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Abstract: Neuronal networks are complex systems of interconnected neurons responsible for trans-
mitting and processing information throughout the nervous system. The building blocks of neuronal
networks consist of individual neurons, specialized cells that receive, process, and transmit electrical
and chemical signals throughout the body. The formation of neuronal networks in the developing
nervous system is a process of fundamental importance for understanding brain activity, including
perception, memory, and cognition. To form networks, neuronal cells extend long processes called
axons, which navigate toward other target neurons guided by both intrinsic and extrinsic factors,
including genetic programming, chemical signaling, intercellular interactions, and mechanical and
geometrical cues. Despite important recent advances, the basic mechanisms underlying collective
neuron behavior and the formation of functional neuronal networks are not entirely understood.
In this paper, we present a combined experimental and theoretical analysis of neuronal growth on
surfaces with micropatterned periodic geometrical features. We demonstrate that the extension of
axons on these surfaces is described by a biased random walk model, in which the surface geometry
imparts a constant drift term to the axon, and the stochastic cues produce a random walk around
the average growth direction. We show that the model predicts key parameters that describe axonal
dynamics: diffusion (cell motility) coefficient, average growth velocity, and axonal mean squared
length, and we compare these parameters with the results of experimental measurements. Our
findings indicate that neuronal growth is governed by a contact-guidance mechanism, in which the
axons respond to external geometrical cues by aligning their motion along the surface micropatterns.
These results have a significant impact on developing novel neural network models, as well as
biomimetic substrates, to stimulate nerve regeneration and repair after injury.

Keywords: neuron; axonal growth; neuron networks; bio-inspired neural networks; tissue engineering;
stochastic processes

1. Introduction

Neuronal cells are the basic building blocks of the brain and are responsible for
transmitting electrical and chemical signals throughout the nervous system. The basic
structure of a neuron consists of a cell body (soma), dendrites, and axons. During brain
development, neurons actively grow axons that steer over distances ranging from tens
to hundreds of cell diameters in length to locate target dendrites from other neurons and
form neuronal networks. This process is crucial for the development and maintenance
of the nervous system, and it plays an important role in learning and memory. Axonal
movement is directed by the growth cone, a dynamic sensing structure found at the leading
edge of the axon that carries out both sensory and locomotive functions. The cytoskeleton
within the growth cone primarily consists of actin filaments arranged in lamellipodium and
filopodium—like structures that extend and retract as the growth cone navigates through
the surrounding extracellular environment. The lamellipodia and filopodia probe the
environment for chemical, electrical, mechanical, and geometrical guidance cues and guide
the axon movement in response to these extracellular cues [1–7].
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Axonal growth is a highly complex process involving a wide range of molecular
and cellular mechanisms. In the past few decades, there has been significant progress in
understanding the impact of chemical cues on axonal dynamics. These include guidance
of growth cones by diffusing chemical gradients such as Slits and Netrins (chemotaxis),
guidance by substrate-bound biochemical cues, such as Laminin, Ephrins, and Semaphorins
(haptotaxis) [1–6], as well as guidance assisted by glial or Schwann cells [7,8]. For example,
it is now well-established that surface-bound chemical cues can either attract or repel
growth cones [1–5] and that various signal transduction pathways connect the activation of
growth cone sensors to modifications in the cytoskeleton dynamics [1–3,6,7]. Moreover, it
is generally accepted that axonal elongation is largely controlled by the interplay between
neuron biomechanical properties and the mechanics and geometry of the surrounding
environment. Axons are composed of a complex viscoelastic network of microtubules and
actin filaments which provide structural support and enable them to undergo complex
mechanical deformations [3,7,9–12]. In addition, growth cones generate traction forces by
pushing or pulling on the extracellular environment, while the substrate mechanics and
geometry can affect the direction and speed of axonal growth [12,13].

Recent advances in microfabrication and microfluidics have enabled researchers to
investigate neuronal growth in vitro, where external mechanical and geometrical cues
can be controlled. For example, these studies have shown that modifying substrate stiff-
ness has a dramatic effect on axonal elongation [4,7,13] and that periodic geometrical
features patterned on the growth surface enhance axonal outgrowth and control axonal
alignment [14–22]. The ability to guide neuronal growth in controlled environments carries
significant implications for engineering novel bioinspired devices for nerve repair and
neuroprosthetics applications. One of the primary objectives in tissue engineering is to cre-
ate neural environments that promote axonal outgrowth and mimic in vivo physiological
conditions [1–5,22–24]. Understanding the mechanisms underlying neuronal growth is,
therefore, critical for our ability to direct and control neuronal growth and for developing
new therapies for treating nerve injuries and nervous system disorders. Moreover, gaining
an in-depth knowledge of the growth processes will allow researchers to build innovative
bio-inspired neural networks that can reproduce key functional characteristics of the brain.
Nevertheless, despite progress in the field, significant challenges remain regarding our
fundamental understanding of the mechanisms that control neuronal growth, such as the
intricate interplay between various biochemical and biophysical factors, the details of the
cell–substrate interactions, the generation of traction forces, and the processes that govern
neuron biomechanical responses.

In previous work, we have reported that neurons cultured on poly-D-lysine-coated
polydimethylsiloxane (PDMS) substrates with periodic parallel ridge micropatterns grow
axons parallel to these surface patterns [19–22]. We have demonstrated that the cell–surface
interactions result in a “deterministic torque” that drives axonal alignment parallel to the
surface micropatterns [20–22]. Our results show that axonal dynamics is governed by a
closed-loop feedback control mechanism, which can be altered by the chemical treatment
of the cell [21,22]. We have also measured the axonal speed and angular distributions,
the diffusion (cell motility) coefficients, and the axonal bending modulus on these sub-
strates [20–22].

