
Citation: Chen, H.; Liu, H.; Sun, T.;

Lou, H.; Duan, X.; Bi, L.; Liu, L.

MC-YOLOv5: A Multi-Class Small

Object Detection Algorithm.

Biomimetics 2023, 8, 342. https://

doi.org/10.3390/biomimetics

8040342

Academic Editors: Eric M. Lui and

Antonio Concilio

Received: 21 July 2023

Revised: 29 July 2023

Accepted: 31 July 2023

Published: 2 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

MC-YOLOv5: A Multi-Class Small Object Detection Algorithm
Haonan Chen 1, Haiying Liu 1,*, Tao Sun 1,*, Haitong Lou 1, Xuehu Duan 1, Lingyun Bi 1 and Lida Liu 2

1 School of Information and Automation Engineering, Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250353, China; 10431210436@stu.qlu.edu.cn (H.C.); 10431210427@stu.qlu.edu.cn (H.L.);
10431210431@stu.qlu.edu.cn (X.D.); 10431210560@stu.qlu.edu.cn (L.B.)

2 Shandong Runyi Intelligent Technology Co., Ltd., Jinan 250002, China; zhangjun@raonetech.com
* Correspondence: haiyingliu2019@qlu.edu.cn (H.L.); suntao@qlu.edu.cn (T.S.)

Abstract: The detection of multi-class small objects poses a significant challenge in the field of com-
puter vision. While the original YOLOv5 algorithm is more suited for detecting full-scale objects, it
may not perform optimally for this specific task. To address this issue, we proposed MC-YOLOv5, an
algorithm specifically designed for multi-class small object detection. Our approach incorporates
three key innovations: (1) the application of an improved CB module during feature extraction to
capture edge information that may be less apparent in small objects, thereby enhancing detection
precision; (2) the introduction of a new shallow network optimization strategy (SNO) to expand the re-
ceptive field of convolutional layers and reduce missed detections in dense small object scenarios; and
(3) the utilization of an anchor frame-based decoupled head to expedite training and improve overall
efficiency. Extensive evaluations on VisDrone2019, Tinyperson, and RSOD datasets demonstrate the
feasibility of MC-YOLOv5 in detecting multi-class small objects. Taking VisDrone2019 dataset as
an example, our algorithm outperforms the original YOLOv5L with improvements observed across
various metrics: mAP50 increased by 8.2%, mAP50-95 improved by 5.3%, F1 score increased by 7%,
inference time accelerated by 1.8 ms, and computational requirements reduced by 35.3%. Similar
performance gains were also achieved on other datasets. Overall, our findings validate MC-YOLOv5
as a viable solution for accurate multi-class small object detection.

Keywords: YOLOv5; multi-class; small objects; shallow network optimization; CB structure

1. Introduction

With the advancement of deep learning technology, numerous object detection algo-
rithms have undergone upgrades and optimization, resulting in their application to various
aspects of life after rigorous stability testing. For instance, small object detection algorithms
are deployed by road cameras to detect concealed hazards such as nails or stones on the
road surface for traffic safety purposes. Ground crew can utilize this technology to identify
birds near airports in a timely manner and drive them away to prevent flight accidents. In
addition, doctors can use small object detection algorithms through endoscopic instruments
to locate abnormal tissues that may be overlooked in patients’ bodies within the medical
field. With the advent of RTX series graphics cards, deep learning-based object detection
algorithms have observed a significant boost in training speed. Meanwhile, one-stage
object detection algorithms such as YOLOv5 [1] are gaining more and more traction due
to their advantages over two-stage counterparts such as faster RCNN [2] which are now
considered outdated. The performance of deep neural networks on public datasets such as
MS COCO [3] has also improved significantly. However, small object detection remains one
of the most challenging problems in computer vision due to issues such as sparse visual
features, dense distribution or severe occlusion in 2D images. Furthermore, there is a lack
of large-scale benchmark datasets for multi-class small object detection, making it difficult
for single or multiple types of small object detection algorithms to achieve high precision
and performance across different fields.
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Researchers have made several advancements in detecting small objects, such as
Jing [4] et al.’s algorithm for identifying small traffic objects and Lou [5] et al.’s camera-based
detection method. Optimizing algorithms for specific environments offers more benefits
than traditional approaches in a single field; however, these improvements have limitations
and may not perform well in other scenarios, such as the image of VisDrone2019 [6], the
TinyPerson [7,8] dataset for small pedestrians captured by drones or the RSOD [9,10] dataset
of high-altitude remote sensing images. When multiple objects are detected, occlusion can
occur, leading to a loss of edge features and reduced accuracy. Additionally, variations in
light intensity and image angle can cause varying degrees of distortion.

