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Abstract: Mathematical and computer simulation of learning in living neural networks have typically
focused on changes in the efficiency of synaptic connections represented by synaptic weights in the
models. Synaptic plasticity is believed to be the cellular basis for learning and memory. In spiking
neural networks composed of dynamical spiking units, a biologically relevant learning rule is based
on the so-called spike-timing-dependent plasticity or STDP. However, experimental data suggest
that synaptic plasticity is only a part of brain circuit plasticity, which also includes homeostatic
and structural plasticity. A model of structural plasticity proposed in this study is based on the
activity-dependent appearance and disappearance of synaptic connections. The results of the research
indicate that such adaptive rewiring enables the consolidation of the effects of STDP in response to
a local external stimulation of a neural network. Subsequently, a vector field approach is used to
demonstrate the successive “recording” of spike paths in both functional connectome and synaptic
connectome, and finally in the anatomical connectome of the network. Moreover, the findings suggest
that the adaptive rewiring could stabilize network dynamics over time in the context of activity
patterns’ reproducibility. A universal measure of such reproducibility introduced in this article is
based on similarity between time-consequent patterns of the special vector fields characterizing both
functional and anatomical connectomes.

Keywords: spiking neural network; synaptic plasticity; structural plasticity; rewiring; learning;
wiring vector field; weight vector field; activity vector field; STDP

1. Introduction

Researchers in the field of neural network modelling have generally concentrated on
changes in the efficiency of synaptic connections represented in models by synaptic weights
(see, e.g., [1]). This is synaptic plasticity. In neuroscience, it is believed to be the key cellular
basis of learning and memory in animals and humans.

In artificial neural networks based on formal neurons (ANNs), Hebbian plasticity,
which depends on the correlated activity of connected neurons, can be considered as a
biologically relevant learning rule [2,3]. In spiking neural networks (SNNs) composed
of dynamical spiking units, a biologically relevant learning rule is based on so-called
spike-timing-dependent plasticity or STDP [4]. However, in living brain circuits, there
are several forms of activity-dependent (adaptive) changes in network structure and func-
tioning. Specifically, neuronal plasticity not only includes synaptic modifications but also
homeostatic plasticity [5], structural plasticity [6,7] and other modifications, caused, for
example, by astrocyte modulations [8–11]. Structural plasticity includes the formation of
new connections (network growth), the removal of “unnecessary” synapses (pruning), and
rewiring synaptic connections without changing their number.
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In simulations, it is possible to operate with a fully connected network and express
the effects of both synaptic and structural plasticity through changes in the weight matrix
W. However, despite the likely coexistence of these two types of plasticity, biological
and computational considerations require that the “algorithms” for changing synaptic
efficiency and synaptic connectivity should be expressed explicitly. For example, in most
areas of the brain, including the mammalian cerebral cortex, only a small fraction of all
possible connections between neurons physically exist, even within a local area [12]. In
such sparse networks, the possibility of structural plasticity can substantially increase the
number of functionally distinct circuits available for encoding learning information [13].
Theoretical analysis showed that overall learning-related memory capacity is maximized in
the presence of both synaptic and structural plasticity [13–15].

Under experimental conditions, structural plasticity can be registered in cases of a
sufficiently strong external influence. Numerous studies report the formation or removal
of synapses in the somatosensory cortex after behavioral enrichment [16,17] and sensory
stimulation [18,19]. Differential rearing affects dendritic branching in certain areas of the
cerebral cortex such as the visual cortex and hippocampus [20]. Experimental protocols
involving sensory periphery lesions are also widely used. For example, research shows that
digit [21] or limb [22] amputation results in the massive reorganization of cortical chains
and axonal growth. A similar rearrangement has also been observed in the visual cortex
after retinal injury. After a few months, the cortical region corresponding to the lesion locus
becomes sensitive to the perception from the intact part [23–25].

However, in neuroscience and medicine, the role of structural plasticity in precisely
tuned processes such as learning and memory is still debated. In this aspect, simulation
models of spiking neural networks with structural plasticity could serve as a useful tool for
the estimation of the role of different plasticity forms in the function’s formation.

In modeling, structural plasticity is typically not self-sustained but complements
homeostatic or synaptic plasticity. Specifically, in the proposed models with homeostatic
plasticity, the formation and removal of new connections depends on the activity of neurons,
which can be calculated directly through the firing rate [26] or indirectly through the
simulated calcium concentration in neurons [27,28]. Long-term synaptic plasticity is usually
represented by STDP or its modifications [29–31]. In such cases, old synaptic connections
are removed based on a threshold, meaning connections with weights below a certain
value are deleted. New synaptic connections usually form between randomly selected
neurons, although some studies also take into account the distance between neurons.
Thus, the probability of a new connection decreases with increasing distance between
neurons [27,32,33]. Multicomponent models that incorporate multiple types of plasticity—
short-term and long-term synaptic plasticity, homeostatic rules, and structural plasticity—
have also been utilized in various studies [33,34].