2. Theoretical Models of Neuronal Growth

The literature on modeling neuronal growth is extensive. Early efforts concentrated on
interpreting observed growth cone movements using random walk models. For instance,
Katz and colleagues [25] demonstrated that axonal elongation and retraction could be
effectively described by an uncorrelated random walk. In a different report, Odde and
collaborators showed that axonal extension is correlated with subsequent retraction on
time scales of several minutes [26]. A related approach was employed by Buettner and
colleagues [27], who extracted probabilistic rules for filopodial dynamics from time-lapse
images and formalized these into a stochastic model [28]. The Goodhill group conducted
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significant work developing statistical models of cues binding to receptors on the growth
cone [29] and employed these models to identify the constraints on sensing imposed by
the gradient shape [30]. Moreover, they found that spatial sensing is more efficient than
temporal sensing for a wide range of experimental cue concentrations [31]. Katz and Lasek
also identified some constraints for producing ordered axonal ensembles from simple
random walk models [32].

Due to the extreme complexity of the growth process’s biochemistry, it has only been
possible to model the actual biophysical mechanisms in a few special cases. For example,
Segev and Ben-Jacob modeled the self-wiring of a neural network in the presence of dif-
fusive factors [33]. They employed graph-theoretic tools, such as counting neighbors, to
characterize the networks formed and to compare the model predictions with experimental
observations. Van Ooyen’s group [34] developed simulations of multiple axons’ dynam-
ics in complex domains with multiple guidance factors. Mogilner and Rubenstein [35]
formulated a detailed mechanical model of filopodia to determine the optimal length. Pad-
manabhan and Goodhill incorporated a molecular feedback loop mechanism on pathways
crucial for cytoskeletal control in the growth cone [36]. This model generates unimodal or
bistable growth states for axons, depending on the rates of point contact assembly. When
combined with a stochastic model that provides angular distributions, the model could
be utilized in a random walk with rest periods, where bouts of growth and rest are based
on the changing results of this bistable switch mechanism as the growth cone interacts
with its environment [36]. In recent work, Lin and collaborators constructed models of
axons consisting of a small number of separate compartments and attempted to predict the
growth cone’s response to external chemical gradients [37].

Another common approach employs Langevin and/or Fokker–Planck equations to
model the stochastic processes underlying neuronal growth and to describe the collective
behavior of ensembles of axons within the network. Stochastic processes arise from a
variety of sources, including fluctuations in the signaling molecules detected by the growth
cone, polymerization of actin filaments, formation of lamellipodia and filopodia, and in-
tercellular interactions. By explicitly deriving probability distributions for the ensemble
of axons as a solution to a Fokker–Planck equation, it is possible to generate predictions
about the formation of neuronal networks under different conditions and to test different
growth mechanisms from experimentally observed results [38]. For instance, Hentschel and
van Ooyen [39] demonstrated that a combination of chemoattractant and chemorepellent
factors could account for the bundling, guidance, and subsequent de-bundling of axons
towards specific target regions. Maskery and Shinbrot [40] used Langevin simulations
to predict minimum detectable chemical gradients. Pearson and colleagues [41] solved
the Fokker–Planck equation to describe the path of the growth cone in the absence of
external chemical cues. Goodhill and collaborators [42] developed a detailed growth model
incorporating filopodia extension and retraction and ligand binding to simulate axonal
trajectories in the presence of external chemical gradients. Betz and collaborators [43]
employed Fokker–Planck to quantify the stochastic fluctuations of the growth cone lamel-
lipodia and demonstrated that the observed bimodal behavior of the growth cone emerges
from the internal actin polymerization processes.

In our previous work, we demonstrated that Langevin and Fokker–Planck equations
yield a general framework for predicting growth cone dynamics and describing the influ-
ence of various environmental cues on neuronal growth [16–22]. For example, our early
results showed that the growth dynamics of neuronal cells cultured on glass substrates
coated with poly-D-lysine (PDL) is governed by a linear Langevin equation with stochastic
white noise, resulting in a regulatory mechanism for axonal growth rates on these sur-
faces [18]. We have also employed Langevin and Fokker–Planck equations to quantify
axonal growth and measure the growth cone diffusion coefficient for cells grown on surfaces
with ratchet-like topography consisting of asymmetric tilted nanorods [16,17]. In a series of
recent publications, we have demonstrated that periodic geometrical micropatterns impart
strong directional bias to axonal growth [19–22]. We have shown that the dynamics of the
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growth cones on these surfaces can be described by considering the competition between
stochastic events and deterministic factors based on geometrical and mechanical guidance
cues. Our results show that axonal growth is controlled by a feedback mechanism in which
the growth cone detects external geometrical and mechanical cues and continuously adjusts
its trajectory in response to these environmental features.

In this paper, we combine experimental observations with theoretical analysis to
develop a detailed stochastic model of axonal growth on surfaces with periodic micropat-
terns. We demonstrate that the periodic geometrical features generate a constant drift
term applied to the growth cone, and the stochastic components produce a random walk
motion along the axonal growth direction. We use this model to calculate the average
axonal velocity, mean squared velocity, and mean squared length and show that the model
predictions are in excellent agreement with experimental data. Our results have important
implications for the fundamental understanding of neuronal growth and the formation of
neuronal networks, as well as for developing novel bio-inspired neural networks and for
advanced bioengineering substrates to facilitate nerve repair and regeneration.