Based on the YOLO algorithm, improvements have been made to the feature extraction,
feature fusion, and detection components, resulting in a significant breakthrough. The
YOLO series of algorithms have undergone rapid updates and iterations in recent years,
placing them at the forefront in terms of speed and precision. However, for practical
industrial applications, lightweighting and stability are more important considerations.
While [11], YOLOv2 [12], YOLOv3 [13] and YOLOv4 [14] have reached maturity with
little room for further improvement, the latest version of YOLOv8 has not yet received
widespread certification. As such, MC-YOLOv5—a multi-class small object detection
algorithm—was developed as an improved alternative.

The main contributions of the proposed algorithm are as follows:

• The feature extraction process incorporates a novel CB module, which effectively en-
hances the semantic information of small objects and significantly improves detection
precision.

• The SNO was implemented to enhance the receptive field and minimize the rate of
missed object detection.

• The decoupled head based on the anchor frame is employed for object classification
and localization to enhance reasoning efficiency. Following an extensive evaluation on
VisDrone2019, Tinyperson, and RSOD datasets, MC-YOLOv5 demonstrates superior
precision and speed compared to the original YOLOv5L.

2. Related Work

Current mainstream object detection algorithms can be categorized into one-stage
and two-stage algorithms based on whether they use region candidate boxes. While the
two-stage algorithm has high detection accuracy, its slow speed makes it unsuitable for
real-time scenarios. The one-stage algorithm, pioneered by YOLO algorithm, has achieved
remarkable results through a clever network structure design and optimization strategies.
When [11] was first proposed, it introduced new ideas that greatly improved the detection
precision of small objects compared to previous algorithms. After improvements in the
first generation, YOLOv2 [12] can detect up to 9000 classes. SSD [15] and YOLOv3 [13]
divided their output into three feature maps for predicting objects of different sizes. Since
then, YOLOv4 [14], YOLOv5 [1], YOLOv6 [16] and YOLOv7 [17] have made significant
achievements in lightweight design, detection precision and comprehensive performance
by integrating various advanced modules and strategies.

Many improved algorithms based on YOLOv5 have been proposed in various fields,
which are capable of detecting different categories of small objects and achieving varying
degrees of improvement. For example, Zhu [18] et al. proposed TPH-YOLOv5. A predic-
tion head was appended and a transformer prediction head (TPH) with a self-focusing
mechanism was supplied to increase the focus on dense areas. Compared to the pre-
vious SOTA method (DPNetv3), it achieved 1.81% improvement in the drone data set.
Bai [19] et al. submitted two new object detection algorithms for traffic signs: YOLOv5-DH
and YOLOv5-TDHSA. The former invented a decoupled head to speed up convergence,
while the latter added a detection layer to improve detection precision. On the TT100k
dataset, the F1 score improved by 0.04. Li [20] et al. created CME-YOLOv5 to improve the
detection precision of fish. They used the fusion of coordinate attention mechanism and
C3 convolution to pay more attention to object positioning information and improve the
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detection performance. Yang [21] et al. proposed the YOLOv5-CBS model for detecting
river flotsam. The model created a new CCUB module that improves the adverse effects of
light intensity and viewing angle on small object detection. Table 1 clearly shows the small
object detection algorithms in different fields.

Table 1. Comparison of several small object detection algorithms based on YOLOv5.

Models Improvement Classes

TPH-YOLOv5 +TPH VisDrone2021(UAV)
YOLOv5-TDHSA +T, +DH, +SA TT100k& CCTSDB (traffic)
CME-YOLOv5 +CA, +EIoU River floating garbage (private)
YOLOv5_CBS +CCUB, +BiFPN, +SIoU Fish (private)

MC-YOLOv5 (Ours) +CB, +SNO, +(A)DH VisDrone2019(UAV),
Tinyperson(person), RSOD(airplane)

In this article, we proposed improvements to YOLOv5 in terms of both speed and pre-
cision. The YOLOv5 network comprises a backbone, neck and head for feature extraction,
fusion, object detection, and classification, respectively. Figure 1 illustrates the original
structure of the YOLOv5 network.

