments on 19 benchmark functions (F1–F19) in 4 dimensions (30, 50, 100, 500) and compared them with several metaheuristic algorithms as shown in Table 6. For each algorithm, the population size and maximum number of iterations were fixed at 30 and 500, respectively, and we ran the experiments independently 30 times.



These results indicate that WOA-LFGA outperforms the compared algorithms in most cases, as it achieves the best average value in 53 out of 57 cases (92.98%). This is higher than other algorithms such as AOA (17.54%) and WOA (8.77%), among others (0%). WOA-LFGA is competitive in searchability and convergence rate, demonstrating universality, robustness, and high stability. In the following chapters, WOA-LFGA will be tested in the application of more challenging wireless sensor coverage optimization problems.




3.2. WOA-LFGA for WSN Coverage Optimization Problem


To verify the effectiveness of WOA-LFGA in the WSN coverage optimization problem, we compare the proposed algorithm with several other population intelligent algorithms and several other improved WOAs. Equations (4) and (5) are together used as the objective function when solving the WSN coverage optimization model. During the experiment, we found that WOA-LFGA was unable to manage its optimal performance in the coverage optimization problem of wireless sensors. After several experiments, we updated Formulas (21)–(23) for the coverage optimization problem of a wireless sensor:


    X →  j  t + 1   =   c a n d  →    i n d    



(23)




where     c a n d  →    is a vector subject to rectangular distribution, its range is between (lb, ub + r), its dimension is (ub − lb + r)/r; r is the node radius of the wireless sensor; ind is the index coefficient, and its calculation formula is expressed as Formula (24):


  i n d =       j % r + 1                                                                                                                                     i f   j   i s   o d d       ⌊ − c o s   π j  2  ∗   ⌈  j r  ⌉ % 2   +   1 +   c o s   π j  4    + ⌊   2 j − 2  r  ⌋   ⌋         i f   j   i s   e v e n        



(24)




where j is the dimension index of the whale individual, and % is the mod operator.



The aim of this experiment is to test and compare the improved WOA algorithm with the above five algorithms. The evaluation index is the average overall coverage rate and algorithm stability, which is represented by variance. We tested the coverage of 27 target points within an area of 100 m × 100 m, in which the coverage radius of each target point was 11 m. To make the experimental conclusions more persuasive, we conducted 30 experiments, with 200 iterations for each experiment. The parameter settings of the experiment are shown in Table 7.



3.2.1. Comparison of WOA-LFGA with Other Basic Algorithms


In this section, the effectiveness of WOA-LFGA is measured by comparing it with SMA [33], DOA [34], AOA, BWO [35], and WOA. The parameter settings of the comparison algorithm are all taken from the corresponding literature. In this experiment, the algorithm proposed in this paper is compared with the above five population intelligent algorithms, and the program operation results are shown in Table 8 and Figure 4.



It can be seen from Table 8 that, compared with SMA, DOA, AOA, BWO, and WOA, WOA-LFGA has significantly improved the coverage optimization of WSN. Overall, the optimization effect of SMA, AOA, and BWO in this experiment could be better, and the average coverage rate is below 70%. The other three algorithms have relatively high target point coverage and slight variance, which indicates that these algorithms play a role in the coverage optimization of wireless sensors. Specifically, the optimization results of WOA and DOA are similar, ranging from 75% to 80%, while the optimization effect of WOA is slightly higher, reaching 79.68%. However, the improved WOA in this paper achieves the current best optimization results, with a coverage rate of 90.97%, higher than the second place, 11.29% of the original WOA. WOA-LFGA has the lowest variance from the second evaluation index, and its value is 0.0019. That is, the algorithm has the highest stability. The improved WOA algorithm has certain advantages over the other five algorithms in terms of performance, combining the two evaluation indexes. From the perspective of coverage efficiency, WOA-LFGA also achieves the highest node coverage efficiency among the optimized algorithms, which fully demonstrates that the algorithm has lower node redundancy and a more even distribution of nodes in the area.



As seen in Figure 5, the WOA-LFGA proposed in this paper not only reaches the highest coverage rate but also has the fastest convergence rate. When the number of iterations reaches about 30% of the maximum number of iterations, it has reached the optimum. Although BWO is an excellent algorithm, its performance could be better for the problems proposed in this paper. The optimization effect of SMA and AOA is similar, and the coverage rate calculated by them hardly changes during the iteration process. Although the final coverage rate of WOA and DOA can reach nearly 80%, their convergence rate is slower than that of WOA-LFGA, and they need to iterate more than 60% to get close to the maximum coverage rate. The improved WOA in this paper is also superior to other algorithms in terms of convergence speed and has strong practicability and effectiveness in practical applications.



Using the sensor node configuration obtained from Figure 4, the Prim algorithm [36] was employed to generate a corresponding minimum spanning tree between the nodes, which was subsequently used to depict the communication network among the monitoring nodes, as presented in Figure 6.



From the perspective of communication distance uniformity and as observed in the results, the WOA-LFGA algorithm outperforms the other five compared algorithms. Moreover, the optimized communication network generated by the WOA-LFGA algorithm features more convergence nodes located near the edge, which is conducive to shortening the distance and saving energy consumption between the nodes during data transmission. Overall, in the process of node deployment, all six algorithms are capable of optimizing the placement of the nodes, thereby enhancing the coverage of the network. However, the network coverage optimized by the WOA-LFGA algorithm demonstrates the highest level of performance, with a more uniform distribution of the nodes. This contributes to improving the reliability of the overall network and reducing energy consumption during data transmission, thus extending the working time of the network.



By varying the number of sensor nodes N deployed in the above experiment, we investigate its impact on the network coverage. Specifically, we discuss the variation of network coverage with N ranging from 10 to 30 with a step size of 5. The experimental results are presented in Figure 7 and Table 9.



The figure clearly demonstrates the trend of network coverage variation with the change in the number of sensor nodes. Specifically, when the number of nodes is 20 or less, the difference in coverage between the different algorithms is not significant. However, it gradually becomes apparent after this threshold. From the graph, it is evident that WOA-LFGA can achieve a higher network coverage than the other algorithms with the same number of nodes. Furthermore, the curve indicates that WOA-LFGA has the fastest growth rate of coverage with the increasing number of nodes, demonstrating strong competitiveness compared to the other algorithms.




3.2.2. Comparison of WOA-LFGA with Different Modified WOA


In this subsection, the effectiveness of WOA-LFGA is measured by comparison with CWOA, WOABAT [37], RDWOA [38], WOAmM [39], EGE-WOA, where CWOA uses tent mapping. The parameter settings of the comparison algorithm are taken from the corresponding literature. In this experiment, the algorithm proposed in this paper is compared with the above five population intelligent algorithms, and the program operation results are shown in Table 10 and Figure 8.



It can be seen from Table 10 and Figure 9 that WOA-LFGA significantly improves the coverage optimization of WSN compared with CWOA, WOABAT, RDWOA, WOAmM, and EGE-WOA. In this experiment, the performance effect of EGE-WOA could be better. The coverage rate of EGE-WOA is below 60%, while that of CWOA is 68.34%, slightly higher than that of EGE-WOA. The coverage rate of WOA-BAT, RDWOA, and WOAmM reached an average of about 80%, or individual rates of 78.05%, 81.98%, and 81.24%, respectively. The average coverage rate of WOA-LFGA proposed in this paper is 90.97%, which achieves relatively adequate coverage and is 9% higher than the second place. WOA-LFGA has the lowest variance from the second evaluation index, and the algorithm stability is the best among several improved WOAs. Overall, WOA-LFGA has advantages over the other five algorithms’ overall performances.



Using the sensor node configuration obtained from Figure 8, the Prim algorithm was employed to generate a corresponding minimum spanning tree between the nodes, which was subsequently used to depict the communication network among the monitoring nodes, as presented in Figure 10.