3. Materials and Methods

In this study, we used cortical neurons sourced from embryonic day 18 rats. The
brain tissue protocol was approved by the Tufts University Institutional Animal Care
Use Committee and complied with the NIH Guide for the Care and Use of Laboratory
Animals. For cell dissociation and culture, we employed established protocols referenced
in our previous reports [9–11,16–22]. Previous immunostaining experiments conducted
by our group have verified high neuronal cell purity in these cultures [9]. The neuronal
cells were plated on micropatterned polydimethylsiloxane (PDMS) substrates coated with
poly-D-lysine (PDL) at a surface density of 4000 cells/cm2. As indicated in our earlier
studies, neurons cultured at comparatively low densities (between 3000 and 7000 cells/cm2)
develop long axons that are optimal for investigating growth dynamics on surfaces with
various external cues [16–22]. As the cell density increases, the degree of axonal alignment
decreases, which reflects the fact that the axons are branching more often and are making
more connections at higher densities, therefore deviating from the direction imparted by
the surface geometry. This implies that high surface densities (higher than 8000 cells/cm2)
where neuron–neuron signaling is important are also sub-optimal for exploring the effect
of geometrical cues on neuronal growth. The cell density of 4000 cells/cm2 chosen in this
paper is in the middle of this optimal density range. We have also demonstrated that, in
contrast to axons, dendrites do not exhibit significant growth alignment along the directions
of the micropatterns [22]. Experimental data also show that the formation of axon bundles
(fasciculation) is a relatively rare process in our experiments (less than 10%). Based on these
experimental details, in this paper, we take the neuron–neuron signaling interactions to be
negligible compared to cell–substrate interactions.

The periodic micropatterns on PDMS surfaces consist of parallel ridges separated by
troughs. To prepare these patterns, we used a simple fabrication method based on imprint-
ing diffraction grids onto PDMS substrates (details about the microfabrication methods
are provided in the Supplementary Materials). The distance between two neighboring
ridges on these surfaces is defined as the pattern spatial period d. An example of an atomic
force microscope (AFM) image of the micropatterns is shown in Figure 1a. For the results
discussed in this paper, we use surfaces with d = 7 µm (Figure 1a).

The micropatterned surfaces were spin-coated with PDL (Sigma–Aldrich, St. Louis,
MO, USA) solution with 0.1 mg/mL concentration. Growth surfaces were imaged using an
MFP3D atomic force microscope (AFM) equipped with a BioHeater closed fluid cell and an
inverted Nikon Eclipse Ti optical microscope (Micro Video Instruments, Avon, MA, USA).
Growing neuronal cells have been imaged using fluorescence microscopy. Fluorescence im-
ages have been acquired using a standard fluorescein isothiocyanate-FITC filter; excitation:
495 nm and emission: 521 nm (details provided in the Supplementary Materials).
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the instantaneous velocity 𝑉 of the growth cone. The growth angle θ is measured with 
respect to the y-axis (the growth angle and the x and y axes are defined in Figure 1b). To 
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Data analysis. Growth cone position and axonal length have been tracked and quanti-
fied using ImageJ version 1.53h 04, National Institute of Health, Bethesda, MS, USA). The
displacement of the growth cone was measured by tracing the change in the center of the
growth cone position. To measure the growth cone velocities, the neurons were imaged
using fluorescence microscopy every ∆t = 5 min for a total period of 30 min for images taken
at tculture = 10, 15, 20, 25, 30, 35, 40, 45, and 50 h after cell culture. The 5 min time interval
between measurements was selected such that the displacement ∆

→
r of the growth cone

in this interval satisfies two conditions: (1) its magnitude is greater than the experimental
precision of our measurement (~0.1 µm) [19–22]; (2) the ratio ∆

→
r /∆t approximates the

instantaneous velocity
→
V of the growth cone. The growth angle θ is measured with respect

to the y-axis (the growth angle and the x and y axes are defined in Figure 1b). To obtain the
velocity distributions, the range of growth cone velocities at each time point was binned
into intervals of equal size. Experimentally, the velocity correlation function for growth in
the x direction (see below) is obtained with the formula [19,20]:

〈V(t1)·V(t2)〉 =
1
N
·

N

∑
i=1

[Vi(t1)·Vi(t2)] (1)

where N is the total number of growth cones and Vi(t1), Vi(t2) represent the x components
of the velocity for the ith growth cone at times t1 and t2, respectively.

4. Results
4.1. Neuronal Growth on PDMS Substrates

Cortical neurons are cultured on PDL-coated PDMS surfaces with periodic micropat-
terns with the spatial pattern period d = 7 µm (Figure 1a). Axonal growth on these surfaces
is quantified at different time points after cell plating: tculture = 10, 15, 20, 25, 30, 35, 40, 45,
and 50 h. The reason for choosing these growth conditions is explained below. Figure 2
shows examples of images for axonal growth on these substrates taken at tculture = 10 h
(Figure 1a) and tculture = 50 h (Figure 2b).
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Figure 2. Fluorescence (Tubulin Tracker Green) images showing examples of axonal growth for
cortical neurons cultured on PDL-coated PDMS surfaces with periodic micropatterns. (a) Example of
growth image for neurons, acquired at tculture = 10 h after plating. The direction of the micropatterns
is shown by the x-axis. The figure also shows the main structural components of a neuronal cell.
Cortical neurons typically grow a long process (axon) and several shorter processes (dendrites).
The axons are identified by their morphology, and the growth cone is located at the tip of the axon.
(b) Example of growth for neurons imaged at tculture = 50 h after plating. The image shows a high
degree of axonal alignment along the direction x of the micropatterns.

We have previously demonstrated that the axons of neurons cultured on micropat-
terned PDMS surfaces tend to grow along the directions of the surface patterns and that
the degree of axonal alignment increases with time [19–22]. Furthermore, axons display
maximum alignment along PDMS patterns for surfaces with the pattern spatial period
d matching the linear dimension of the growth cone, that is, when d is of the order of
a few micrometers [20,21]. Our work also shows that axons tend to grow on top of the
periodic ridges, with typically a single axon extending along any single PDMS micropattern
ridge [14,19,22]. The experimental data shown in Figure 2 is in agreement with our previous
findings. In reference [20], we have demonstrated that the axonal growth on these surfaces
is governed by two non-linear Langevin equations of motion for the velocity V:(

dV
dt

)
||
= a0| sin θ| − γ1·V − γ2·V2 + Γ(t) (2)

(
dV
dt

)
⊥
= a1 cos θ + Γ⊥(t) (3)