In particular, these models have been instrumental in verifying experimental results,
such as the restoration of network activity during “sensory deprivation” [27]. An SNN
with rewiring exhibits cortex-like structural features that cannot be random [33]. Moreover,
modeling studies have predicted the important role of structural plasticity in the formation
of network functionality, learning, and memory processes. Specifically, adaptive rewiring
has been shown to form neuronal assembles [29] and network architectures with different
target connectivity patterns [32,35]. Structural plasticity with multisynaptic connections can
stabilize neural activity and connectivity [30]. Rewiring and synaptic pruning can improve
learning both in biophysics [34] and computational SNNs that incorporate the properties
of deep artificial neural networks [36–38]. Finally, [26] demonstrates the possibility of
implementing associative learning based on structural plasticity.

This paper describes a model of the spiking neural network equipped with STDP
and structural plasticity capable of reconfiguring the network connectome in an activity-
dependent manner. This adaptive rewiring enables the consolidation of the effects of
STDP in response to a local external stimulation of the SNN. The work consistently de-
velops the vector field approach for monitoring the dynamics of the functional, synaptic,
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and anatomical connectome. Finally, a vector-based measure of activity patterns’ repro-
ducibility is introduced which allows one to reveal the network stabilization effect of the
adaptive rewiring.

The structure of the rest of the paper is as follows. “Section 2. SNN model” describes
the neuron dynamics and the synapse model. Then, the description of the developed
model is presented in “Section 3. The model of Synaptic Plasticity with Rewiring”. The
vector field methods are given in Section 4. The results of computational experiments
are described in subsections “Section 5.1. Network rewiring under stimulus-induced
activity” and “Section 5.2. Rewiring and stability of neural network during spontaneous
activity”. Finally, in Discussion and Conclusions, a generalization of the results is made, the
limitations of the model are discussed, and assumptions about future research are made.

2. SNN Model
2.1. Spiking Neuron

The approach described previously [39,40] was employed to simulate the dynamics of
the SNN. Specifically, the dynamics of a neuron were described by Izhikevich’s model [41].
In terms of functionality, this model exhibits similarities to the Hodgkin–Huxley model, but
it demands significantly fewer computational resources, making it particularly suitable for
simulating large-scale neural networks [42]. The subsequent dynamical system provides a
description of this model:

dv
dt

= 0.04v2 + 5v + 140− u + I(t), (1)

du
dt

= a(bv− u), (2)

with the additional condition to reset the variables when the spike peak is reached:

if v ≥ +30 mV, then
{

v← c
u← u + d′

(3)

where v is the transmembrane potential, u is the recovery variable, a, b, c, d are the parame-
ters, and I(t) is the external current. When the potential v reaches a threshold of 30 mV, a
spike is recorded, and v and u are reset to the values specified in Equation (3). In the work,
the following parameters were used: a = 0.02; b = 0.2; c = −65; and d = 8. In the absence
of an external input, these values allow the neuron to remain in a resting state. However,
the presence of an external current results in regular spiking, which is typical for cortical
“RS” neurons [41,42]. In Equation (1), the external current was presented by the following:

I(t) = ξ(t) + Isyn(t) + Istml(t), (4)

where ξ(t) is uncorrelated Gaussian white noise with zero mean and standard deviation
D = 5.5, Isyn(t) is the synaptic current. The term Istml(t) represents the stimulation current.
For stimulated neurons (see Section 5.1), the external stimulus is delivered as a sequence
of pulses with a frequency of 10 Hz, duration of 3 ms, and amplitude sufficient to excite
the neuron.

2.2. Synaptic Model and Network Connectivity

The synaptic current was calculated by taking the weighted sum of the output signals
from neurons connected to a specific postsynaptic neuron i:

Iisyn(t) = ∑j gjwijyij(t), (5)

where gj represents the transformation coefficient, which converts the output signal of the
presynaptic neuron j into a synaptic current (g = 20 arb. units for excitatory and g = −20
arb. units for inhibitory neurons), wij is the weight of the synaptic connection, and yij(t) is
the output (or synaptic) signal from neuron j to i, which corresponds to the neurotransmitter
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released at synapses with each pulse. The dynamics of the transmitter can be described via
the Tsodyks–Markram model, which accounts for short-term synaptic plasticity [43]:

dxij

dt
=

zij

τrec
− u∗ijxijδ(t− tj − τij), (6)

dyij

dt
= −

yij

τI
+ u∗ijxijδ(t− tj − τij), (7)

dzij

dt
=

yij

τI
−

zij

τrec
, (8)

du∗ij
dt

=
u∗ij

τf acil
+ 0.5(1− u∗ij)δ(t− tj − τij), (9)

where xij, yij, zij are the fractions of the neurotransmitter in a restored, active, and inacti-
vated state; tj is the time of the presynaptic spike, determined via Equation (3); τI , τrec, and
τf acil are the characteristic times of the processes of inactivation, restoring, and facilitation;
τij is the axonal delay in the arrival of a spike to the synaptic terminal; and u∗ij is the part
of the neurotransmitter released from the restored fraction xij at each spike. In the work,
such parameter values were chosen that made it possible to demonstrate both the effects of
synaptic depression (in the case of high-frequency activity) and synaptic facilitation (in the
case of activity with a frequency of about 1 Hz): τI = 10 ms, τrec = 50 ms, and τf acil = 1000 ms.
Axonal delays were proportional to the distances between neurons (see below).