From Figure 10, it is evident that WOA-LFGA still achieves more even communication distances compared with other optimized algorithms. This reduces the transmission power for information exchange, thus saving energy and extending the usage time of the entire network.



By varying the number of sensor nodes N deployed in the above experiment, we investigate its impact on the network coverage. Specifically, we discuss the variation of network coverage with N ranging from 10 to 30 with a step size of 5. The experimental results are presented in Figure 11 and Table 11.



Clearly, the following algorithms did not show much difference in optimization performance when the number of sensor nodes was less than 20. However, as the number exceeded 20, the advantage of WOA-LFGA gradually became apparent. With the same number of nodes, WOA-LFGA can better deploy wireless sensor nodes and maximize the coverage of the entire network. In terms of standard deviation, regardless of the number of sensor nodes, WOA-LFGA always has the smallest standard deviation, indicating that this algorithm has the best stability and the fastest growth rate. All these indicators together demonstrate the strong competitiveness of WOA-LFGA.





3.3. WOA-LFGA for WSN Coverage Practical Application


With the unprecedented development of big data, the widespread adoption of the fifth-generation mobile communication technology (5G) has accelerated. Currently, telecommunications operators worldwide are gradually rolling out 5G networks, and the development and application prospects of 5G technology are extremely promising. It can support a larger number of device connections and can contribute to the development of the Internet of Things (IoT) and the construction of smart cities. In this section, we apply the wireless sensor coverage optimization problem to real-life scenarios. Taking Jilin Jianzhu University as an example, as shown in Figure 12a, its outline can be abstracted as an irregular pentagon. For the sake of convenience in calculations, we rotate the shape counterclockwise by 90 degrees, as depicted in Figure 12b.



Equation (25) imposes constraints on the new boundary range.


       0.325 x < y < 0.077 x + 950 ,   0 < x ≤ 260     0.325 x < y < − 0.281 x + 1043.125 ,   261 < x ≤ 400     4.167 x − 1536.667 < y < − 0.281 x + 1043.125 ,   401 < x ≤ 580       



(25)







In this experiment, we tested the coverage of 13 target points within the aforementioned pentagonal area, in which the coverage radius of each target point was 100 m. To ensure that the experimental conclusions are more persuasive, we conducted 30 experiments, with 200 iterations for each experiment. The parameter settings of the experiment are shown in Table 12.



3.3.1. Comparison of WOA-LFGA with Other Basic Algorithms


In this subsection, the effectiveness of WOA-LFGA is measured by comparison with SMA, DOA, AOA, BWO, and WOA. Parameter Settings of the comparison algorithm are all taken from the corresponding literature. In this experiment, the algorithm proposed in this paper is compared with the above five population intelligent algorithms, and the program operation results are shown in Table 13.



It can be seen from Table 13 that, compared with SMA, DOA, AOA, BWO, and WOA, WOA-LFGA has significantly improved the coverage optimization of the WSN. In comparison, DOA, AOA, and BWO demonstrate better optimization performance, achieving coverage rates of over 50%. Both SMA and WOA also provided feasible solutions for wireless sensor coverage in this experiment. These algorithms have proven their efficacy in practical applications. Specifically, AOA and BWO yield similar optimization results, with coverage rates around 52%. DOA yields slightly higher optimization results, surpassing 53% coverage. However, the improved WOA algorithm in this study achieved the best optimization results, with an average coverage rate of 83.77%, surpassing the second-ranked algorithm by 30.71%. This is mainly due to WOA-LFGA’s different boundary handling strategy and excellent global search capabilities. In terms of variance, WOA-LFGA has the lowest variance, with a value of 0.0035, indicating its good stability. In terms of coverage efficiency, WOA-LFGA also achieves the highest node coverage efficiency among all algorithms, demonstrating lower node redundancy and a more uniform distribution of nodes in the area. Considering these three evaluation indexes, the improved WOA algorithm has certain advantages over the other five algorithms in terms of performance.



As seen in Figure 13, the WOA-LFGA proposed in this paper not only reaches the highest coverage rate but also has the fastest convergence rate. During the iteration process, it remained in a state of growth. Specifically, the growth was rapid in the first 30% of the iterations, but then slowed. The optimization effects of DOA and AOA are similar, as they show minimal noticeable growth during the iteration process. BWO exhibits relatively rapid growth, but the results are not significantly different from DOA. SMA and WOA are also excellent algorithms, but their performance in this experiment was not very satisfactory. The improved WOA presented in this paper outperforms other algorithms in terms of convergence speed and accuracy and demonstrates strong practicality and effectiveness in practical applications.




3.3.2. Comparison of WOA-LFGA with Different Modified WOA


In this subsection, the effectiveness of WOA-LFGA is measured by comparison with CWOA, WOABAT, RDWOA, WOAmM, and EGE-WOA, where CWOA uses tent mapping. The parameter settings of the comparison algorithm are taken from the corresponding literature. In this experiment, the algorithm proposed in this paper is compared with the above five population intelligent algorithms, and the program operation results are shown in Table 14.



It can be seen from Table 14 and Figure 14 that WOA-LFGA significantly improves the coverage optimization of WSN compared with CWOA, WOABAT, RDWOA, WOAmM, and EGE-WOA. In this experiment, the average coverage obtained by different improved whale algorithms varies. Among them, the evaluation coverage of WOABAT and WOAmM is less than 40%, while the average coverage obtained by EGE-WOA is slightly higher, reaching nearly 44%. The coverage of CWOA and RDWOA can exceed 50%, while the average coverage of the WOA-LFGA proposed in this article can reach 83.77%, which is 30.37% higher than the second place. The variance of WOA-LFGA is the smallest among several algorithms, which fully demonstrates that the stability of the algorithm is better than other algorithms. WOA-LFGA also has the highest coverage efficiency, which fully proves that the algorithm has a lower node redundancy and a more uniform regional node distribution. In summary, WOA-LFGA outperforms other algorithms in practical applications.






4. Conclusions


As IoT technology continues to advance, the internet of everything is becoming a reality. The rapid development of 5G technology will push various industries towards greater intelligence and efficiency. Smart cities, transportation, healthcare, and classrooms are increasingly integrated into people’s lives. The widespread application of IoT relies heavily on the rapid development of wireless sensors, which requires the reasonable deployment of sensor nodes within the monitored space, enabling fewer nodes to achieve greater coverage. This paper reviews solutions from international scholars and their teams that have addressed the coverage optimization problem of wireless sensors and conducts in-depth research on WSN coverage optimization using swarm intelligence algorithms.



This paper proposes the WOA-LFGA based on Lévy flight and genetic optimization mechanisms to comprehensively improve the effectiveness of the whale optimization algorithm. The algorithm has been successfully applied to 35 benchmark test functions and wireless sensor coverage problems. Comparative analysis of experimental simulation results reveals that the WOA-LFGA exhibits excellent global and local search abilities. Tests with single-mode and multi-mode reference functions demonstrate significant improvements in the algorithm’s convergence speed and accuracy, and its stability and ability to escape local optima are highly competitive compared with other intelligent optimization algorithms. Moreover, when applied to WSN coverage optimization problems and compared with other intelligent optimization algorithms, WOA-LFGA yields better optimization results, substantially improving coverage, convergence, and algorithm stability. Based on the experimental results presented in this paper, WOA-LFGA demonstrates strong competitiveness in intelligent optimization. Its application to other practical problems will become a more critical research direction in the future.
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Figure 1. The crossover strategy in the genetic algorithm. 
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Figure 2. The curve characteristics of Equation (21). 
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Figure 3. Comparison of convergence curves of WOA-LFGA and other algorithms obtained in some of the benchmark problems. 
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Figure 4. Node coverage distribution diagram. (a) SMA, (b) DOA, (c) AOA, (d) BWO, (e) WOA, (f) WOA-LFGA. 
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Figure 5. Comparison of convergence curves of WOA-LFGA and other basic algorithms obtained in WSN coverage optimization problem. 
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Figure 6. The composition of sensor nodes. (a) SMA, (b) DOA, (c) AOA, (d) BWO, (e) WOA, (f) WOA-LFGA. 
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Figure 7. The impact of the number of sensor nodes on the network coverage between WOA-LFGA and other basic algorithms. 
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Figure 8. Node coverage distribution diagram. (a) CWOA, (b) WOABAT, (c) RDWOA, (d) WOAmM, (e) EGE-WOA, (f) WOA-LFGA. 
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Figure 9. Comparison of convergence curves of WOA-LFGA and different modified WOA obtained in WSN coverage optimization problem. 
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Figure 10. The composition of sensor nodes. (a) CWOA, (b) WOABAT, (c) RDWOA, (d) WOAmM, (e) EGE-WOA, (f) WOA-LFGA. 
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Figure 11. The impact of the number of sensor nodes on the network coverage between WOA-LFGA and different modified WOA. 
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Figure 12. Jilin Jianzhu University. (a) Map of Jilin Jianzhu University, (b) Abstract of the Outline of Jilin Jianzhu University. 
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Figure 13. Comparison of convergence curves of WOA-LFGA and other basic algorithms obtained in WSN coverage practical application. 
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Figure 14. Comparison of convergence curves of WOA-LFGA and different modified WOA obtained in WSN coverage practical application. 
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Table 1. Description of unimodal benchmark functions.
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	Function
	D
	Range
	fmin