In the above equations, (dV/dt)|| and (dV/dt)⊥ are, respectively, the parallel and
perpendicular components of the growth cone acceleration, θ represents the growth angle
(these terms are defined in Figure 1b), and a0, a1, γ1, γ2 are velocity-independent parameters
that depend on the pattern spatial period d. We have shown that all these parameters can
be experimentally measured by analyzing the spatial and temporal evolutions of axonal
growth [19–22]. In the above equations Γ and Γ⊥ represent the stochastic contributions for
parallel and perpendicular growth, satisfying the conditions for Gaussian white noise with
zero mean, characteristic of uncorrelated Wiener processes [20]:

〈Γ(t)〉 = 0 (4)

〈Γ(t1)Γ(t2)〉 = σ2·δ(t1 − t2) (5)
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with similar expressions for Γ⊥. In Equations (4) and (5) σ is a term that quantifies the
strength of the noise (the variance of the stochastic distribution) and δ(t1 − t2) is the Dirac
delta function.

We now introduce two key experimental observations that allow us to simplify the
non-linear equations of motions (2) and (3). First, as we have noted above, the axonal
alignment along the pattern is increasing with time. The perpendicular component of the
acceleration (Equation (3)) acts as a deterministic torque that tends to align the growth cone
motion along the direction x of the pattern. The experimental data show that the magnitude
of the perpendicular acceleration has maximum values at the beginning of the growth
when many axons elongate in directions perpendicular to the micropattern. This process
corresponds to the maximum (dV/dt)⊥ for θ ≈ 0, as predicted by Equation (3). As time
increases, more and more axons align with the micropatterns and continue their growth
along the x direction, characterized by θ ≈ π

2 (or θ ≈ 3π
2 ). In this case, the deterministic

torque in Equation (3) is negligible: a1 cos θ ≈ 0, and the axonal motion becomes quasi-one-
dimensional along the x direction. The stochastic contributions produce fluctuations along
this average direction of motion. Experimentally, these conditions are satisfied for growth
times tculture in the interval 10–50 h. For tculture > 50 h most axons start to form connections
with other neurons, and the growth process stops. For the rest of the paper, we define the
observation time t as: t = tculture – 10 h and measure axonal growth in time increments of 5 h
in the interval: 0 ≤ t ≤ 40 h (corresponding to the interval 10–50 h after plating).

The second observation is that the parameter γ1 in Equation (2) is approximately
constant γ1 ≈ 0.1 hr−1, whereas the parameter γ2 decreases with increasing spatial period
d, as we have demonstrated in our previous work [20]. In particular, for d = 7 µm, we have
reported that γ2 ≈ 10−3 µm−1, [20], which implies that for growth velocities ~10 µm/hr,
we have that:

γ2·V2 � γ1·V (6)

This condition holds for the observed axonal growth on surfaces with d ≥ 7 µm [20].
Figure 3 shows examples of normalized distributions for the parallel component (along the
x-axis) of the growth cone velocity measured at t = 0 h (Figure 3a) and t = 40 h (Figure 3b),
respectively. The experimental data show the measured velocities are of the order of a few
tens µm/hr such that: V � γ1/γ2 ≈ 100 µm/hr.

Biomimetics 2023, 8, x FOR PEER REVIEW 7 of 15 
 

 

with similar expressions for Γ . In Equations (4) and (5) 𝜎 is a term that quantifies the 
strength of the noise (the variance of the stochastic distribution) and 𝛿(𝑡 − 𝑡 ) is the Di-
rac delta function.  

We now introduce two key experimental observations that allow us to simplify the 
non-linear equations of motions (2) and (3). First, as we have noted above, the axonal 
alignment along the pattern is increasing with time. The perpendicular component of the 
acceleration (Equation (3)) acts as a deterministic torque that tends to align the growth 
cone motion along the direction x of the pattern. The experimental data show that the 
magnitude of the perpendicular acceleration has maximum values at the beginning of the 
growth when many axons elongate in directions perpendicular to the micropattern. This 
process corresponds to the maximum (𝑑𝑉/𝑑𝑡)  for 𝜃 ≈ 0, as predicted by Equation (3). 
As time increases, more and more axons align with the micropatterns and continue their 
growth along the x direction, characterized by 𝜃 ≈  (or 𝜃 ≈ ). In this case, the deter-
ministic torque in Equation (3) is negligible: 𝑎 cos 𝜃 ≈ 0, and the axonal motion becomes 
quasi-one-dimensional along the x direction. The stochastic contributions produce fluctu-
ations along this average direction of motion. Experimentally, these conditions are satis-
fied for growth times tculture in the interval 10–50 h. For tculture > 50 h most axons start to form 
connections with other neurons, and the growth process stops. For the rest of the paper, 
we define the observation time t as: t = tculture – 10 h and measure axonal growth in time 
increments of 5 h in the interval: 0 ≤ 𝑡 ≤ 40 h (corresponding to the interval 10–50 h after 
plating).  

The second observation is that the parameter γ1 in Equation (2) is approximately con-
stant 𝛾  ≈ 0.1 hr , whereas the parameter γ2 decreases with increasing spatial period d, 
as we have demonstrated in our previous work [20]. In particular, for d = 7 µm, we have 
reported that 𝛾  ≈ 10  μm  [20], which implies that for growth velocities ~10 µm/hr, 
we have that:  𝛾 ∙ 𝑉 ≪ 𝛾 𝑉 (6)

This condition holds for the observed axonal growth on surfaces with 𝑑 7 μm 
[20]. Figure 3 shows examples of normalized distributions for the parallel component 
(along the x-axis) of the growth cone velocity measured at t = 0 h (Figure 3a) and t = 40 h 
(Figure 3b), respectively. The experimental data show the measured velocities are of the 
order of a few tens µm/hr such that: 𝑉 ≪ 𝛾 /𝛾  ≈ 100  µm/hr.  