Both simple 1D and 2D architectures of the SNNs were considered. In the 2D case, the
analysis was conducted for the organized (structured) connectome and a more realistic case
when neurons (up to 500 units) were distributed in a planar layer at random position sites.
In the latter case, the units were randomly coupled with the probability of interneuron
connections decreasing with the distance, according to the Gaussian distribution:

f =
1√
2πσ

e−
d2

2σ2 , (10)

where σ is the standard deviation chosen to obtain an average length of synaptic connections
d at 50 µm. This architecture captures the essential features of in vitro neuronal cultures,
allowing for the reproduction of their dynamic modes, e.g., network bursting [44–46].

3. The Model of Synaptic Plasticity with Rewiring

Long-term synaptic plasticity was represented by STDP. The STDP was simulated
using the algorithm with local variables, described in [47]:

dsi
dt

= − si
τ
+ δ(t− ti) (11)

dsj

dt
= −

sj

τ
+ δ(t− tj − τij) (12)

dwij

dt
= F+(wij)sj(t)δ(t− ti)− F−(wij)si(t)δ(t− tj − τij), (13)

where si and sj are variables that track spikes on the postsynaptic and presynaptic neu-
rons, respectively, τ = 10 ms is the characteristic decay time of local variables, and ti and
tj are the spike generation time on the postsynaptic (receiving spikes) and presynaptic
(transmitting spikes) neuron. In turn, the weight increase and decay functions follow the
multiplicative rule [47,48]:

F+
(
wij

)
= λ

(
1− wij

)
(14)

F−
(
wij

)
= λαwij, (15)
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where λ = 0.001 is the learning rate, and α = 5 is the asymmetry parameter that determines
the ratio of the processes of the weakening and strengthening of the synapse.

The model of structural plasticity included the following SNN-rewiring algorithm.
Each 1 s simulation time weight of all of the synaptic connections was checked. The pruning
process removed all of the connections with weights smaller than the threshold value wmin
for a duration of tw (“lifetime of weak connection”). Whenever a connection was removed,
a new connection with weight wnew (“weight of newborn connections”) was created. In this
step, a postsynaptic neuron was randomly selected, whereas the choice of the presynaptic
neuron was determined via the distance according to (10).

Figure 1 presents an example of rewiring in a simple SNN. The weight of the connec-
tion from neuron 8 to neuron 4 (w48) fell below the threshold value wmin over a period tw.
Thus, this connection was deleted. Then, postsynaptic neuron 2 was randomly selected
for the newborn connection. The choice of the presynaptic neuron was determined via the
distance, according to (10). For example, the probability was higher for neuron 5 compared
to the other neurons. The weights of the newborn connection w25 were set as wnew.

Figure 1. Example of rewiring in the model.

The formation of new connections in the model had two options. In the first option,
only a single synaptic connection between two neurons was allowed. In this case, if a
connection from the chosen presynaptic neuron had already been established, the process
of searching for a candidate connection was repeated. In the second option of multiple con-
nections, this check was not performed, and the number of synaptic connections between a
pair of neurons was not limited.

4. Vector Fields for Visualizing Functional and Structural Rearrangements in an SNN

To describe functional and structural rearrangements in an SNN on a large scale, the
approach of the vector field suggested earlier in [40,49] required an expansion. The square
substrate covered by the network was divided into an N × N grid. A possible connection
going from neurons j to i, located at positions pj and pi (pi, pj ∈ R2), was represented as a
connection vector directed from the presynaptic to the postsynaptic neuron:

cij = lij
pi − pj∥∥∥pi − pj

∥∥∥
2

(16)

where lij is the length of the connection vector calculated depending on the type of the
vector field (see below).

All vectors passing through cell (k, m) in the grid were added to obtain the resulting
vector for the given cell:

Ckm = ∑
ij∈∧km

cij (17)

where ∧km is the set of vectors that have a nonempty intersection with cell (k,m). Then, the
matrix (Ckm) ∈ MNF×NF

(
R2) defines the large-scale vector field.
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Three types of vector fields were introduced for this study: (i) the activity vector field
reflecting the functional connectome, (ii) the weight vector field reflecting the synaptic
connectome, and (iii) the wiring vector field reflecting the anatomical connectome.

For the wiring vector field (Figure 2A), the length of the connection vector was deter-
mined via the existence of coupling between neurons

lij =
{

1, if neuron i has a synaptic connection from j
0 otherwise

(18)

Figure 2. Vector fields of a small neural circuit: (A) the wiring vector field, (B) the weight vector field,
and (C) the activity vector field after 20 s stimulation of a neuron (marked in green).