	    F 1   x  =    ∑   i = 1  D    x i 2    
	30
	[−100, 100]
	0



	    F 2   x  =    ∑   i = 1  D      x i    +    ∏   i = 1  D      x i      
	30
	[−10, 10]
	0



	    F 3   x  =    ∑   i = 1  D          ∑   j − 1  i    x j     2    
	30
	[−100, 100]
	0



	    F 4   x  =   m a x  i  { |  x i  | , 1 ≤ i ≤ D }   
	30
	[−100, 100]
	0



	    F 5   x  =    ∑   i = 1   D − 1      100      x  i + 1   −  x i 2     2  +      x i  − 1    2      
	30
	[−30, 30]
	0



	    F 6   x  =    ∑   i = 1  D          x i  + 0.5      2    
	30
	[−100, 100]
	0



	    F 7   x  =    ∑   i = 1  D   i  x i 4  + r a n d o m   0 ,   1     
	30
	[−1.28, 1.28]
	0



	    F 8   x  =    ∑   i = 1  D        x i      i + 1     
	30
	[−1, 1]
	0



	    F 9   x  =    ∑   i = 1  D          ∑   j = 1  D    x j     2    
	30
	[−100, 100]
	0



	    F  10    x  =    ∑   i = 1  D    x i 2  +        ∑   i = 1  D   0.5 i  x i     2  +        ∑   i = 1  D   0.5 i  x i     4    
	30
	[−5, 10]
	0
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Table 2. Description of multimodal benchmark functions.
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	Function
	D
	Range
	fmin





	    F  11    ( x )  =    ∑   i = 1  D   −  x i  s i n  (     |   x i   |     )    
	30
	[−500, 500]
	−418.98 × D



	    F  12    ( x )  = 1 +    ∑   i = 1  D   s i  n 2   (   x i   )  − exp  (     ∑   i = 1  D    x i 2   )    
	30
	[−10, 10]
	0



	    F  13    ( x )  = 0.5    ∑   i = 1  D    (   x i 4  − 16  x i 2  + 5  x i   )    
	30
	[−5, 5]
	−39.166 × D



	    F  14    ( x )  =    ∑   i = 1  D   [  x i 2  − 10   c o s  (  2 π  x i   )  + 10 ]   
	30
	[−5.12, 5.12]
	0



	    F  15    ( x )  = − 20 e x p  (  − 0.2    1 n     ∑   i = 1  D    x i 2     )  − e x p  (   1 n     ∑   i = 1  D   cos  (  2 π  x i   )   )  + 20 + e   
	30
	[−32, 32]
	0



	             F  16    ( x )  =  1  4000      ∑   i = 1  D    x i 2  −    ∏   i = 1  D   c o s  (     x i     i     )  + 1       
	30
	[−600, 600]
	0



	        F  17    ( x )  =  (     ∑   i = 1  D   s i  n 2   (   x i   )  − e x p  (  −    ∑   i = 1  D    x i 2   )   )        e x p  (  −    ∑   i = 1  D   s i  n 2     |   x i   |     )        
	30
	[−10, 10]
	−1



	       F  18    ( x )  =  π D  { 10 sin  (  π  y 1   )  +    ∑   i = 1   D − 1       (   y i  − 1  )   2   [  1 + 10   sin  2   (  π  y  i + 1    )   ]                                         +    (   y n  − 1  )   2  } +    ∑   i = 1  D   u  (   x i  ,   10 ,   100 ,   4  )             
	30
	[−50, 50]
	0



	    F  19    ( x )  = 0.1 {   sin  2   (  3 π  x 1   )  +    ∑   i = 1  D      (   x i  − 1  )   2   [  1 +   sin  2   (  3 π  x i  + 1  )   ]    

   +    (   x n  − 1  )   2   [  1 + s i  n 2   (  2 π  x D   )   ]  } +    ∑   i = 1  D   u  (   x i  ,   5 ,   100 ,   4  )    
	30
	[−50, 50]
	0



	    F  20    ( x )  =    (   1  500   +    ∑   j = 1   25     1  j +   ∑   i = 1  2     (   x i  −  a  i j    )   6     )    − 1     
	2
	[−65, 65]
	1



	    F  21    ( x )  =    ∑   i = 1   11       [   a i  −    x 1   (   b i 2  +  b i   x 2   )     b i 2  +  b i   x 3  +  x 4     ]   2    
	4
	[−5, 5]
	0.00030



	    F  22    ( x )  = 4  x 1 2  − 2.1  x 1 4  +  1 3   x 1 6  +  x 1   x 2  − 4  x 2 2  + 4  x 2 4    
	2
	[−5, 5]
	−10.316



	    F  23    ( x )  =    (   x 2  −   5.1   4  π 2     x 1 2  +  5 π   x 1  − 6  )   2  + 10  (  1 −  1  8 π    )  cos  x 1  + 10   
	2
	[−5, 5]
	0.398



	    F  24    ( x )  = [ 1 +    (   x 1  +  x 2  + 1  )   2  ( 19 − 14  x 1  + 3  x 1 2  − 14  x 2    

   + 6  x 1   x 2  + 3  x 2 2  )  ]    ×  [  30 +    (  2  x 1  − 3  x 2   )   2    

   ×  (  18 − 32  x 1  + 12  x 1 2  + 48  x 2  − 36  x 1   x 2  + 27  x 2 2   )  ]   
	2
	[−2, 2]
	−3



	    F  25    ( x )  = −    ∑   i = 1  4    c i  e x p  (  −    ∑   j = 1  3    a  i j      (   x j  −  p  i j    )   2   )    
	3
	[1, 3]
	−3.86



	    F  26    ( x )  = −    ∑   i = 1  4    c i  e x p  (  −    ∑   j = 1  6    a  i j      (   x j  −  p  i j    )   2   )    
	6
	[0, 1]
	−3.32



	    F  27    ( x )  = −    ∑   i = 1  5      [   (  X −  a i   )     (  X −  a i   )   T  +  c i   ]    − 1     
	4
	[0, 10]
	−10.1532



	    F  28    ( x )  = −    ∑   i = 1  7      [   (  X −  a i   )     (  X −  a i   )   T  +  c i   ]    − 1     
	4
	[0, 10]
	−10.4028



	    F  29    ( x )  = −    ∑   i = 1   10       [   (  X −  a i   )     (  X −  a i   )   T  +  c i   ]    − 1     
	4
	[0, 10]
	−10.5363
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Table 3. Description of composite benchmark functions.
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	Function
	D
	Range
	fmin





	F30(CF1): f1, f2, f3,…, f10 = Sphere Function

   [σ1, σ2, σ3,…, σ10] = [1, 1, 1,…, 1]