Figure 1. The original YOLOv5 network structure.

The enhanced MC-YOLOv5 algorithm incorporates three novel enhancements. Firstly,
the CB module is integrated into the backbone network to replace the original C3 module
and enhance detection accuracy. Secondly, the SNO module replaces a portion of FPN
structure in the neck region, reducing missed object rates. Finally, the (A)DH structure
substitutes for the original Detect function in the head section, accelerating training speed.
Additionally, recent algorithms aimed at improving small object detection are summarized
herein as a precursor to future research directions.

3. The Proposed MC-YOLOv5

YOLOv5 has emerged as one of the most widely adopted one-stage object detection
algorithms following YOLOv3 [13], owing to its high stability, strong universality, and
exceptional performance. However, there are still some challenges that need to be ad-
dressed. Firstly, small object detection suffers from a high rate of missed detections due
to the loss of edge information caused by deep convolution and 32-fold down-sampling
in two-dimensional images with smaller proportions of pixels for smaller objects than
large ones. To address this issue, we proposed a novel CB feature extraction structure
that preserves as much edge information for small objects as possible without significantly
increasing parameters or floating-point arithmetic operations. This improvement enhances
the precision of small object detection. In traditional detection methods, semantic infor-
mation becomes clearer with an increase in convolutional layers for larger-sized objects;
however, exceeding a certain number of convolutions leads to oversaturation. Therefore,



Biomimetics 2023, 8, 342 4 of 15

the 32-fold down-sampling layer serves as the clearest conceptual layer for large-size objects
while shallow convolutional layers provide clearer goal concepts for small objects. We
introduced the SNO shallow network fusion method to further enhance the detection per-
formance of small objects. The object detection results not only indicate confidence levels
but also use anchor boxes to show object locations in the head section during detection
tasks. Original YOLOv5 performed classification and localization tasks simultaneously
which shortened training inference time but reduced classification and localization accu-
racy; however, the anchor-based Decoupled Head can significantly reduce error rates while
improving precision in detecting small objects.

3.1. New CB Module

Resnet [22] addressed the issue of gradient explosion or vanishing gradients that
occur during multiple convolutions by incorporating residual elements through a shortcut
mechanism to integrate the initial feature layer, thereby facilitating more effective feature
extraction. In comparison to the building block structure employed in Resnet [22], the bot-
tleneck structure significantly reduces computational complexity. An illustrative diagram
depicting both the residual and bottleneck structures is presented in Figure 2.

Figure 2. (a) The residual structure has 256 input channels and consists of two 3 × 3 convolution
layers containing over a million parameters. (b) The bottleneck structure composed of two 1 × 1
convolutional layers sandwicted between a 3 × 3 convolutional layer. A 1 × 1 convolution realized
the function of first dimension reduction and then dimension increased; thus, the 3 × 3 convolutional
layer became the bottleneck with smaller input/output dimension. It has nearly 70,000 parameters.
The number of the former was 17 times less than the latter.

In version 4.0 of YOLOv5, the bottleneck structure proposed in Resnet [22] was
adopted along with C3. By taking the original YOLOv5s configuration file as an example, it
was found that the C3 module reduced model reference by approximately 5.7% compared
to Bottleneck-CSP while maintaining precision levels in full-size object detection. However,
there has been no improvement in the feature extraction ability for small objects, and
detection precision remains at a low level. A comparison between the C3 and bottleneck-
CSP is illustrated in Figure 3.
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Figure 3. (a) The structure of C3, whose input is H × W × C. The C3 module contained three basic
convolution layers and n bottleneck modules (n is determined by the co-configuration file and its
network depth), and the activation function of basic convolution changed from LeakyRelu to Silu.
(b) The structure of bottleneck-CSP, whose input is H × W × C. It consists of ordinary convolution
and resunit structures.

By enhancing the gradient propagation efficiency of the deep network to enhance
its feature extraction capability, the Efficient Aggregation Layer Module (ELAN) was
proposed in September 2022. The ELAN module [17] effectively mitigates the issue of
model convergence caused by scaling and exhibits a more stable ability for model learning.
However, due to its lengthy gradient update path, it introduces complexity to the network
structure. Additionally, the substantial number of parameters hinders inference speed and
convenience. Figure 4 illustrates the architecture of the ELAN module.