For the weight vector field (Figure 2B), the length of the connection vector was de-
termined via the weight of the connection between the presynaptic neuron j and the
postsynaptic neuron i.

lij = wij (19)

Finally, for the activity vector field (Figure 2C), the length of the connection vector was
determined via the history of spikes passing through this connection and the resulting
excitation of the postsynaptic neurons:

dlij
dt

= sjδ
(

t− ti
sp

)
−

lij
τl

, (20)

where sj is the activity of presynaptic neuron (12), ti
sp is the time instant of the postsynaptic

spike i, and τl is the relaxation time.
Note that since lij = lij(t

)
for all three types of vector fields (in Equation (18) due to

rewiring, in Equation (19) due to STDP, and in Equation (20) according to the definition),
the vector field (16) can change over time. Having three types of vector field is convenient
for estimating the contribution of different types of plasticity to functional and structural
rearrangements. In fact, the weight vector field is the most informative due to the combination
of features from both the wiring vector field (e.g., absence of a connection from neuron j to
i is equivalent to wij = 0) and the activity vector field (due to STDP rule; also see [40]).

Also note that multidirectional synaptic connections can lead to mutual compensation
and eventually to a zero vector even if connections pass through the corresponding cell (e.g.,
Figure 1A, the bottom left connections). In the case of the activity vector field, zero vectors are
observed when spikes do not pass through the synaptic connections, thus causing response
excitation in the postsynaptic neuron (Figure 2C, the top connection).

In order to numerically integrate the model Equations (1)–(15) and (20), the Euler
method was used with a time step of 0.5 ms. This approach has been proven to be suitable
for integrating large systems of Izhikevich’s neurons [41,42]. To facilitate this process, a
custom software platform called NeuroNet was developed using the cross-platform QT
IDE. NeuroNet provides online simulations of the model and the construction of vector
fields. The software is written in C++ and can perform real-time simulations of SNNs with
tens of neurons using an Intel® CoreTM i3 processor. One can access NeuroNet at [50].
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5. Results
5.1. Network Rewiring under Stimulus-Induced Activity

First, let us consider a simple 1D architecture of the SNN equipped with STDP and
structural plasticity (Figure 3). The assumption here is that, in the initial state, neurons have
bidirectional synaptic connections with relatively small weights of w = 0.3 (Figure 3A). Then,
the central neuron is stimulated, which induces the propagation of spikes from the center
to the periphery. The activity vector field illustrates these dynamic events in a single static
picture in Figure 3B. Consequently, this repetitive spike propagation causes STDP-driven
weight rearrangement (the details can be found in [39,40,49]), which is visualized by the
weight vector field (Figure 3C). In turn, structural plasticity replaces unused centripetal
connections with multiple centrifugal ones involved in long-term activity, as illustrated
in Figure 3D. Thus, this stereotypical stimulation leads to network rearrangements at
different levels: spikes→ synaptic weights→ anatomical connectome, visualized in the
static pictures of Figure 3 by the vector fields.

Figure 3. Stimulus-induced changes in a neural line circuit mediated by STDP and structural plasticity:
(A) the initial condition, (B) the activity vector field reflects stimulus-induced activity, (C) STDP-
driven weight rearrangement, and (D) rewiring mediated by STDP and structural plasticity. As in
Figure 2, the red/black/blue arrows represent the activity/weights/wiring vector field. The rewiring
parameters were as follows: wmin = 0.05, tw = 5 s, and wnew = 0.1.

Figure 4 represents a more complicated case of a 2D neural circuit with radial (centrifu-
gal and centripetal relative to stimulus location) and ring (tangential) connections. Similar
to the 1D case, the stimulus-induced effects can be observed. First, centrifugal spiking
activity appears (Figure 4B), leading to the potentiation of centrifugal connections and
to the depression of other (centripetal and tangential) connections (Figure 4C). Rewiring
captures these functional rearrangements into structural changes in the SNN (Figure 4D).

Figure 4. Stimulus-induced changes in a 2D neural circuit. (A) the wiring vector field, (B) the weight
vector field, and (C) the activity vector field after 20 s stimulation of a neuron, (D) rewiring captures
these functional rearrangements into structural changes in the SNN. The rewiring parameters were
set as follows: wmin = 0.2, tw = 5 s, and wnew = 0.05.
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Figure 5 illustrates stimulus-induced changes in a medium-scale (200 neurons) neural
network mediated by STDP and rewiring. Note that immediately after the appearance of
local stimulation (Figure 5, “t = 1 s”), only the activity field (Figure 5A,B) changes, while the
weight field (Figure 5C) or the wiring field (Figure 5D) remain unaffected. In this case, the
activity field vectors reflect the general direction of spike activity in the form of traveling
waves or propagating patches of activity.

Figure 5. Stimulus-induced changes in a neural network mediated by STDP and structural plasticity:
(A) general view of the neural network and propagating spike activity at different time points after
the start of the stimulation, (B) the activity vector field, (C) the weight vector field, and (D) the wiring
vector field. Rewiring parameters were set as follows: wmin = 0.05, tw = 100 s, and wnew = 0.1.