   [λ1, λ2, λ3,…, λ10] = [5/100, 5/100, 5/100,…, 5/100]
	10
	[−5, 5]
	0



	F31(CF2): f1, f2, f3,…, f10 = Griewank’s Function

   [σ1, σ2, σ3,…, σ10] = [1, 1, 1,…, 1]

   [λ1, λ2, λ3,…, λ10] = [5/100, 5/100, 5/100,…, 5/100]
	10
	[−5, 5]
	0



	F32(CF3): f1, f2, f3,…, f10 = Griewank’s Function

   [σ1, σ2, σ3,…, σ10] = [1, 1, 1,…, 1]

   [λ1, λ2, λ3,…, λ10] = [1, 1, 1,…, 1]
	10
	[−5, 5]
	0



	F33(CF4): f1, f2 = Ackley’s Function, f3, f4 = Rastrigin’s Function,

f5, f6 = Weierstrass Function, f7, f8 = Griewank’s Function,

f9, f10 = Sphere’s Function

   [σ1, σ2, σ3,…, σ10] = [1, 1, 1,…, 1]

   [λ1, λ2, λ3,…, λ10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/100, 5/100, 5/100]
	10
	[−5, 5]
	0



	F34(CF5): f1, f2 = Rastrigin’s Function, f3, f4 = Weierstrass Function, f5, f6 = Griewank’s Function, f7, f8 = Ackley’s Function,

f9, f10 = Sphere’s Function

   [σ1, σ2, σ3,…, σ10] = [1, 1, 1,…, 1]

   [λ1, λ2, λ3,…, λ10] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100]
	10
	[−5, 5]
	0



	F35(CF6): f1, f2 = Rastrigin’s Function, f3, f4 = Weierstrass Function, f5, f6 = Griewank’s Function, f7, f8 = Ackley’s Function,

f9, f10 = Sphere’s Function

   [σ1, σ2, σ3,…, σ10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

   [λ1, λ2, λ3,…, λ10] = [0.1 × 1/5, 0.2 × 1/5, 0.3 × 5/0.5, 0.4 × 5/0.5, 0.5 × 5/100, 0.6 × 5/100, 0.7 × 5/32, 0.8 × 5/32, 0.9 × 5/100, 1 × 5/100]
	10
	[−5, 5]
	0
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Table 4. Comparison of optimization results obtained for the unimodal and multimodal benchmark functions.
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PSO

	
AOA

	
GWO

	
SSA

	
WOA

	
WOA-LFGA




	