Figure 4. The structure of ELAN, whose input is H × W × C. It consists of six CBS. The srides of these
CBS are either 1 or 3. The output size remains the same.

Based on existing research ideas, we retained the lightweight structure of the model
while improving detection performance for small objects. However, detecting objects with
small pixel proportions or in crowded areas remains challenging. To address this issue,
we introduced a new CB structure based on C3 that applies multiple CBS structures to
enhance feature extraction for edge information. We also incorporated a residual structure
to prevent gradient anomalies and use bottleneck modules to reduce parameter numbers.
This CB structure strikes a balance between training efficiency and detection precision (as
shown in Figure 5), which we refer to as +CB in our experimental section.
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Figure 5. The structure of CB. It composed of some CBS modules with a convolutional kernel of 1 or
3 and 2 bottlenecks. The output size is consistent with the input size.

3.2. The Revised Shallow Network Optimization Strategy (SNO)

The comparison of FPN, PAN and SNO structures is illustrated in Figure 6. YOLO
feeds the RGB image into the backbone layer (yellow square) for multiple down-sampling
and convolution operations. After completing an up-sampling process, it becomes FPN
which was applied to earlier versions. Multiple fusion has been found beneficial to improve
precision leading to the invention of PAN; however, excessive fusion results in overfitting.
To solve the small object problem, we decideded to change the receptive field by taking
input images with a size of 640 × 640 as an example. After 8× down-sampling, the image
size became 80 × 80 pixels; similarly, after 16× down-sampling, it became 40 × 40 pixels
with a receptive field of 16 × 16 pixels. Finally, after 32× down-sampling, it was reduced
to an image size of 20 × 20 pixels with a receptive field of 32 × 32 pixels before going
through FPN or PAN. As the receptive field increases, large objects are more easily de-
tected; however, this is disadvantageous for mini and crowded small objects in datasets
where redundant information leads to inaccurate anchor frame positioning and increased
classification difficulty.

The SNO structure, as depicted in Figure 6c, undergoes an 8× down-sampling process
resulting in a reverse reduction to 160 × 160. This layer is then combined with the 4×
down-sampled feature layer and transmitted to the FPN network via CBS, necessitating an
additional up-sampling operation by FPN. Ultimately, the PAN network inputs three layers
of sizes 160 × 160, 80 × 80, and 40 × 40, respectively, for detecting ultra-small, small and
medium-sized objects. In our experiments section, we refer to this architecture as +SNO.

(a) FPN (b) PAN (c) SNO(c) SNO

Figure 6. Schematic of the network fusion of FPN, PAN and SNO (ours).

3.3. The Decoupled Head Based on Anchor

In the original YOLO framework, localization and classification tasks are performed
simultaneously; however, this simultaneous execution often leads to spatial misalignment
due to the inconsistent focus of these two tasks. Specifically, the classification task pri-
marily emphasizes identifying the most similar category among extracted features, while
localization focuses on refining boundary box parameters by prioritizing accurate position
coordinates. When using the same feature map for both tasks, suboptimal results may
be obtained. To address this issue and enhance convergence rate as well as precision,
YOLOX [23] introduced a Decoupled Head structure as a replacement for the original Head
component. Building upon previous insights, MC-YOLOv5 incorporates a Decoupled
Head based on an anchor method which is illustrated in Figure 7.
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Figure 7. The structure of Decoupled Head based on anchor.

In general, MC-YOLOv5 has used the above three improvement points, and its network
structure is shown in Figure 8.

Figure 8. Structure of MC-YOLO network.

4. Experiments

The experimental equipment utilized for this study consisted of a Windows 11 Pro-
fessional Workstation version, with 16GB physical memory and 84GB virtual memory, an
I5-12400F CPU, an NVIDIA GeForce RTX 3060Ti GPU with 8G of memory. All experiments
were conducted using YOLOv5 6.1 based on PyTorch (1.10.0+CU113), and the GPU was
employed to accelerate training, validation and testing processes.

In comparison, we employed F1 score, mAP@0.5, and mAP@0.5:0.95 as evaluation
metrics for assessing the algorithm’s detection accuracy, while FLOPs and inference time
were utilized to evaluate the algorithm’s lightweight efficiency.