However, over time (Figure 5, “t = 100 s”), due to STDP, the weights of synaptic
connections in the network change, enhancing the conduction of the traveling waves
induced by the stimulus. This effect is achieved due to the strengthening of centrifugal
connections (relative to the place of stimulation), as illustrated by the vectors of the synaptic
weight field (Figure 5C), which are oriented in the direction from the place of stimulation
(see details in [40]).

After some time (Figure 5, “t = 1000 s”), the rewiring reinforces the STDP effects, result-
ing in predominantly centrifugal connections in the network structure. This is illustrated
by the wiring vector field (Figure 5D), which largely coincides at time t = 1000 s with the
weight field (Figure 5C) and the activity field (Figure 5B). Thus, the vector fields show the
consistent potentiation of pathways for the predominant conduction of spike activity, first
by changing the efficiency (weights) of synaptic connections and then by changing the
structure of the network.

5.2. Rewiring and Stability of Neural Network during Spontaneous Activity

Over time, spontaneous (arising from neural noise (4)) spiking activity leads to rear-
rangements of the connectome through STDP and rewiring. In contrast to the stimulus-
induced activity, these changes occur much more slowly and in an irregular manner. The
anatomical and functional connectomes of the network gradually change, which is reflected
in the changes in the vector fields.
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To estimate the degree of changes in the SNN over time, the following quantity is
introduced. For all vectors of the weight field CI

km at time t1 and the vectors CII
km at time t2,

the cosine similarity was calculated as follows:

sI–II
km =

(
CI

km, CII
km

)
∥∥∥CI

km

∥∥∥∥∥∥CII
km

∥∥∥ (21)

Then, the similarity between the vector fields can be calculated as the average cosine
similarity of all vectors of the compared fields:

SI–II = (
N,N

∑
k,m=1

sI–II
km )/N2 (22)

Thus, in the limit cases, a similarity value SI–II = 1 corresponds to complete co-
incidence of weight vector fields at times t1 and t2, while SI–II = −1 describes totally
different fields.

Figure 6A shows an example of weight vector fields at different times during the
rewiring-induced network dynamics. The corresponding values of similarity, S, for pairs
of the vector fields were also calculated. Note that the stabilizing effect of rewiring can
be observed after 1000 s of rewiring (the similarities of vector fields at times 0–1000 s are
S0–I = 0.71, whereas at times 1000–2000 s they are SI–II = 0.71 = 0.94). The dynamics of the
vector field’s similarity for SNNs with and without rewiring are illustrated in Figure 6B.
The functional changes in the network can be observed to converge to a stable pattern in
the presence of rewiring. These dynamics can be interpreted as the self-organization of
the network, where only a certain pattern of “useful” synaptic connections survive. In
the presence of only STDP, the network is more flexible and has enough time to rebuild
the functional connectome under the influence of spontaneous activity. Moreover, in
this case, one can observe significant drops in the similarity coefficient of vector fields
reaching S = 0.27, which indicates intense weight rearrangements. This phenomenon can
be explained by the presence of the so-called superburst activity observed experimentally
in planar neuronal cultures [44].

Figure 6. The effect of SNN stabilization under structural plasticity: (A) example of weight vector
fields at different time points after the introduction of rewiring and the similarities of vector fields S;
(B) dynamics of the vector fields’ similarity in the case of structural plasticity (STDP + rewiring) and
without it (STDP only).

To assess the effect of rewiring parameters on stability, a neural network was tracked
for 15,000 s of spontaneous activity, and its state (connections and weights) was recorded
every 1000 s of simulation time. Then, the average value of the similarity coefficient for all
15 networks (paired comparison) obtained was calculated, which was used as a measure of
the network stabilization. Figure 7 shows the results of the simulations of neural networks
with different parameters of rewiring. A statistically significant connectome stabilization
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effect is observed for all values of the weight of newborn connections wnew. At the same
time, the SNN with single synaptic connections tends to enhance its structural changes as
wnew increases (Figure 7A). These results are consistent with [30], showing that multicontact
synapses can stabilize a neural network.

Figure 7. Influence of rewiring parameters on the stabilization of the neural network: (A) network
similarity vs. weight of newborn connections (wmin = 0.05, tw = 5 s); (B) network similarity vs. lifetime
of weak connections (wmin = 0.05, wnew = 0.06). *, •—statistically significant differences between
the current network with rewiring and the network without rewiring (*—p < 10−7, •—p < 0.01,
Mann–Whitney U test).

Increasing the lifetime of weak connection tw leads to the suppression of the stabi-
lization effect, both in the case of single and multiple connections (Figure 7C). However,
statistically significant differences in the connectome stabilization of neural networks with
and without rewiring were not revealed, only in the case of a very large value of tw = 5000 s.
Thus, the developed approach based on vector fields demonstrates that rewiring under
conditions of spontaneous activity leads to the stabilization of functional and anatomical
connectomes in a wide range of parameters.