	
ave

	
std

	
ave

	
std

	
ave

	
std

	
ave

	
std

	
ave

	
std

	
ave

	
std






	
F1

	
0.01145

	
0.016214

	
1.82 × 10−20

	
9.99 × 10−20

	
2.71 × 10−27

	
7.04 × 10−27

	
1.42 × 10−07

	
1.62 × 10−07

	
2.31 × 10−71

	
1.14 × 10−70

	
0

	
0




	
F2

	
2.020543

	
4.065539

	
0

	
0

	
1.08 × 10−16

	
8.93 × 10−17

	
2.285371

	
1.666859

	
1.07 × 10−50

	
4.58 × 10−50

	
0

	
0




	
F3

	
2444.118

	
1926.835

	
0.003659

	
0.007401

	
9.85 × 10−06

	
1.90 × 10−05

	
1382.524

	
777.8525

	
71.50822

	
172.5122

	
0

	
0




	
F4

	
7.036386

	
1.311499

	
0.025943

	
0.019751

	
8.16 × 10−07

	
8.64 × 10−07

	
11.60046

	
3.603777

	
1.293207

	
1.217586

	
1.65 × 10−10

	
7.94 × 10−10




	
F5

	
237.9364

	
552.168

	
28.43077

	
0.241825

	
27.0996

	
0.744425

	
358.5001

	
543.5524

	
27.72318

	
0.381725

	
20.77285

	
10.26487




	
F6

	
0.008698

	
0.014406

	
3.18966

	
0.252549

	
0.767048

	
0.393704

	
2.80 × 10−07

	
5.94 E−07

	
0.263031

	
0.199383

	
0.070958

	
0.122792




	
F7

	
0.049637

	
0.017275

	
6.93 × 10−05

	
6.73 E−05

	
0.001663

	
0.0008

	
0.190837

	
0.075292

	
0.003031

	
0.002759

	
0.001748

	
0.003825




	
F8

	
1.62 × 10−18

	
7.45 × 10−18

	
0

	
0

	
1.60 × 10−94

	
8.74 × 10−94

	
1.60 × 10−06

	
1.04 × 10−06

	
8.07 × 10−101

	
4.42 × 10−100

	
0

	
0




	
F9

	
3715.167

	
3804.074

	
0.006306

	
0.015188

	
1.00 × 10−05

	
1.44 × 10−05

	
1543.173

	
827.1876

	
139.0415

	
349.0566

	
3.84 × 10−26

	
1.99 × 10−25




	
F10

	
135.1749

	
86.41104

	
278.754

	
50.12035

	
3.35 × 10−07

	
7.80 × 10−07

	
43.32593

	
15.77741

	
25.84223

	
104.563

	
6.12 × 10−17

	
3.35 × 10−16




	
F11

	
−8588.58

	
743.6667

	
−5347.08

	
428.9775

	
−5856.44

	
736.0021

	
−7429.88

	
767.0725

	
−10327.8

	
1815.032

	
−62304.4

	
2.22 × 10−11




	
F12

	
1.85834

	
0.705254

	
0

	
0

	
2.08691

	
2.001494

	
1

	
1.48 × 10−09

	
0.129003

	
0.407659

	
0

	
0




	
F13

	
−1010.53

	
32.04003

	
−488.895

	
65.78818

	
−906.163

	
66.86702

	
−999.69

	
41.44037

	
−1173.67

	
3.427174

	
−1174.98

	
0.005266




	
F14

	
54.17668

	
12.63687

	
0

	
0

	
1.948371

	
3.150168

	
47.85746

	
15.99706

	
1.89 × 10−15

	
1.04 × 10−14

	
0

	
0




	
F15

	
0.768649

	
0.668676

	
8.88 × 10−16

	
0

	
1.03 × 10−13

	
1.69 × 10−14

	
2.481978

	
0.913383

	
4.20 × 10−15

	
2.46 × 10−15

	
8.88 × 10−16

	
0




	
F16

	
0.035694

	
0.042562

	
0.182622

	
0.131219

	
0.004629

	
0.008419

	
0.015976

	
0.00876

	
0.01046

	
0.039824

	
0

	
0




	
F17

	
7.94 × 10−15

	
4.29 × 10−14

	
7.38 × 10−08

	
6.46 × 10−08

	
1.19 × 10−15

	
3.31 × 10−16

	
2.39 × 10−16

	
1.31 × 10−15

	
−1

	
4.61 × 10−17

	
−1

	
0




	
F18

	
0.170733

	
0.276331

	
0.521644

	
0.051792

	
0.054542

	
0.02857

	
6.834328

	
2.62791

	
0.01398

	
0.016893

	
0.006835

	
0.019706




	
F19

	
0.156988

	
0.196888

	
2.840098

	
0.098464

	
0.628701

	
0.19635

	
13.60701

	
14.96327

	
0.278207

	
0.185077

	
0.208052

	
0.199385




	
F20

	
0.998004

	
5.83 × 10−17

	
8.2796

	
4.850009

	
3.676116

	
3.874222

	
1.295293

	
0.827786

	
2.865604

	
2.997616

	
1.687328

	
1.873362




	
F21

	
0.002626

	
0.006021

	
0.012879

	
0.022459

	
0.004451

	
0.008095

	
0.001558

	
0.003563

	
0.000612

	
0.000297

	
0.000362

	
0.000218




	
F22

	
−1.03163

	
6.45 × 10−16

	
−1.03163

	
1.30 × 10−07

	
−1.03163

	
2.57 × 10−08

	
−1.03163

	
2.67 × 10−14

	
−1.03163

	
9.35 × 10−10

	
−1.03163

	
4.91 × 10−16




	
F23

	
0.397887

	
0

	
0.40893

	
0.008738

	
0.397889

	
2.69 × 10−06

	
0.397887

	
3.68 × 10−14

	
0.397891

	
8.11 × 10−06

	
0.397887

	
6.37 × 10−15




	
F24

	
3

	
1.24 × 10−15

	
6.60127

	
9.334635

	
3.00005

	
6.62 × 10−05

	
3

	
2.13 × 10−13

	
3.900112

	
4.929503

	
3

	
1.63 × 10−06




	
F25

	
−3.86278

	
2.65 × 10−15

	
−3.85196

	
0.004077

	
−3.8615

	
0.00228

	
−3.86278

	
1.89 × 10−11

	
−3.85717

	
0.009316

	
−3.86278

	
2.14 × 10−15




	
F26

	
−3.26514

	
0.07867

	
−3.06929

	
0.075255

	
−3.25627

	
0.085463

	
−3.21838

	
0.05356

	
−3.25865

	
0.122607

	
−3.28633

	
0.055417




	
F27

	
−6.01714

	
3.525257

	
−3.58449

	
1.100864

	
−8.51535

	
2.579639

	
−8.65039

	
2.831563

	
−6.57441

	
2.361348

	
−10.1532

	
3.51 × 10−14




	
F28

	
−8.44332

	
3.329769

	
−4.01415

	
1.838357

	
−10.4014

	
0.000913

	
−8.44212

	
3.093598

	
−7.38245

	
2.669453

	
−10.4029

	
2.28 × 10−13




	
F29

	
−7.2628

	
3.864573

	
−3.45313

	
1.352861

	
−9.81322

	
2.238027

	
−8.03092

	
3.636316

	
−7.68458

	
2.925501

	
−10.5364

	
1.29 × 10−12
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Table 5. Comparison of optimization results obtained for the composite benchmark functions.
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PSO

	
AOA

	
GWO

	
SSA

	
WOA

	
WOA-LFGA




	

	
ave

	
std

	
ave

	
std

	
ave

	
std

	
ave

	
std

	
ave

	
std

	
ave

	
std






	
F30

	
188.4598

	
104.2843

	
429.9201

	
122.6024

	
165.2451

	
120.3013

	
143.3333

	
138.1736

	
147.113

	
109.1869

	
81.9337

	
109.8375




	
F31

	
210.1492

	
147.6265

	
603.8082

	
141.238

	
217.9645

	
110.3465

	
193.744

	
119.9475

	
212.4452

	
102.3541

	
167.121

	
119.973




	
F32

	
254.4012

	
118.5757

	
739.0197

	
169.9494

	
218.669

	
100.6576

	
329.7179

	
239.0358

	
494.4398

	
203.5997

	
438.3484

	
132.1945




	
F33

	
497.786

	
191.054

	
853.3283

	
70.53408

	
709.6582

	
188.0356

	
630.5518

	
272.5582

	
633.3295

	
174.6679

	
576.9929

	
128.6628




	
F34

	
249.408

	
231.7561

	
493.5288

	
182.9644

	
187.0822

	
137.7849

	
182.7982

	
202.8263

	
206.8386

	
159.906

	
165.38

	
111.3664




	
F35

	
826.5022

	
155.8774

	
877.2691

	
66.94098

	
837.5018

	
152.0384

	
762.027

	
185.1875

	
824.9949

	
159.4651

	
814.3615

	
167.8058
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Table 6. Results of test functions (F1–F19) with 30, 50, 100 and 500 dimensions.
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PSO

	
AOA

	
GWO

	
SSA

	
WOA

	
WOA-LFGA




	

	
D

	
ave

	
std

	
ave

	
std

	
ave

	
std

	
ave

	
std

	
ave

	
std

	
ave

	
std






	
F1

	
50

	
10.86347

	
14.44537

	
0.000863

	
0.001639

	
6.16 × 10−20

	
4.36 × 10−20

	
0.85548

	
1.003725

	
1.66 × 10−73

	
7.15 × 10−73

	
0

	
0




	

	
100

	
2316.109

	
3668.931

	
0.021699

	
0.008517

	
1.75 × 10−12

	
1.2 × 10−12

	
1471.517

	
385.5454

	
3.39 × 10−72

	
1.51 × 10−71

	
0

	
0




	

	
500

	
235236.4

	
25977.07

	
0.6333

	
0.037321

	
0.001453

	
0.000521

	
96418.89

	
5452.527

	
1.71 × 10−73

	
5.04 × 10−73

	
0

	
0




	
F2

	
50

	
10.53083

	
11.77191

	
2.3 × 10−147

	
1 × 10−146

	
2.51 × 10−12

	
1.32 × 10−12

	
8.895375

	
2.801584

	
2.35 × 10−49

	
1.05 × 10−48

	
0

	
0




	

	
100

	
65.36263

	
22.83761

	
2.42 × 10−53

	
1.08 × 10−52

	
4.11 × 10−08

	
1.52 × 10−08

	
48.25606

	
7.948359

	
8.59 × 10−50

	
1.89 × 10−49

	
0

	
0




	

	
500

	
1390.407

	
110.3861

	
0.001232

	
0.001668

	
0.010938

	
0.00145

	
541.6126

	
19.43979

	
3.87 × 10−49

	
1.68 × 10−48

	
0

	
0




	
F3

	
50

	
16884.77

	
4607.752

	
0.103386

	
0.097921

	
0.333669

	
0.597959

	
9735.95

	
5803.166

	
565.1298

	
762.9405

	
3.86 × 10−19

	
1.73 × 10−18




	

	
100

	
101956.4

	
11759.16

	
1.127456

	
1.75346

	
636.1386

	
928.2477

	
64451

	
32153.11

	
4706.516

	
7708.618

	
3.07 × 10−17

	
1.37 × 10−16




	

	
500

	
2764988

	
318150.2

	
33.67954

	
16.67636

	
334085.1

	
95550.54

	
1275053

	
728370.7

	
88474.96

	
146520.3

	
2.52 × 10−12

	
1.13 × 10−11




	
F4

	
50

	
17.96243

	
1.707676

	
0.046721

	
0.015961

	
0.000272

	
0.000202

	
20.63042

	
4.258961

	
2.152591

	
2.361506

	
2.43 × 10−10

	
1.07 × 10−09




	

	
100

	
40.44695

	
3.397269

	
0.092903

	
0.010875

	
0.587254

	
0.433484

	
27.99427

	
2.744113

	
3.388053

	
2.958831

	
1.38 × 10−10

	
4.27 × 10−10




	

	
500

	
76.60742

	
3.587335

	
0.180715

	
0.013151

	
65.33815

	
5.519397

	
40.29455

	
2.292022

	
3.380097

	
2.410942

	
9.41 × 10−09

	
3.08 × 10−08




	
F5

	
50

	
5662.017

	
19968.47

	
48.77104

	
0.157029

	
47.43632

	
0.947389

	
3276.49

	
5682.868

	
48.04747

	
0.403162

	
34.7513

	
20.54994




	

	
100

	
203892.7

	
68214.38

	
98.87163

	
0.115737

	
97.96276

	
0.542074

	
156566.4

	
75343.73

	
98.13826

	
0.19119

	
49.03683

	
48.75961




	

	
500

	
4.59 × 10+08

	
1.37 × 10+08

	
499.0966

	
0.064668

	
498.083

	
0.237754

	
37597520

	
3829547

	
495.8758

	
0.415621

	
161.4206

	
225.6898




	
F6

	
50

	
8.762354

	
7.964543

	
7.148222

	
0.382553

	
2.763138

	
0.603988

	
0.594813

	
0.590689

	
0.838658

	
0.362111

	
0.528771

	
0.43255




	