4.1. Datasets

To demonstrate the efficacy of our MC-YOLOv5 algorithm in detecting multi-class
small objects, we utilized three publicly available datasets to train and validate its feasi-
bility. Following the mainstream perspective [24], we defined an object size ranging from
16 × 16 pixels to 42 × 42 pixels as small objects, while objects smaller than 16 × 16 pixels
were considered mini objects. Given that the experimental verification employed an image
input size of 640 × 640 pixels, we specifically selected objects with a side length less than
640 × 0.065 pixels for evaluating the performance of MC-YOLOv5.

The VisDrone2019 dataset contains ten types of objects, including pedestrian, people,
bicycle, car, van, truck, tricycle, awning-tricycle, bus, and motor. It includes not only
daytime scenes, but also complex environments such as night scenes, and many cases where
objects are too crowded to cover each other. Remove object pixel dimensions greater than
42 × 42 pixels, leaving only images that meet the criteria. We finally selected 6471 images
for training and 548 images for verification and testing. TinyPerson is a publicly available
small population data set focused on seaside pedestrian detection, with two categories of
people at sea and people on land. The dataset is labeled with 1610 images. We selected
667 images for training and 50 images for verification and test. The RSOD dataset is a
collection of remote sensing images taken from the air, which includes four types of objects:
aircraft, playground, overpass, and oil drum. After reasonable screening, 842 images were
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selected for training and 94 images for verification and test. In this experiment, the dataset
was partitioned into training, validation, and testing sets at a ratio of approximately 10:1:1.
Figure 9 illustrates an example of partial detection, while Figure 10 displays the distribution
map of object sizes across all three datasets.

Figure 9. Some examples of object detection using MC-YOLOv5. Including and not limited to day,
night, pedestrians, vehicles, water pedestrians, aircraft, etc. The objects in the figure are labeled with
green or red anchor boxes.

(a) VisDrone2019 (b) Tinyperson (c) RSOD

Figure 10. The plot illustrates the distribution of object sizes (width and height) in the dataset, where
each size is represented by a blue square. Some areas are darker due to overlapping objects of the
same size.

4.2. Experimental Results and Comparison

According to the experimental setup, we evaluated the algorithm using mAP@0.5,
mAP@0.5:0.95, Parameters (M), FLOPs (G), Times (ms) and F1 score. In addition to compar-
ing MC-YOLOv5 with YOLOv5s and YOLOv5L, we also compared them with other main-
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stream algorithms such as YOLOv3 [13], YOLOv4 [14], YOLOv7 [17] and YOLOv8 on the
VisDrone2019 dataset with maximum diversity at an image input size of 640 × 640 pixels.
The original versions of YOLOv5s and YOLOv5L were used as benchmarks for training on
the Visdrone data set without using official preset weights.

The YOLOv3 [13] algorithm is an earlier and more mature algorithm that was widely
adopted by the YOLO framework, which introduces multi-scale detection heads for the
first time. YOLOv4 [14], proposed by AlexeyAB’s team, incorporates enhancements such
as Mosaic augmentation and other improvements in the input pipeline. On the other hand,
YOLOv7 [17], a novel algorithm put forward by Wang et al., achieves significant accuracy
improvement through efficient aggregation network utilization. While YOLOv3 [13] is not
considered a lightweight model, it outperforms YOLOv4 [14] in terms of accuracy but still
falls short compared to our MC-YOLOv5 (All).

In the realm of lightweight methods, MC-YOLOv5 (+CB) outperforms the original
YOLOv5s in terms of mAP@0.5 and mAP@0.5:0.95 by 1.7% and 1.1%, respectively, while
also boasting a more streamlined architecture with 8.5% fewer parameters and 3.1% fewer
flops, resulting in a reduction of inference time by 1ms per image and an improvement in
F1 score by 2%. It is worth noting that YOLOv4 [14] was included for comparison purposes
despite its lack of lightweight design features, leading to lower accuracy and slower speed
compared to other models as detailed in Table 2, which presents relevant indicators such as
Parameters and Flops. An evaluation of the performance of MC-YOLOv5 and three other
YOLO algorithms across three datasets is in Table 3.

Table 2. Comparison of experimental results.