6. Discussion

Spiking neural networks have attracted significant attention from researchers and
engineers due to the general expectation that the performance of an SNN-based artificial
intelligence (AI) system will supersede (approaching “brain performance”) traditional
ANN-based AI solutions. As a “more biologically relevant” version, spiking neurons offer
greater degrees of freedom for information representation and processing. In particular,
information can be encoded in time characteristics of spike discharges, rate, and phase
measures, as well as in the characteristics of nonlinear dynamics such as self-oscillation,
multistability, and chaos. Such an enhancement in the degree of flexibility of SNNs, in
turn, raises new challenges related to the tuning and control of specific dynamical modes
associated with learning or information function [51].

In mathematical modeling and the engineering design of biologically relevant SNNs,
tuning is typically based on the effect of spike-timing-dependent plasticity (STDP). In fact,
STDP implements a Hebbian learning rule for neurons with spiking dynamics and induces
changes in the synaptic weights. Unlike ANNs composed of “digital” formal neurons,
SNN units exhibit ongoing fluctuating signals of membrane potentials, currents, ionic
concentrations, and changing synaptic weights. Consequently, the dynamics of the SNN
and its outcome functions become less predictable and harder to control. In other words,
the dynamical spiking patterns encoding information in SNNs cannot be stable in terms
of reproducibility over time. However, many experimental studies conducted under both
in vitro and in vivo conditions have demonstrated the precise reproducibility of patterns
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in living neuronal networks [52,53]. One example of this reproducibility is the repetitive
spiking sequences in cortical circuits, known as cortical songs [53]. Moreover, these patterns
are believed to be internal representations of sensory information. Multiple dynamical
mechanisms, including homeostatic plasticity mediated by the brain extracellular matrix,
may also contribute to such stability [54].

The present study has led to an unexpected discovery of the fact that structural plastic-
ity, which represents a mechanism of activity-dependent appearance and disappearance of
synaptic connections, can lead to the stabilization of SNN dynamics in terms of activity pat-
tern reproducibility. The study also introduces a universal measure of such reproducibility,
which is based on similarity in time-consequent patterns of the special vector fields charac-
terizing both functional and anatomical connectomes. The observation of spontaneous SNN
dynamics revealed that the structural plasticity of the SNN rewires itself by suppressing
connections deemed to be “non-useful” for the current type of activity and generating new
“useful” synapses. In this context, combining STDP with structural plasticity “amplifies”
the general Hebbian paradigm, optimizing the anatomical architecture of SNNs.

Finally, such optimization, which provides reproducibility, can be helpful in designing
new learning strategies for SNN-based AI systems.

7. Conclusions

In conclusion, the present study has produced a mathematical model of a spiking
neural network enhanced with STDP and structural plasticity. The model incorporates the
rewiring of the network connectome by eliminating “non-useful” ones and multiplying
“useful” ones. Over time, this activity-dependent rewiring can stabilize network dynamics
in the context of activity pattern reproducibility.

Novel methods of vector fields capable of assessing network dynamic reproducibility
in terms of synaptic, functional, and anatomical connectomes have been proposed.

Note also that such dynamic self-reconfiguring of the model opens up several di-
rections of future research in the field of SNN design for AI applications. There are two
basic limitations of the presented model framework that have to be further addressed. To
reproduce particular brain circuit functions, SNN architecture has to imitate a concrete
type of spatial morphology that can be much more complicated than layered patterns of
cortical networks. Take, for instance, interacting hippocampal regions, thalamic networks,
olivocerebellar systems, and others [55]. Obviously, structural plasticity in such “genetically
structured” networks has to obey some additional rules so that the newborn connections
can fit the original structure pattern. The second point concerns the extracellular medium.
Growing neurites forming new interneuron connections go through this medium guided
by the field of active chemicals (growth factor molecules and neurotransmitters) that can
affect the formation of both anatomical and functional connectomes. Many recent papers
in SNN modeling have already addressed several modulation effects of such fields formed,
for example, by astrocytes on SNN dynamics [9]. Moreover, the above-mentioned brain
extracellular matrix may also serve as a network growth guide [56]. We believe that the de-
velopment of the presented model, taking these factors into account, permits one to design
a neuro-mimetic SNN capable of reproducing particular functions of living brain networks.
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26. Gallinaro, J.V.; Gašparović, N.; Rotter, S. Homeostatic Control of Synaptic Rewiring in Recurrent Networks Induces the Formation

of Stable Memory Engrams. PLoS Comput. Biol. 2022, 18, e1009836. [CrossRef]
27. Butz, M.; van Ooyen, A. A Simple Rule for Dendritic Spine and Axonal Bouton Formation Can Account for Cortical Reorganization

after Focal Retinal Lesions. PLoS Comput. Biol. 2013, 9, e1003259. [CrossRef]
28. Diaz-Pier, S.; Naveau, M.; Butz-Ostendorf, M.; Morrison, A. Automatic Generation of Connectivity for Large-Scale Neuronal

Network Models through Structural Plasticity. Front. Neuroanat. 2016, 10, 57. [CrossRef]
29. Iglesias, J.; Villa, A.E.P. Effect of Stimulus-Driven Pruning on the Detection of Spatiotemporal Patterns of Activity in Large Neural

Networks. Biosystems 2007, 89, 287–293. [CrossRef]
30. Deger, M.; Seeholzer, A.; Gerstner, W. Multicontact Co-Operativity in Spike-Timing–Dependent Structural Plasticity Stabilizes

Networks. Cereb. Cortex 2018, 28, 1396–1415. [CrossRef]
31. Limbacher, T.; Legenstein, R. Emergence of Stable Synaptic Clusters on Dendrites Through Synaptic Rewiring. Front. Comput.