	
100

	
2473.402

	
3667.765

	
18.2289

	
0.63456

	
10.5705

	
1.229664

	
1426.96

	
511.486

	
2.277557

	
0.810151

	
2.215489

	
1.824284




	

	
500

	
229660.1

	
31072.21

	
116.0074

	
1.081187

	
92.01562

	
1.958327

	
93586.05

	
6284.008

	
19.57877

	
7.912018

	
19.30641

	
21.22633




	
F7

	
50

	
0.596402

	
1.806843

	
7.14 × 10−05

	
5.37 × 10−05

	
0.003166

	
0.001527

	
0.564758

	
0.128404

	
0.003614

	
0.004185

	
0.002136

	
0.003517




	

	
100

	
6.536545

	
8.826638

	
6.06 × 10−05

	
5.39 × 10−05

	
0.006948

	
0.004253

	
2.843964

	
0.659053

	
0.003686

	
0.003096

	
0.001628

	
0.004275




	

	
500

	
3707.805

	
687.6992

	
8.02 × 10−05

	
8.17 × 10−05

	
0.049075

	
0.012875

	
276.4369

	
53.53303

	
0.003276

	
0.004661

	
0.000924

	
0.000913




	
F8

	
50

	
1.44 × 10−14

	
3.85 × 10−14

	
0

	
0

	
1.86 × 10−88

	
6.35 × 10−88

	
2.19 × 10−06

	
1.69 × 10−06

	
1.2 × 10−107

	
5.5 × 10−107

	
0

	
0




	

	
100

	
2.64 × 10−11

	
8.42 × 10−11

	
0

	
0

	
2.15 × 10−35

	
9.61 × 10−35

	
2.29 × 10−06

	
1.67 × 10−06

	
9.8 × 10−104

	
2.8 × 10−103

	
0

	
0




	

	
500

	
1.88 × 10−05

	
4.2 × 10−05

	
0

	
0

	
0.000271

	
0.001131

	
5.71 × 10−06

	
7.21 × 10−06

	
1.3 × 10−110

	
5.7 × 10−110

	
0

	
0




	
F9

	
50

	
18886.55

	
5430.519

	
0.05631

	
0.049453

	
0.367136

	
0.657843

	
10379.31

	
5073.609

	
711.4174

	
1668.814

	
1.98 × 10−14

	
8.84 × 10−14




	

	
100

	
106450

	
15037.64

	
1.059031

	
0.969092

	
641.6541

	
619.2241

	
43718.87

	
25770.16

	
5269.864

	
7375.078

	
1.21 × 10−20

	
5.02 × 10−20




	

	
500

	
2696744

	
385835

	
38.4927

	
28.86932

	
328280.4

	
66473.19

	
1217109

	
526500.8

	
1625552

	
6833751

	
3.41 × 10−18

	
1.36 × 10−17




	
F10

	
50

	
624.1645

	
207.4525

	
798.6709

	
98.33566

	
0.073548

	
0.07947

	
391.2071

	
89.38285

	
46.64148

	
192.6738

	
0.004231

	
0.018922




	

	
100

	
2536.807

	
451.22

	
2051.827

	
173.7202

	
122.6674

	
52.30159

	
1956.498

	
227.5388

	
227.8372

	
676.5795

	
4.18 × 10−05

	
0.000187




	

	
500

	
24484.75

	
1175.066

	
8.84 ×10+14

	
3.54 ×10+15

	
3854.575

	
356.6187

	
10441.52

	
642.2583

	
559.5588

	
1632.451

	
500.7807

	
1714.189




	
F11

	
50

	
−12786.3

	
798.5763

	
−6730.6

	
555.5429

	
−9006.98

	
796.4451

	
−11829.8

	
1409.544

	
−17237.6

	
3259.934

	
−103841

	
2.99 × 10−11




	

	
100

	
−21997.3

	
1611.842

	
−9932.03

	
556.0954

	
−16523.7

	
1163.17

	
−22109.6

	
1951.76

	
−33053

	
6993.32

	
−207681

	
5.97 × 10−11




	

	
500

	
−65272.3

	
2572.758

	
−22147.4

	
1418.863

	
−53823.4

	
13825.98

	
−60450.6

	
5024.125

	
−183344

	
28730.99

	
1038407

	
1.19 × 10−10




	
F12

	
50

	
3.512278

	
1.823459

	
0

	
0

	
1.997852

	
0.767904

	
1.00591

	
0.009882

	
0

	
0

	
0

	
0




	

	
100

	
8.708894

	
3.634477

	
0

	
0

	
2.969532

	
0.649941

	
3.56948

	
0.820859

	
0.052619

	
0.235318

	
0

	
0




	

	
500

	
116.9072

	
9.152489

	
6.35 × 10−06

	
1.81 × 10−06

	
28.20371

	
59.83419

	
107.274

	
4.117031

	
5.55 × 10 −18

	
2.48 × 10 −17

	
0

	
0




	
F13

	
50

	
−1681.47

	
45.5754

	
−675.226

	
76.99906

	
−1352.15

	
90.40042

	
−1648.11

	
38.54963

	
−1956.64

	
1.398103

	
−1958.07

	
0.215703




	

	
100

	
−3303.19

	
63.15214

	
−1084.03

	
124.9054

	
−2299.99

	
157.4946

	
−3023.55

	
71.17438

	
−3910.89

	
5.958551

	
−3915.88

	
0.840303




	

	
500

	
−12380.6

	
261.834

	
−3680.81

	
261.3991

	
−7753.78

	
531.8809

	
−10816.8

	
224.6012

	
−19540.2

	
34.90968

	
−19567.5

	
37.75219




	
F14

	
50

	
119.9365

	
28.58934

	
0

	
0

	
4.178933

	
4.74967

	
88.4886

	
30.73374

	
0

	
0

	
0

	
0




	

	
100

	
382.7355

	
54.84386

	
0

	
0

	
10.74289

	
7.341498

	
230.9327

	
35.07983

	
0

	
0

	
0

	
0




	

	
500

	
4449.093

	
186.3669

	
5.97 × 10−06

	
5.37 × 10−06

	
70.76179

	
18.02281

	
3151.214

	
160.9733

	
4.55 × 10−14

	
2.03 × 10−13

	
0

	
0




	
F15

	
50

	
2.715587

	
0.484115

	
8.88 × 10−16

	
0

	
4.53 × 10−11

	
3.17 × 10−11

	
4.635025

	
1.206284

	
4.26 × 10−15

	
2.44 × 10−15

	
8.88 × 10−16

	
0




	

	
100

	
6.525648

	
2.065837

	
0.000484

	
0.000793

	
1.22 × 10−07

	
4.02 × 10−08

	
10.2093

	
1.047667

	
4.26 × 10−15

	
2.7 × 10−15

	
8.88 × 10−16

	
0




	

	
500

	
18.05284

	
0.448287

	
0.007914

	
0.000662

	
0.001876

	
0.000293

	
14.24981

	
0.224026

	
3.55 × 10−15

	
2.27 × 10−15

	
8.88 × 10−16

	
0




	
F16

	
50

	
1.059217

	
0.145573

	
1.062206

	
0.144497

	
0.003473

	
0.007606

	
0.508193

	
0.177961

	
0.008673

	
0.038785

	
0

	
0




	

	
100

	
35.28278

	
50.71112

	
585.2056

	
187.6203

	
0.003466

	
0.008471

	
12.83264

	
2.844918

	
5.55 × 10 −18

	
2.48 × 10 −17

	
0

	
0




	

	
500

	
2133.145

	
209.9714

	
10516.47

	
2772.351

	
0.004728

	
0.020304

	
867.917

	
65.88722

	
0

	
0

	
0

	
0




	
F17

	
50

	
1.53 × 10−21

	
1.16 × 10−21

	
2.82 × 10−12

	
3.22 × 10−12

	
2.6 × 10−22

	
6.62 × 10−22

	
1.47 × 10−21

	
8.59 × 10−22

	
−1

	
6.24 × 10−17

	
−1

	
0




	