Methods mAP@0.5 mAP@0.5:0.95 Parameters
(M)

Flops
(G)

Times
(ms)

F1
Score

YOLOv4 24.2 14.2 64.3 143.2 58.6 0.26
YOLOv5s 32.1 16.9 7.0 15.8 14.1 0.37

MC-YOLOv5
(+CB) 33.8 18.2 6.4 15.3 13.1 0.39

YOLOv3 39.0 21.5 61.5 154.7 47.9 0.44
YOLOv5L 37.7 21.3 46.1 107.8 19.3 0.42
YOLOv7 45 25.2 36.5 103.3 19.6 0.47

MC-YOLOv5 (All) 45.9 26.6 38.2 69.7 17.5 0.49

Naturally, our objectives extended beyond lightweight enhancements. We placed
greater emphasis on refining model accuracy, encompassing metrics such as mAP@0.5,
mAP@0.5:0.95, and F1 score. MC-YOLOv5 (All), an amalgamation of three key improve-
ments, exhibits significant advancements across all dimensions when compared to the
original YOLOv5L framework. Notably, there is an 8.2% increase in mAP@0.5, a 5.3%
increase in mAP@0.5:0.95, and a 7% increase in F1 score achieved by MC-YOLOv5 (All).
Simultaneously, this method achieves a reduction in complexity with parameters reduced
by 17%, flops reduced by 35%, and inference time decreased by 1.8 ms.

Table 3. Accuracy of MC-YOLOv5 and three other YOLO algorithms on three data sets.

Datasets Metrics YOLOv5s YOLOv3 YOLOv4 YOLOv5L YOLOv7 MC-YOLOv5 (All)

Tinyperson mAP@0.5 11.3 20.3 12.63 19.1 6.91 20.3
mAP@0.5:0.95 2.6 5.22 3.64 4.8 1.52 5.87

RSOD mAP@0.5 92.9 94.2 92.4 94.8 95.5 96.7
mAP@0.5:0.95 61.6 66.8 59.3 66.6 63.8 66.9

The results in Table 3 demonstrate that MC-YOLOv5 (All) achieves higher mAP@0.5
and mAP@0.5:0.95 on the Tinyperson dataset than the original YOLOv5L, with improve-
ments of 1.2% and 1.07%, respectively. Due to the single background color and relatively
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small proportion of object pixels in the Tinyperson dataset, which has smaller dimensions
compared to other datasets, the ELAN structure in the YOLOv7 model is susceptible to
overfitting, resulting in decreased accuracy; however, MC-YOLOv5 effectively addresses
this issue.

In order to present the advantages of our algorithm in a more intuitive manner, we
visually compared the lightweight and standard algorithms using two-dimensional bar
charts. The comparative plots are depicted in Figures 11 and 12. Additionally, Figure 13
illustrates the mAP@0.5 value curves for various related algorithms during the training pro-
cess on the VisDrone dataset. Furthermore, Figure 14 showcases the detection performance
of MC-YOLOv5 on three different datasets.

24.2

14.2

26
32.1

16.9

37
33.8

18.2

39

mAP@0.5/% mAP@0.5:0.95/% F1 score/%

YOLOv4 YOLOv5s MC-YOLOv5(+CB)

Figure 11. Lightweight performance comparison.
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Figure 12. Standard level performance comparison.
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Figure 13. Some experimental results, including the comparison of the mAP@0.5 of the MC-YOLOv5
(All), YOLOv5s, YOLOv7 and YOLOv4 of these algorithms.
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(a) VisDrone2019 (b) Tinyperson (c) RSOD

Figure 14. The detection performance of MC-YOLOv5 on three datasets is presented, with different
categories represented by distinct colors in each group: (a) Car in orange, pedestrain in red, bus in
dark green, truck in light green, motorbike in cyan, and van in light yellow; (b) sea_people depicted
as red; and (c) aircraft also shown as red.

4.3. Ablation Experiments

The ablation experiments were conducted in five groups, wherein the original YOLOv5
was modified into YOLOv5n, YOLOv5s, YOLOv5m, and YOLOv5L with varying network
depth and width configurations. Gradually increasing the network depth and parameter
count resulted in improved accuracy for each variant. In this study, we compared MC-
YOLO with both YOLOv5s and YOLOv5L to strike a balance between accuracy and speed.
Specifically, we used the original YOLOv5s as a reference for +CB analysis while employing
the original YOLOv5L as a benchmark for +CB+SNO and All evaluations.