 
Figure 3. Examples of normalized distributions for the parallel component of the growth cone ve-
locity measured on micropatterned PDMS surfaces with pattern spatial period d = 7 µm. (a) Velocity 
distribution for N = 85 different growth cones measured at t = 0 h (10 h after plating, see main text). 
(b) Velocity distribution for N = 172 different growth cones measured at t = 40 (50 h after plating). 

Figure 3. Examples of normalized distributions for the parallel component of the growth cone
velocity measured on micropatterned PDMS surfaces with pattern spatial period d = 7 µm. (a) Velocity
distribution for N = 85 different growth cones measured at t = 0 h (10 h after plating, see main text).
(b) Velocity distribution for N = 172 different growth cones measured at t = 40 (50 h after plating).

Summarizing the above experimental observations, we conclude that in the time
interval 0 ≤ t ≤ 40 h, the axonal growth is one-dimensional along the direction of the
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micropatterns (x-axis in Figure 2a), and it is described by the following stochastic equation
for the velocity V of the growth cones:(

dV
dt

)
= a0 − γ1V + Γ(t) (7)

which is obtained from Equation (2) by employing Equation (6) and the condition θ ≈ π
2 .

We take Equation (7) as the starting point for the analysis presented in the rest of this paper.

4.2. Axonal Dynamics along Parallel Micropatterns

Having established the conditions for the quasi-one-dimensional growth of axons on
micropatterned PDMS substrates, we now proceed to analyze the predictions of Equation (7)
and compare these predictions with the experimental results. Integrating Equation (7) gives:

V(t) =
a0

γ1
+

(
v(0)− a0

γ1

)
·e−γ1t +

∫ t

0
e−γ1(t−q)Γ(q)dq (8)

where v(0) is the initial growth cone velocity. Next, we use Ornstein–Uhlenbeck’s method [44]
to calculate average values over several independent realizations of the stochastic term
Γ (henceforth, the symbol 〈X〉 will denote the average value for the quantity X). Using
Equations (4) and (8), we obtain the average value of the axonal velocity 〈V(t)〉:

〈V(t)〉 =
(

V0 −
a0

γ1

)
·e−γ1t +

a0

γ1
(9)

where 〈V0 = v(0)〉. The velocity correlation function at two arbitrary growth times t1 and
t2 (with t1 > t2) can be computed from Equations (8) and (9):

〈V(t1)·V(t2)〉
=
(

a0
γ1

)2
+
(

V0 − a0
γ1

)2
·e−γ1(t1+t2) + a0

γ1

(
V0 − a0

γ1

)
·
(
e−γ1t1 + e−γ1t2

)
+
∫ t1

0 dq1
∫ t2

0 dq2e−γ1(t1−q1)·e−γ1(t2−q2)·〈Γ(q1)Γ(q2)〉

=
(

a0
γ1

)2
+
(

V0 − a0
γ1

)2
·e−γ1(t1+t2) + a0

γ1

(
V0 − a0

γ1

)
·
(
e−γ1t1 + e−γ1t2

)
+ σ2

2γ1
·
(

e−γ1(t1−t2) − e−γ1(t1+t2)
)

(10)

where we have used Equation (5) to obtain the equality in the last line of Equation (10). In
particular, setting t1 = t2 = t in Equation (10), we get the mean squared velocity for axonal
growth as a function of time:

〈V2(t)〉 =
(

a0

γ1

)2
+

(
V0 −

a0

γ1

)2
·e−2γ1t +

2a0

γ1

(
V0 −

a0

γ1

)
·e−γ1t +

σ2

2γ1
·
(

1− e−2γ1t
)

(11)

Next, we compare the predictions of the theoretical model given by Equations (7)–(11)
with experimental data measured for axonal growth along the direction of the micropat-
tern. Figure 4a shows the experimental data for the average axonal velocity vs. time, together
with the fit to the data points with Equation (9). Figure 4b shows the experimental data for the
mean squared velocity vs. time, together with the fit to the data points with Equation (11).

The average initial velocity for growth cones is found from the velocity distribu-
tion at t = 0 h (Figure 3a): V0 = 0.9 µm/hr. From the fit of the data in Figure 4a,b with
Equations (9) and (11), respectively, we obtain the values for the constant drift coefficient:
a0 = (3.1 ± 0.5) µm/hr, the variance for the stochastic noise: σ2 = (0.52 ± 0.08) µm2/hr3,
and damping coefficient for axonal growth: γ1 = (0.11 ± 0.04) hr−1.
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at different times. The continuous red curve is fit to the data with Equation (9). (b) Variation of the
axonal mean squared velocity along the direction of the micropattern with time. The data points
represent the experimentally measured mean squared velocity at different times. The continuous red
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between N = 64 and N = 182 axons. Error bars indicate the standard error of the mean. The fit of the
data points with Equations (9) and (11) gives the constant drift coefficient a0, damping coefficient γ1,
and the variance σ2 of the stochastic term Γ (see text).

By integrating Equation (8), we can also calculate the position of the growth cone as it
moves along the x-axis:

x(t) =
∫ t

0
V(q)dq =

a0

γ1
·t +

(
v(0)
γ1
− a0

γ2
1

)
·
(
1− e−γ1t)+ ∫ t

0
dqe−γ1q

∫ q

0
eγ1sΓ(s)ds (12)

The axonal mean squared length
〈

L2(t)
〉

as a function of time is given by:

〈L2(t)〉 = 〈(x(t)− x0)
2〉 = 〈

[∫ t
0 V(t1)dt1

]2
〉 = 〈

∫ t
0 V(t1)dt1·

∫ t
0 V(t2)dt2〉

=
∫ t

0 dt1
∫ t

0 〈V(t1)·V(t2)〉dt2

(13)

By using Equation (10) and the Gaussian white noise conditions in Equations (4) and (5),
we get:

〈L2(t)〉 = σ2

2γ1
·
[∫ t

0 dt1
∫ t

0 dt2e−γ1(t1−t2) −
(∫ t

0 dt1e−γ1t1
)2
]
+
(

V0 − a0
γ1

)2
·
(∫ t

0 dt1e−γ1t1
)2

= σ2

2γ1
·
[

2
(

t
γ1

+ e−γ1t−1
γ1

2

)
− (e−γ1t−1)

2

γ1
2

]
+
(

V0 − a0
γ1

)2
· (e−γ1t−1)

2

γ1
2

which simplifies to:

〈L2(t)〉 = σ2

γ2
1
·t + σ2

2γ3
1
·
(

4e−γ1t − e−2γ1t − 3
)
+

(
V0 −

a0

γ1

)2
·
(
e−γ1t − 1

)2

γ1
2 (14)

In Figure 5, we show the experimental data for the axonal mean squared length (black
data points) as well as the plot of Equation (14) (blue curve) without the introduction of any
additional free parameters (all parameters appearing in Equation (14) have been measured
from the data fit in Figure 4).



Biomimetics 2023, 8, 267 10 of 16Biomimetics 2023, 8, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 5. Variation of the axonal mean squared length with time. Data points represent experimen-
tally measured axonal mean square length at different times. Error bars indicate the standard error 
of the mean for each data set. The blue curve is the plot of Equation (14) without any additional 
free parameters. 

Equation (14) shows that for large time scales: 𝛾 ∙ 𝑡 ≫ 1 the mean squared length 
reduces to a constant drift term plus a term proportional to the time t:  〈𝐿 (𝑡)〉 ≈ 1𝛾 𝑉 − 𝑎𝛾 +  𝜎𝛾 ∙ 𝑡 (15)

The second term in Equation (15) is characteristic of a diffusive process in which the 
axonal mean squared length increases linearly with time. In this regime, we can define a 
diffusion coefficient for the growth cones by analogy with ordinary Brownian motion [44]: 𝐷 = 〈𝑉(0) ∙ 𝑉(𝑡)〉𝑑𝑡 (16)

Using Equation (10) with the conditions: 𝑡 =  𝑡,  𝑡 =  0 and 𝛾 ∙ 𝑡 ≫ 1, and subtract-
ing the constant drift term, we get the diffusion coefficient:  𝐷 = 〈𝑉(0) ∙ 𝑉(𝑡)〉𝑑𝑡 ≈ 𝜎2𝛾 𝑒 𝑑𝑡 = 𝜎2𝛾  (17)

By plugging in the measured values for the parameters 𝜎  ≈ 0.52  μm /hr ,  and 𝛾 ≈ 0.11  hr  we obtain 𝐷 ≈ 21 μm /hr. 
Finally, by employing Equation (17) for the diffusion coefficient, we can rewrite the 

expression for the axonal mean squared length (Equation (14)) to obtain: 〈𝐿 (𝑡)〉 = 2𝐷𝑡 + 𝐷𝛾 ∙  (4𝑒 − 𝑒 − 3) + 𝑉 − 𝑎𝛾 ∙ (𝑒 − 1)𝛾  (18)

This equation shows that the axonal dynamics on the micropatterned PDMS sub-
strates are characterized by a biased random walk, in which the surface geometry imparts 
a constant drift term to the growth cone, and the stochastic components lead to a diffusive 
motion around the average growth direction.  

5. Discussion 
Neuronal growth is the result of the complex interactions between deterministic cues 

and stochastic factors that affect the growth cone. Deterministic influences include sub-
strate geometry and mechanics, as well as external electric fields and chemical gradients. 
Stochastic components originate in processes such as the polymerization of actin fila-
ments, random fluctuations in the intercellular signaling, and the low concentration of the 

Figure 5. Variation of the axonal mean squared length with time. Data points represent experimentally
measured axonal mean square length at different times. Error bars indicate the standard error of
the mean for each data set. The blue curve is the plot of Equation (14) without any additional free
parameters.

Equation (14) shows that for large time scales: γ1·t � 1 the mean squared length
reduces to a constant drift term plus a term proportional to the time t:

〈L2(t)〉 ≈ 1
γ1

2

(
V0 −

a0

γ1

)2
+

σ2

γ2
1
·t (15)

The second term in Equation (15) is characteristic of a diffusive process in which the
axonal mean squared length increases linearly with time. In this regime, we can define a
diffusion coefficient for the growth cones by analogy with ordinary Brownian motion [44]:

D =
∫ ∞

0
〈V(0)·V(t)〉dt (16)

Using Equation (10) with the conditions: t1 = t, t2 = 0 and γ1·t� 1, and subtracting
the constant drift term, we get the diffusion coefficient:

D =
∫ ∞

0
〈V(0)·V(t)〉dt ≈

∫ ∞

0

σ2

2γ1
e−γ1tdt =

σ2

2γ2
1

(17)

By plugging in the measured values for the parameters σ2 ≈ 0.52 µm2/hr3, and
γ1 ≈ 0.11 hr−1 we obtain D ≈ 21 µm2/hr.

Finally, by employing Equation (17) for the diffusion coefficient, we can rewrite the
expression for the axonal mean squared length (Equation (14)) to obtain:

〈L2(t)〉 = 2Dt +
D
γ1
·
(

4e−γ1t − e−2γ1t − 3
)
+

(
V0 −

a0

γ1

)2
·
(
e−γ1t − 1

)2

γ1
2 (18)

This equation shows that the axonal dynamics on the micropatterned PDMS substrates
are characterized by a biased random walk, in which the surface geometry imparts a
constant drift term to the growth cone, and the stochastic components lead to a diffusive
motion around the average growth direction.
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5. Discussion