	
100

	
6.52 × 10−41

	
1.2 × 10−40

	
2.17 × 10−23

	
2.7 × 10−23

	
8.56 × 10−41

	
1.9 × 10−40

	
3.66 × 10−41

	
4.07 × 10−41

	
−0.85

	
0.366348

	
−1

	
0




	

	
500

	
4.8 × 10−177

	
0

	
1.3 × 10−111

	
4.4 × 10−111

	
1.1 × 10−173

	
0

	
1.4 × 10−182

	
0

	
−0.7

	
0.470162

	
−1

	
0




	
F18

	
50

	
3.386843

	
1.228704

	
0.734116

	
0.044766

	
0.106871

	
0.047385

	
11.49135

	
2.713314

	
0.012943

	
0.007324

	
0.012762

	
0.020302




	

	
100

	
2936.118

	
6291.82

	
0.901293

	
0.025436

	
0.276781

	
0.060778

	
31.0403

	
10.6664

	
0.020269

	
0.011114

	
0.016797

	
0.022049




	

	
500

	
4.79 × 10+08

	
2.04 × 10+08

	
1.082153

	
0.010931

	
0.766924

	
0.058279

	
1530375

	
926662

	
0.024601

	
0.011647

	
0.044441

	
0.070781




	
F19

	
50

	
42.53796

	
20.41387

	
4.875282

	
0.080773

	
2.085256

	
0.373575

	
76.36419

	
12.04896

	
0.413098

	
0.227486

	
0.314442

	
0.409962




	

	
100

	
73149.61

	
62122.54

	
9.968205

	
0.057886

	
6.84329

	
0.459763

	
9531.26

	
15735.96

	
1.139066

	
0.584451

	
1.134865

	
1.559223




	

	
500

	
1.5 × 10+09

	
2.72 × 10+08

	
50.221

	
0.039006

	
50.05496

	
1.3932

	
34036361

	
9213893

	
7.216821

	
3.138501

	
4.851414

	
6.68935
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Table 7. Parameters of WSN coverage optimization problem in Section 3.2.






Table 7. Parameters of WSN coverage optimization problem in Section 3.2.





	Parameter
	Value





	Region size
	100 m × 100 m



	Sensing range
	11 m



	Sensor nodes number N
	27



	Individual number
	50



	Iterations
	200



	Test times
	30










[image: Table] 





Table 8. Coverage ratio comparison of WOA-LFGA with other basic algorithms.






Table 8. Coverage ratio comparison of WOA-LFGA with other basic algorithms.





	Method
	ave
	std
	C





	SMA
	68.9237%
	0.0173
	0.6715



	DOA
	76.2457%
	0.0183
	0.7429



	AOA
	68.3437%
	0.0137
	0.6659



	BWO
	64.1613%
	0.0205
	0.6251



	WOA
	79.6813%
	0.0231
	0.7763



	WOA-LFGA
	90.9703%
	0.0019
	0.8863










[image: Table] 





Table 9. The variation of network coverage with different numbers of nodes between WOA-LFGA and other basic algorithms.






Table 9. The variation of network coverage with different numbers of nodes between WOA-LFGA and other basic algorithms.





	

	
N = 10

	

	
N = 15

	

	
N = 20

	

	
N = 25

	

	
N = 30

	




	
Method

	
ave

	
std

	
ave

	
std

	
ave

	
std

	
ave

	
std

	
ave

	
std






	
SMA

	
34.63%

	
0.00877

	
47.70%

	
0.01028

	
57.51%

	
0.01102

	
66.70%

	
0.01215

	
73.96%

	
0.02138




	
DOA

	
37.73%

	
0.00657

	
53.55%

	
0.01176

	
64.77%

	
0.01743

	
73.12%

	
0.02305

	
79.83%

	
0.01749




	
AOA

	
34.59%

	
0.00685

	
47.58%

	
0.01183

	
57.85%

	
0.0186

	
65.42%

	
0.01425

	
72.50%

	
0.01506




	
BWO

	
34.52%

	
0.00919

	
46.03%

	
0.01634

	
55.40%

	
0.02252

	
62.08%

	
0.02008

	
67.43%

	
0.02664




	
WOA

	
37.87%

	
0.00264

	
54.04%

	
0.01373

	
67.29%

	
0.01785

	
75.84%

	
0.02531

	
82.70%

	
0.02263




	
WOA-LFGA

	
38.29%

	
0.00042

	
56.72%

	
0.00381

	
72.16%

	
0.00747

	
88.75%

	
0.00105

	
93.71%

	
0.00272
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Table 10. Coverage ratio comparison of WOA-LFGA with different modified WOA.






Table 10. Coverage ratio comparison of WOA-LFGA with different modified WOA.





	Method
	ave
	std
	C





	CWOA
	68.3363%
	0.0263
	0.6658



	WOABAT
	78.0493%
	0.0217
	0.7604



	RDWOA
	81.9797%
	0.0171
	0.7987



	WOAmM
	81.2440%
	0.0250
	0.7916



	EGE-WOA
	56.2650%
	0.0489
	0.5482



	WOA-LFGA
	90.9703%
	0.0019
	0.8863
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Table 11. The variation of network coverage with different numbers of nodes between WOA-LFGA and different modified WOA.






Table 11. The variation of network coverage with different numbers of nodes between WOA-LFGA and different modified WOA.





	

	
N = 10

	

	
N = 15

	

	
N = 20

	

	
N = 25

	

	
N = 30

	




	
Method

	
ave

	
std

	
ave

	
std

	
ave

	
std

	
Ave

	
std

	
ave

	
std






	
CWOA

	
35.46%

	
0.0116

	
48.44%

	
0.0223

	
58.01%

	
0.0253

	
65.02%

	
0.0186

	
72.98%

	
0.0251




	
WOABAT

	
37.61%

	
0.0040

	
53.81%

	
0.0103

	
65.58%

	
0.0160

	
74.49%

	
0.0234

	
81.73%

	
0.0210




	
RDWOA

	
38.08%

	
0.0021

	
55.11%

	
0.0076

	
69.53%

	
0.0078

	
78.40%

	
0.0157

	
85.35%

	
0.0236




	
WOAmM

	
38.04%

	
0.0020

	
54.93%

	
0.0108

	
68.12%

	
0.0120

	
78.04%

	
0.0200

	
84.99%

	
0.0214




	
EGE-WOA

	
31.00%

	
0.0221

	
41.04%

	
0.0443

	
49.71%

	
0.0391

	
51.94%

	
0.0535

	
59.58%

	
0.0627




	
WOA-LFGA

	
38.29%

	
0.0004

	
56.72%

	
0.0038

	
72.16%

	
0.0074

	
88.75%

	
0.0010

	
93.71%

	
0.0027
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Table 12. Parameters of WSN coverage optimization problem in Section 3.3.






Table 12. Parameters of WSN coverage optimization problem in Section 3.3.





	Parameter
	Value





	Region size
	440,400 m2



	Sensing range
	100 m



	Sensor nodes number N
	13



	Individual number
	50



	Iterations
	200



	Test times
	30
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Table 13. Coverage ratio comparison of WOA-LFGA with other basic algorithms in practical application.






Table 13. Coverage ratio comparison of WOA-LFGA with other basic algorithms in practical application.





	Method
	ave
	std
	C





	SMA
	11.4011%
	0.0159
	0.1229



	DOA
	53.0607%
	0.0530
	0.5722



	AOA
	52.3511%
	0.0306
	0.5645



	BWO
	52.2743%
	0.0579
	0.5637



	WOA
	37.2967%
	0.0935
	0.4022



	WOA-LFGA
	83.7718%
	0.0035
	0.9033
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Table 14. Coverage ratio comparison of WOA-LFGA with different modified WOA in practical application.






Table 14. Coverage ratio comparison of WOA-LFGA with different modified WOA in practical application.