Neurosci. 2020, 14, 57. [CrossRef] [PubMed]
32. Calvo Tapia, C.; Makarov, V.A.; van Leeuwen, C. Basic Principles Drive Self-Organization of Brain-like Connectivity Structure.

Commun. Nonlinear Sci. Numer. Simul. 2020, 82, 105065. [CrossRef]

https://doi.org/10.1007/BF00337288
https://doi.org/10.3389/fnsyn.2011.00004
https://doi.org/10.1098/rstb.2016.0258
https://doi.org/10.1038/nature03012
https://doi.org/10.3389/fncel.2014.00439
https://doi.org/10.1371/journal.pone.0227917
https://doi.org/10.1007/s00521-022-06936-9
https://doi.org/10.1038/s41598-022-10649-3
https://doi.org/10.1103/PhysRevE.103.022410
https://doi.org/10.1038/nature01276
https://doi.org/10.1016/S0896-6273(01)00252-5
https://www.ncbi.nlm.nih.gov/pubmed/11301036
https://doi.org/10.1162/089976600300015556
https://doi.org/10.1146/annurev.psych.49.1.43
https://doi.org/10.1016/0006-8993(85)90525-6
https://doi.org/10.1038/nature01273
https://doi.org/10.1016/S0896-6273(02)00663-3
https://doi.org/10.1016/S0165-3806(02)00642-9
https://doi.org/10.1002/cne.902240408
https://doi.org/10.1126/science.1843843
https://doi.org/10.1038/368737a0
https://doi.org/10.1152/physrev.1998.78.2.467
https://www.ncbi.nlm.nih.gov/pubmed/9562036
https://doi.org/10.1007/BF00229845
https://www.ncbi.nlm.nih.gov/pubmed/2026207
https://doi.org/10.1371/journal.pcbi.1009836
https://doi.org/10.1371/annotation/e8b7df48-4639-4ac1-8a98-cb13dea3415b
https://doi.org/10.3389/fnana.2016.00057
https://doi.org/10.1016/j.biosystems.2006.05.020
https://doi.org/10.1093/cercor/bhx339
https://doi.org/10.3389/fncom.2020.00057
https://www.ncbi.nlm.nih.gov/pubmed/32848681
https://doi.org/10.1016/j.cnsns.2019.105065


Biomimetics 2023, 8, 320 13 of 13

33. Miner, D.; Triesch, J. Plasticity-Driven Self-Organization under Topological Constraints Accounts for Non-Random Features of
Cortical Synaptic Wiring. PLoS Comput. Biol. 2016, 12, e1004759. [CrossRef]

34. Spiess, R.; George, R.; Cook, M.; Diehl, P.U. Structural Plasticity Denoises Responses and Improves Learning Speed. Front.
Comput. Neurosci. 2016, 10, 93. [CrossRef]

35. Rentzeperis, I.; van Leeuwen, C. Adaptive Rewiring in Weighted Networks Shows Specificity, Robustness, and Flexibility. Front.
Syst. Neurosci. 2021, 15, 580569. [CrossRef]

36. Shi, Y.; Nguyen, L.; Oh, S.; Liu, X.; Kuzum, D. A Soft-Pruning Method Applied During Training of Spiking Neural Networks for
In-Memory Computing Applications. Front. Neurosci. 2019, 13, 405. [CrossRef]

37. Chen, Y.; Yu, Z.; Fang, W.; Huang, T.; Tian, Y. Pruning of Deep Spiking Neural Networks through Gradient Rewiring. IJCAI Int. Jt.
Conf. Artif. Intell. 2021, 1713–1721. [CrossRef]

38. Rathi, N.; Panda, P.; Roy, K. STDP-Based Pruning of Connections and Weight Quantization in Spiking Neural Networks for
Energy-Efficient Recognition. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2019, 38, 668–677. [CrossRef]

39. Lobov, S.A.; Mikhaylov, A.N.; Berdnikova, E.S.; Makarov, V.A.; Kazantsev, V.B. Spatial Computing in Modular Spiking Neural
Networks with a Robotic Embodiment. Mathematics 2023, 11, 234. [CrossRef]

40. Lobov, S.A.; Zharinov, A.I.; Makarov, V.A.; Kazantsev, V.B. Spatial Memory in a Spiking Neural Network with Robot Embodiment.
Sensors 2021, 21, 2678. [CrossRef] [PubMed]