Neuronal growth is the result of the complex interactions between deterministic
cues and stochastic factors that affect the growth cone. Deterministic influences include
substrate geometry and mechanics, as well as external electric fields and chemical gradi-
ents. Stochastic components originate in processes such as the polymerization of actin
filaments, random fluctuations in the intercellular signaling, and the low concentration
of the chemoattractant and chemorepellent biomolecules [1–7]. In this paper, we show
that parallel geometrical patterns promote axonal alignment along the direction of the
patterns. Thus, surface geometry represents the primary deterministic factor directing
neuronal growth on micropatterned PDMS surfaces. The inherent stochastic nature of
neuronal growth is characterized by Gaussian white noise. In the previous sections, we
have demonstrated that axonal dynamics on these substrates are described by a biased
random walk model given by Equations (7)–(18). This model shows that the overall move-
ment of the growth cone has two components: (1) a uniform drift along the direction of the
PDMS micropatterns (defined as the x-axis in Figures 1 and 2), a random Brownian-like
motion around these main growth directions. The parameters that characterize this motion
are the drift coefficient a0, the damping coefficient γ1, and the strength σ of the stochastic
noise. We use this theoretical model to fit the experimental data for the time dependence
of the axonal average and mean squared velocities (fits to the data are represented by
the continuous red curves in Figure 4). From the data fit, we obtain the values of the
parameters for axonal growth: a0 = (3.1 ± 0.5) µm/hr, σ2 = (0.52 ± 0.08) µm2/hr3, and
γ1 = (0.11 ± 0.04) hr−1. Figure 5 shows excellent agreement between the experimental
measurements for the axonal mean squared length and the theoretical prediction of the
drift-diffusion model, given by Equation (14), which is plotted without any additional
adjustable parameters (blue curve in Figure 5).

The drift-diffusion regime is characterized by an increase in the axonal mean squared
velocity along the direction of the pattern, with a characteristic time τ = 1/γ1 ≈ 9 h (or
~19 h after neuron plating), and a cell motility (diffusion) coefficient D ≈ 21 µm2/hr. This
value is close to the diffusion coefficients we have measured in previous work for neuronal
growth on several types of two-dimensional substrates [17–22] and is comparable to diffu-
sion coefficients reported in the literature for other types of cells [45–47]. We note that the
diffusion coefficient is proportional to the variance of the stochastic term (Equation (17)),
and therefore it represents a measure of the axonal random walk superimposed to the over-
all drift. Indeed, from Equation (18), we have that for large t (that is for t� 1/γ1 ≈ 9 h),
the axonal mean squared length is given by:

〈L2(t)〉 ≈ 2Dt +
1

γ1
2

(
V0 −

a0

γ1

)2
(19)

that is a sum between a diffusive and a constant drift term. However, Equations (16)–(19) have
a different interpretation than the corresponding relations that characterize a simple Brownian
motion [44]. In particular, let us assume that the fluctuation–dissipation theorem for a system
at thermodynamic equilibrium holds for axonal growth. Then applying Einstein’s relation for
diffusion [44]: D = kB·T/γ1 (where kB and T are the Boltzmann constant and temperature,
respectively) we obtain a fictitious temperature for growth of the order of 10,000 K. Clearly,
neuronal growth and, more generally, cellular motility are not thermal equilibrium processes.
Nevertheless, in this paper, we refer to D as the cellular diffusion coefficient, following the
conventional terminology found in the literature [22,26–34,45–47].

We emphasize that these results are valid for intermediate growth times tculture in the
interval 10–50 h after neuron culture. For our analysis, we have defined the observation
time t as: t = tculture – 10 h and measured growth in time increments of 5 h in the interval:
0 ≤ t ≤ 40 h. At earlier times, the growth cone had a two-dimensional movement on the
surface which is described by Equations (2) and (3). As time progresses, the axon is steered
toward the surface micropattern (i.e., along the directions characterized by θ = π

2 , 3π
2 , see
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Figures 1 and 2) by the deterministic torque in Equation (3). Thus, for growth times longer
than 10 h after plating, the movement of the growth cone is well approximated by one-
dimensional motion along the direction of the micropatterns with stochastic fluctuations
along this direction. In our previous work, we investigated the dependence of neuronal
growth on the spatial periodicity d of the geometrical patterns [20–22]. Our previous results
show that axons display a maximum degree of alignment when d is in the range 3–5 µm,
that is, when d is close to the linear dimension of the average growth cone [20,22]. The
spatial period of the geometrical patterns in the current study is d = 7 µm (Figure 1), which
is larger than the typical values for the size of the growth cone. The experimental data show
that, in this case, the degree of axonal alignment and the average growth velocity are smaller.
This leads to a simplification in the equations of motion; that is, Equations (2) and (3) are
replaced by Equation (7), as we have discussed in the previous sections.

These results support our earlier observations that axons navigate and follow geo-
metrical patterns via a contact—guidance mechanism [20–22]. Contact guidance refers to
the phenomenon by which cells respond to mechanical and geometrical cues in their sur-
rounding environment to direct their movement and growth. This phenomenon has been
observed for several types of cells, such as neurons, fibroblasts, and tumor cells [48–51].
In addition to its role in cell migration, contact guidance has been shown to affect cell
proliferation, differentiation, and even gene expression [51–53]. The biophysical mech-
anisms underlying contact guidance are not yet fully understood. However, previous
work has shown that in contact guidance, the intracellular actin filaments interact with the
extracellular matrix (ECM) on the surrounding substrate and that these interactions are
facilitated by a particular type of proteins known as integrins [50–53]. These molecules
control the cell–substrate forces by attaching actin filaments to ECM and developing special
cell attachment sites called focal adhesion points. These interactions cause cells to sense
and respond to substrate features such as grooves, ridges, or pores in both in vivo and
in vitro experiments [3,4,7,24,48–51]. For example, prior studies have also shown that
contact guidance involves the activation of signaling pathways (such as Rho-associated
proteins) that play an important role in regulating the dynamics of actin filaments and the
formation of focal adhesion points [52].