	Method
	ave
	std
	C





	CWOA
	53.4095%
	0.0666
	0.5759



	WOABAT
	37.4971%
	0.0527
	0.4043



	RDWOA
	51.3324%
	0.0508
	0.5535



	WOAmM
	38.7471%
	0.0452
	0.4178



	EGE-WOA
	43.9632%
	0.0366
	0.4741



	WOA-LFGA
	83.7718%
	0.0035
	0.9033
















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
IEE g e el

IS EEEEEEE R

(b)

(a)





media/file4.png
500

400

300

200

350
300

650

600 [

550

500

450

an|eA

400





media/file30.png
580

260

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
et ittt T3 -—-1
|
|
|
|
|
|
|
|
|
|
|
|

(b)

- |
0L6 0S6 098 0¢l

|

Jili

ilin Cdnstr
Univergity F

v

Jilin Jianzhu
University

(a)





media/file18.png
—— -SMA
—-—--DOA
— ~ -AOA

BWO
— WOA

m—— \WOA-LFGA

100

I
o
(@)

80

oljey abetano)

30

25

20

15





media/file34.jpg
“CWOA —— - WOABAT — - -RDWOA — WOAMM —— EGE-WOA —— WOA-LFGA






media/file21.jpg
Coverage Ratio

°

°

o

0.2

0.1

= WOA-LFGA

20

40

60

80

100
Iteration

120

140

160 180 200





media/file26.png
100

90

80

70

60

50

40

30

20

100

90

80

70

60

50

40

30

20

100

100

100

90

80

70

60

50

40

30

20

100

90

80

70

60

50

40

30

20

100

20

40

(f)

60

80

100






media/file27.jpg
Coverage Ratio

100

90

80

70

60

50 ~ —-CWoA
- WOABAT
— - ~RDWOA

40 ~ WOAmM
——EGE-WOA
—— WOA-LFGA

30

10 15 20 25 30





media/file3.jpg
650

600

550

500

onieA

450

400

350

300

500

400

300

200

100





media/file22.png
Coverage Ratio

o
o

o
&)
T

o
~
|

o
w
T

o
N
|

©
—
|

— — - CWOA

—-—-WOABAT

— = -RDWOA
WOAmMM

— EGE-WOA

m \WOA-LFGA

20 40 60 80 100 120 140
Iteration

160 180






media/file14.jpg





media/file35.png
Coverage Ratio

0.9

0.8

0.7

0.6

o
3

o
~

80

100
Iteration

120

140

160

180

200





media/file19.jpg





media/file28.png
— — - CWOA

—-—-WOABAT

— = - RDWOA
WOAmMM

— EGE-WOA

= \WOA-LFGA

25

100

90
80 |

o o
N~ O

oney abesanon

30

20

15





media/file10.png
o 2 8 8 8 88 3 8 8 8

o 2 8 8 &8 88 388 8

o 2 8 ¥ 8 8 8 3 8 8 B

-0 0 20 40 60 8 100 120

o 3 8 8 28 88 38 8 8

o 2 8 8 8 8 8 38 8 8 3

3 83 8 28 88 3 8 8 8






media/file15.png
100

90

80

70

60

50

40

30

20

100

90

80

70

60

50

40

30

20

(b)






media/file33.jpg
0.9

0.8

~
S

©
S

o
S

oney e6e1an0D

40 60 80 100 120 140 160 180 200
Iteration

20





media/file32.png
0-9 T T T T T T T T T

0.7 ]

o
o
|
|

o
E.N
T
]

Coverage Ratio

o
w

o
N

0.1

20 40 60 80 100 120 140 160 180 200
Iteration

— —-SMA —-—--DOA — = -AOA BWO —— WOA === \WOA-LFGA






media/file11.jpg
0.95

DOA

0.55 SERAOA
-~ BWO
05 ——WOA

= WOA-LFGA

0.45

20 40 60 80 100 120 140 160 180 200
Iteration





media/file36.png
— — -CWOA —-—-WOABAT — - -RDWOA WOAMM —— EGE-WOA === \NVOA-LFGA






nav.xhtml


  biomimetics-08-00354


  
    		
      biomimetics-08-00354
    


  




  





media/file6.jpg





media/file24.jpg





media/file16.png
100

90

80

70

60

50

40

30

20

100

90

80

70

60

50

40

30

20

20

40

(e)

60

80

100

100

90

80

70

60

50

40

30

20

100

90

80

70

60

50

40

30

20

100

20

40

(f)

60

80

100






media/file2.png
Randomly selected interchange starting point

parent
1001

1000

/

0

-

offspring

—
—

>

1001

1000

11

00





media/file20.png
___________

___________

(b)
(d)

20 40 60 80 100

___________

(f)

)

c

(





media/file23.jpg
I

A R

(b)

(a)





media/file5.jpg





media/file7.png
]
o
@
=
=
e
1
i
10100 |
|
I
I
|
LN
50 100 150 200 250 300 350 400 450 500
Ilteration
F4
T T T T r . . , :
\
10°
E‘ﬁ'
@
=
=
e
10~

i i

L

150 200

250 300 350 400 450 500
Iteration

Fitness

-y L

50 100 150 200 250 300 350 400 450 500
Iteration

10—10 -

Fitness

1u—15 L

50

100 150 200 250 300 350 400 450 500
Iteration

F3

10—1@ -

50 100 150 200 250 300 350 400 450 500
Iteration

10°

Fitness

10°
50 100 150 200 250 300 350 400 450 500
Iteration
10! e
..... .
A e C——
107100 <
-LI
2 il
:
= 1
. i
10200 | .!. |
1
%
\
107300 | ! |
50 100 150 200 250 300 350 400 450 500
Iteration
_1nu | 1 T T F‘rI1 T T
—10'
w107 [ ;
sl
o
=
=
w .
-10° f ]
‘1'\
—104 F

50

100 150 200 250 300 350 400 450 500
Iteration





media/file29.jpg
Jitin Cpste
Universfty +

T

Univ..

(@)

(b)





media/file1.jpg
Randomly selected interchange starting point

parent / offspring

100100 1001f11

—

100011 1000f00





media/file31.jpg
0.9

0.8

0.7

Coverage Ratio
°
IS

o
w

o
~

0.1

20 40 60 80 100 120 140 160 180 200
Iteration

— —-SMA -~ -DOA — ~-AOA — BWO —— WOA === WOA-LFGA






media/file12.png
Coverage Ratio

095 | | ! I I I

09r .
0.85 _
0.8
0.75
0.7
0.65 i
0.6 — — -SMA -
—-—--DOA
0.55 | — ~ -AOA _
BWO
0.5 —— WOA _
s WOA-LF GA
0.45 | | | ] ] | | ] ]

20 40 60 80 100 120
Iteration

140

160

180

200





media/file9.jpg
@

©

(e)






media/file0.png





media/file8.png
Fitness

108
10° F
10751 — 1 g
=
=
w
I
|
=10 | 1 b
10 ; - 1
|
S50 100 150 200 250 300 350 400 450 500 S50 100 150 200 250 300 350 400 450 500
Iteration Iteration
F21 Fz8
10— F T T T T o T T T T T T L T T
-10° :
w o
w o
L] a
= =
= =
w o
L. l_\_\ ‘_h'i_
+ T —n'k L. L 1! L ! | m—
50 100 150 200 250 300 350 400 450 500 S50 100 150 200 250 300 350 400 450 500
Iteration Iteration
— 55A ———WOA w—NOA-LFGA

|~ —-PSO ——-ADA —+~-GWO






media/file25.png
100

90

80

70

60

50

40

30

20

20

40

(a)

60

80

100

100

90

80

70

60

50

40

30

20

20

40

(b)

60

80

100






media/file17.jpg
= -sMA
~--DOA
—~-AOA
-~ BWO
——woA
= WOA-LFGA
25

100

) ) 3 o
R 3 3 g

90
80
30

oney obeionon

30

20

15

10