The mAP@0.5 values for all categories across the three datasets are presented in Table 4,
with YOLOv5s and YOLOv5L serving as baselines. The floating value, indicated within
parentheses, represents the relative improvement compared to the preceding column.
Additionally, the average rank of the five models is displayed in the final row. Notably,
based on this average rank analysis, it is evident that +CB structure outperforms YOLOv5s
by more than one rank. Furthermore, both +CB+SNO and All achieve a higher ranking
than YOLOv5L by more than one rank as well. These results provide compelling evidence
for the significant advantages offered by our proposed improvements.

Compared to the other two datasets, the RSOD dataset exhibits a larger object size
and less prominent edge information. Fortunately, our proposed CB structure proves
beneficial for extracting object features, regardless of whether they are mini objects or
medium and small objects. Furthermore, the decoupled head based on anchor enhances
detection accuracy by improving both object localization and classification precision while
being minimally influenced by object size.

Figure 15 shows the performance of the five methods in terms of real-time detection
speed (FPS) and accuracy.



Biomimetics 2023, 8, 342 12 of 15

Table 4. The mAP@0.5 of each method for all classes in three datasets.

Classes
(Complete)

YOLOv5s
(Baseline)

MC-YOLOv5
(+CB)

YOLOv5L
(Baseline)

MC-YOLOv5
(+CB+SNO) MC-YOLOv5 (All)

Pedestrian 40.3 40.9(+0.6) 46.5 50.5(+4) 55.3(+4.8)
People 32.1 33.5(+1.4) 36.6 38.2(+1.6) 45.1(+6.9)
Bicycle 9.9 10.7(+0.8) 14.4 17.6(+3.2) 22.6(+5.0)

Car 72.7 74.2(+1.5) 77 82.2(+5.2) 84.1(+1.9)
Van 33.4 37.2(+3.8) 41.4 44.7(+3.3) 48.1(+3.4)

Trunk 26.4 27.9(+1.5) 33.1 34.3(+1.2) 39.3(+5)
Tricycle 18.5 18.7(+0.2) 24.2 28.1(+3.9) 32.2(+4.1)

Awnin-tricycle 11.6 12.4(+0.8) 11.4 14.1(+2.7) 18.3(+4.2)
Bus 39.0 43.4(+4.4) 48.9 53.8(+4.9) 60.4(+6.6)

Motor 38.1 38.9(+0.8) 43.5 47.7(+4.2) 54.0(+6.3)
Sea-person 12.4 14.7(+2.3) 17.6 12.9(−4.7) 16.3(+3.4)

Earth-person 10.2 16.5(+6.3) 20.6 22.6(+2) 24.4(+1.8)
Aircraf t 94.8 95.4(+1.6) 95.2 95.5(+0.3) 95.7(+0.5)
Oil-tank 99.1 99.3(+0.2) 99.4 99.4(-) 99.4(-)

Overpass 78.3 89.3(+11) 87.1 92.3(+5.2) 94.9(+2.6)
Playground 99.5 99.5(-) 97.5 99.6(+2.1) 99.7(+0.1)

Average Rank 4.84 3.72 3.22 2.15 1.06
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Figure 15. Comprehensive comparison.

4.4. Discussion on Efficiency of MC-YOLOv5

The proposed algorithm, based on the YOLOv5 model, demonstrates superior perfor-
mance in detecting multi-category small objects. This assertion is substantiated through
rigorous contrast and ablation experiments conducted to evaluate and compare the efficacy
of our models (MC-YOLOv5 (+CB), MC-YOLOv5 (+CB+SNO), and MC-YOLOv5 (All))
against state-of-the-art counterparts such as YOLOv5s and YOLOv5L. Our evaluation
encompasses three diverse datasets: VisDrone2019, Tinyperson, and RSOD. Notably, the
experimental results unequivocally establish that our three proposed enhanced models
outperform the baseline models in terms of mAP@0.5 scores. To determine the statistical
significance of MC-YOLOv5 compared to state-of-the-art models, we employed the non-
parametric Friedman test [25,26] and corresponding post hoc Bonferroni–Dunn test [27,28],
commonly used for comparing classifiers across multiple datasets.