In the case of neuronal growth, the contact guidance mechanism presents several
unique characteristics. The interaction between the growth cone and the substrate results
in the formation of a “molecular clutch”. This “clutch” anchors the cytoskeleton to the sub-
strate, thereby enabling the growth cone to extend the lamellipodia and filopodia [1–3,48].
The actin filaments push against the substrate through the clutch, thus generating traction
forces that contribute to the advancement of the growth cone. The process is regulated
by the contractility of the motor protein myosin II. In previous work, we have reported
the importance of the cytoskeleton and molecular motors (myosin II) in controlling the
axonal alignment on directional substrates [14,21,22]. Myosin II controls the dynamics of
actin filaments at the leading edge of the growth cone and thus plays an essential role in
the generation of external forces and the maturation of curvature-sensing proteins and
focal adhesion points. In our work, we have treated neurons with Blebbistatin and/or
Y-27,632, two chemical compounds that inhibit the activity of myosin II and thus alter the
dynamics of actin filaments [14,21,22]. Our results show that inhibition of cytoskeletal
dynamics via chemical treatment results in a decrease in axonal alignment and, thus, in the
tendency of growth cones to follow geometrical patterns. We have demonstrated that the
chemical treatment of neurons affects the generation of traction forces and the development
of focal adhesion points and ultimately leads to a decreased degree of alignment of the
axons with the surface patterns. Similar alteration of cytoskeletal dynamics also seems to
take place in many neurogenerative diseases or following neuron injury [1–4,50]. However,
the alteration of the regulatory mechanisms and their interaction with molecular motors
and cellular cytoskeleton in the disease states are not completely understood [48–50].

We have also performed combined traction force—atomic force microscopy measure-
ments and demonstrated that the clutch mechanism leads to an increase in cell–substrate
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traction forces, as well as to an overall enhancement of neuron elastic modulus during ax-
onal extension [12]. Our previous results also show that the growth cone wraps around the
high curvature features of the PDMS micropatterns, thereby resulting in an increase in the
density of focal adhesion points when the axons are aligned along the patterns [12,21,22].
As a result, high-curvature geometric patterns, such as the crests of the PDMS micropatterns,
exert stronger forces on the growth cone compared to patterns with features of low curva-
ture. This implies that the contact guidance mechanism leads to the strengthening of the
traction forces along the direction of the micropattern (x direction in Figure 1b). The growth
cone detects the external geometrical cues and orients its motion in the direction that maxi-
mizes the cell–substrate interactions. This process ultimately leads to the one-dimensional
axonal growth discussed in the current study. We note that in our experiments, we have not
varied the mechanical, geometrical, or biochemical properties of the growth substrate. A
very fruitful avenue for future research will be to investigate the effect that different types
of surface adhesion molecules and/or the non-uniform distribution of these molecules on
the substrate have on axonal dynamics and the formation of neural networks. This will
require the measurement of the cell—substrate traction forces and the quantification of the
density of cell-surface receptors using fluorescence and immunostaining techniques.

Periodic geometrical patterns with dimensions in the range of 1–10 µm are found
in vivo, functioning as physiological scaffolds for neuronal growth. These scaffolds include
structures such as radial glial fibers, tracks of extracellular matrix proteins, and curved brain
foldings [1–7]. Our results show that growth substrates with microscale periodic patterns
promote the extension of the axons along the direction of the pattern. The spatial periods of
the micropatterns used in our studies are relevant not only to neuronal growth within living
organisms but also have great potential for applications in engineering biomimetic devices
and implants aimed at nerve repair and regeneration. The nervous system possesses a
remarkable ability to repair itself, but its regenerative capacity is limited following injury.
Novel neuroprosthetic biomaterials serve as in vivo scaffolds for guiding regenerated axons
toward their target locations, ultimately restoring connectivity and functionality.

Our research sets the stage for further investigations of neuronal growth and, more
generally, the contact guidance mechanism. The theoretical biased random walk model
introduced in this paper is the simplest model that accounts for the experimental data
in our simplified growth environments and predicts the cell motility coefficient and the
axonal mean squared length. This model could be further generalized to include the explicit
dependence of axonal growth on the cell–substrate and cell–cell interactions. This refined
model could be employed to analyze the growth of other types of neurons (hippocampal,
peripheral, etc.), as well as neuronal growth on nerve scaffolds, neuroprosthetic biomateri-
als, and in vivo growth of the nerve tissue. This approach could also be applied to study
the movement of other types of cells, thus providing new insight into the nature of cellular
motility. In future experiments, the use of specific fluorescent markers for neuron stain-
ing will permit the image of the structural components of the growth cone (lamellipodia,
filopodia), identify the distribution of actin filaments and microtubules inside the cell, as
well as directly measure traction forces during growth. These future investigations will
allow us to quantify the effect of geometrical and mechanical cues on the formation of neu-
ronal networks and to connect the observed neuronal growth behavior to internal cellular
processes, such as signal transduction, cytoskeletal dynamics, and cell–surface interactions.

6. Conclusions

In this paper, we have presented a combined experimental and theoretical analysis
of neuronal growth on surfaces with micropatterned periodic geometrical features. We
have demonstrated that the extension of axons on these surfaces is described by a biased
random walk model in which the surface geometry imparts a constant drift term to the
growth cone, and the random components produce a Brownian-like motion around the
average growth direction. We have shown that this model is in excellent agreement with
experimental data obtained for the growth cone average velocity, mean squared velocity,
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and axonal mean squared length. Our results indicate that the movement of the growth
cone is governed by a contact-guidance mechanism arising from the cellular response to
the external periodic geometry: the growth cone senses geometrical cues and aligns its
motion along the surface micropatterns. The stochastic model presented in this study could
be further refined to develop novel bio-inspired models for describing the formation of
neural networks. The model could also be used to describe the dynamics of different cell
types that respond to other environmental cues, such as electric fields, various substrate
biomechanical parameters, or external biomolecules with different concentration gradients.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomimetics8020267/s1: Details on surface preparation and cell
culture, and details on fluorescence and AFM images.
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