41. Izhikevich, E.M. Simple Model of Spiking Neurons. IEEE Trans. Neural Netw. 2003, 14, 1569–1572. [CrossRef]
42. Izhikevich, E.M. Which Model to Use for Cortical Spiking Neurons? IEEE Trans. Neural Netw. 2004, 15, 1063–1070. [CrossRef]
43. Tsodyks, M.; Pawelzik, K.; Markram, H. Neural Networks with Dynamic Synapses. Neural Comput. 1998, 10, 821–835. [CrossRef]
44. Wagenaar, D.A.; Pine, J.; Potter, S.M. An Extremely Rich Repertoire of Bursting Patterns during the Development of Cortical

Cultures. BMC Neurosci. 2006, 7, 1–18. [CrossRef] [PubMed]
45. Gritsun, T.A.; le Feber, J.; Rutten, W.L.C. Growth Dynamics Explain the Development of Spatiotemporal Burst Activity of Young

Cultured Neuronal Networks in Detail. PLoS ONE 2012, 7, e43352. [CrossRef] [PubMed]
46. Pimashkin, A.; Kastalskiy, I.; Simonov, A.; Koryagina, E.; Mukhina, I.; Kazantsev, V. Spiking Signatures of Spontaneous Activity

Bursts in Hippocampal Cultures. Front. Comput. Neurosci. 2011, 5, 46. [CrossRef]
47. Morrison, A.; Diesmann, M.; Gerstner, W. Phenomenological Models of Synaptic Plasticity Based on Spike Timing. Biol. Cybern.

2008, 98, 459–478. [CrossRef]
48. Song, S.; Miller, K.D.; Abbott, L.F. Competitive Hebbian Learning through Spike-Timing-Dependent Synaptic Plasticity. Nat.

Neurosci. 2000, 3, 919. [CrossRef]
49. Lobov, S.; Simonov, A.; Kastalskiy, I.; Kazantsev, V. Network Response Synchronization Enhanced by Synaptic Plasticity. Eur.

Phys. J. Spec. Top. 2016, 225, 29–39. [CrossRef]
50. Spiking Neurosimulator NeuroNet with a User-Friendly Graphical Interface. Available online: http://spneuro.net (accessed on

29 December 2022).
51. Makarov, V.A.; Lobov, S.A.; Shchanikov, S.; Mikhaylov, A.; Kazantsev, V.B. Toward Reflective Spiking Neural Networks Exploiting

Memristive Devices. Front. Comput. Neurosci. 2022, 16, 859874. [CrossRef]
52. Raichman, N.; Ben-Jacob, E. Identifying Repeating Motifs in the Activation of Synchronized Bursts in Cultured Neuronal

Networks. J. Neurosci. Methods 2008, 170, 96–110. [CrossRef]
53. Ikegaya, Y.; Matsumoto, W.; Chiou, H.-Y.; Yuste, R.; Aaron, G. Statistical Significance of Precisely Repeated Intracellular Synaptic

Patterns. PLoS ONE 2008, 3, e3983. [CrossRef]
54. Kazantsev, V.; Gordleeva, S.; Stasenko, S.; Dityatev, A. A Homeostatic Model of Neuronal Firing Governed by Feedback Signals

from the Extracellular Matrix. PLoS ONE 2012, 7, e41646. [CrossRef]
55. Llinás, R.R. I of the Vortex: From Neurons to Self ; MIT Press: Cambridge, MA, USA, 2002.
56. Dityatev, A.; Rusakov, D.A. Molecular Signals of Plasticity at the Tetrapartite Synapse. Curr. Opin. Neurobiol. 2011, 21, 353–359.

[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1371/journal.pcbi.1004759
https://doi.org/10.3389/fncom.2016.00093
https://doi.org/10.3389/fnsys.2021.580569
https://doi.org/10.3389/fnins.2019.00405
https://doi.org/10.24963/ijcai.2021/236
https://doi.org/10.1109/TCAD.2018.2819366
https://doi.org/10.3390/math11010234
https://doi.org/10.3390/s21082678
https://www.ncbi.nlm.nih.gov/pubmed/33920246
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1162/089976698300017502
https://doi.org/10.1186/1471-2202-7-11
https://www.ncbi.nlm.nih.gov/pubmed/16464257
https://doi.org/10.1371/journal.pone.0043352
https://www.ncbi.nlm.nih.gov/pubmed/23028450
https://doi.org/10.3389/fncom.2011.00046
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1038/78829
https://doi.org/10.1140/epjst/e2016-02614-y
http://spneuro.net
https://doi.org/10.3389/fncom.2022.859874
https://doi.org/10.1016/j.jneumeth.2007.12.020
https://doi.org/10.1371/journal.pone.0003983
https://doi.org/10.1371/journal.pone.0041646
https://doi.org/10.1016/j.conb.2010.12.006
https://www.ncbi.nlm.nih.gov/pubmed/21277196

	Introduction 
	SNN Model 
	Spiking Neuron 
	Synaptic Model and Network Connectivity 

	The Model of Synaptic Plasticity with Rewiring 
	Vector Fields for Visualizing Functional and Structural Rearrangements in an SNN 
	Results 
	Network Rewiring under Stimulus-Induced Activity 
	Rewiring and Stability of Neural Network during Spontaneous Activity 

	Discussion 
	Conclusions 
	References