The performance of the models employed in the ablation experiments was evalu-
ated on three datasets using the Friedman test [25,26]. To determine the ranking of each
algorithm on every dataset, algorithms were ranked from best to worst. In cases where
multiple algorithms exhibited identical performance on a particular dataset, equal rankings
were assigned.
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The Friedman statistic can be calculated as follows:

χ2
F =

12N
k(k + 1)

[
k

∑
j=1

r2
j −

k(k + 1)2

4
] (1)

where N and k are the number of datasets and algorithms, respectively. If there is no
significant difference in the performance of the five algorithms, the aforementioned statistic
follows a chi-square distribution with 3 degrees of freedom. However, upon calculating this
statistic, it was found that its p-value is 0.029, which falls below the significance level of 0.05.
Therefore, it can be concluded that there exists a significant difference in the performance of
individual algorithms. It is evident that differences exist among all five algorithms and thus
a post hoc test is necessary to determine statistical differences between their performances.

The mean difference in rankings between MC-YOLOv5 (All) and +CB+SNO is 1.09,
while the average ranking disparity between +CB+SNO and YOLOv5L is 1.07. Additionally,
the average discrepancy in rankings between +CB and YOLOv5s is 1.12. Figure 16 illustrates
the average ranks of these five methods.

1 2 3 40

MC-YOLOv5(All)

YOLOv5s

MC-YOLOv5

(+CB)

MC-YOLOv5

(+CB+SNO)

YOLOv5L

5

Figure 16. The average rank of the 5 methods.

Subsequently, a post hoc Bonferroni–Dunn test [27,28] was conducted to compare the
models solely with the control models rather than among themselves. The Bonferroni–
Dunn test evaluates the difference between each algorithm’s average ranking and a critical
difference (CD). If this difference exceeds the domain value, it indicates that an algorithm
with a higher average ranking is statistically superior to one with a lower average ranking
and vice versa. Critical Difference is calculated as follows:

CD = qα

√
k(k + 1)

6N
(2)

where qα denotes the critical value for α
k−1 . when k = 3, qα = 2.241 for α = 0.05, and qα = 1.960

for α = 0.10 [29]. The corresponding CD values, calculated according to Equation (2), are
2.896 and 2.532 for the proposed MC-YOLOv5 model and YOLOv5s, respectively. Figure 17
clearly demonstrates that the performance of the proposed MC-YOLOv5 model surpasses
that of YOLOv5s on both evaluation metrics at both confidence levels.
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12345

CD

MC-YOLOv5（All）
MC-YOLOv5

（+CB+SNO）

YOLOv5L

MC-YOLOv5(+CB)

YOLOv5s

12345

(a)

CD

MC-YOLOv5（+CB+SNO）

YOLOv5L

YOLOv5s MC-YOLOv5（All）

MC-YOLOv5(+CB)

(b)

Figure 17. Where 1-5 represents the ranking of the algorithms. Critical difference (CD) comparison
of MC-YOLOv5 (the control model) against other compared models with the Bonferroni–Dunn test,
based on (a) mAP@0.5 with confidence level α = 0.05, CD = 2.896; (b) mAP@0.5 with confidence level
α = 0.10, CD = 2.532 (any two models not connected by a thick black horizontal line are considered to
have significant performance differences between each other).

5. Conclusions

Based on the YOLOv5 model, we proposed MC-YOLOv5, a multi-class small object
detection algorithm that incorporates three innovations. Firstly, we introduced the new CB
structure to replace the original C3 structure in the feature extraction stage, resulting in a
more lightweight network model and improved detection speed. The SNO strategy opti-
mizes feature fusion and addresses missed or false detections caused by dense distribution
of small objects, thereby enhancing detection accuracy. Additionally, our decoupled head
based on anchor separates classification and localization tasks into distinct steps, effectively
considering both object position information and class information for improved model
performance. In summary, compared to YOLOv5s, which prioritizes inference speed while
maintaining basic accuracy, our +CB model focuses on achieving faster inference without
compromising accuracy. Furthermore, MC-YOLOv5 (All) combines all innovations and
exhibits significant improvements in both accuracy and speed compared to YOLOv5L.
Moving forward, we aimed to further optimize this model for enhanced lightweightness
while preserving its original accuracy.
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