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Abstract: To improve the identification accuracy of the vibration states of hydraulic units, an im-
proved artificial rabbits optimization algorithm (IARO) adopting an adaptive weight adjustment
strategy is developed for optimizing the support vector machine (SVM) to obtain an identification
model, and the vibration signals with different states are classified and identified. The variational
mode decomposition (VMD) method is used to decompose the vibration signals, and the multi-
dimensional time-domain feature vectors of the signals are extracted. The IARO algorithm is used to
optimize the parameters of the SVM multi-classifier. The multi-dimensional time-domain feature
vectors are input into the IARO-SVM model to realize the classification and identification of vibration
signal states, and the results are compared with those of the ARO-SVM model, ASO-SVM model,
PSO-SVM model and WOA-SVM model. The comparative results show that the average identification
accuracy of the IARO-SVM model is higher at 97.78% than its competitors, which is 3.34% higher than
the closest ARO-SVM model. Therefore, the IARO-SVM model has higher identification accuracy
and better stability, and can accurately identify the vibration states of hydraulic units. The research
can provide a theoretical basis for the vibration identification of hydraulic units.

Keywords: variational mode decomposition; artificial rabbits optimization; support vector machine;
vibration state of hydraulic units; signal identification

1. Introduction

With the continuous development of the new energy industry, hydropower, a type of
renewable and clean energy, has received more and more attention. As the core equipment
of hydroelectric power generation, the operating states of hydraulic units are related to
power generation efficiency, economic benefits and production safety [1]. Vibration is
an important factor that affects the stable operation of hydraulic units. Comprehensive,
effective and accurate classification and identification of vibration states are the premise
of monitoring the operating states of hydraulic units, and it is very necessary to improve
the identification accuracy of the vibration states of hydraulic units to judge the stable
operation of hydraulic units.

Since the hydraulic unit is subjected to the combined action of mechanical, hydraulic
and electrical factors, its vibration signal shows obvious non-stationary and non-linear
characteristics [2]. For the identification of the vibration states of hydraulic units, pro-
cessing and extracting the feature vector of the vibration state signals is an indispensable
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part. Seyrek et al. [3] proposed three decomposition methods, namely, empirical mode
decomposition (EMD), ensemble empirical mode decomposition (EEMD), and variational
mode decomposition (VMD), which are used to decompose and identify chatter frequency
bands. Joshuva et al. [4] identified the states of a wind turbine blade based on its vibration
pattern and used VMD for signal pre-processing. Wang et al. [5] proposed a multi-objective
particle swarm optimization (MOPSO) algorithm to optimize the VMD parameters, and
it is applied to the composite fault diagnosis of the gearbox. Zhang et al. [6] proposed an
adaptive VMD method based on the grasshopper optimization algorithm (GOA) to analyze
the vibration signals of rotating machinery. Qaisar et al. [7] proposed a new method to
identify arrhythmias by processing electrocardiogram signals. The solution is based on
an effective hybridization of the multi-rate processing, QRS selection, variational mode
decomposition, feature extraction from modes, metaheuristic optimization-based feature
selection, and machine learning algorithms. Mazzeo et al. [8] proposed an effective com-
putational strategy for bridge modal identification based on its free vibration response.
To make the bearing run under variable working conditions, Liu et al. [9] proposed a
feature extraction method based on SHO-VMD decomposition and multi-feature parameter
fusion. Ni et al. [10] proposed a fault information-guided VMD (FIVMD) method to extract
repetitive transient signals from weak bearings.

In recent years, many scholars have proposed different methods in signal feature
vector identification combined with optimization algorithms. Hatiegan et al. [11] mea-
sured and analyzed the vibration data of the hydraulic turbine under different working
conditions during operation. Jose et al. [12] proposed a practical method for the early
detection of internal leakage faults in boom actuators of mobile hydraulic machines. This
method used pressure and boom angle displacement signals to train and verify the SVM
classifier, and used the binary version of particle swarm optimization (PSO) for feature
selection. Jena et al. [13] used the unsubtracted wavelet transform (UWT) to denoise the
signal and identified and located the gear defects in the time domain of the vibration signal.
Alsaiari et al. [14] used artificial rabbits optimization (ARO) to establish a multi-layer
perception (MLP) [15] coupling model to predict the water yield of solar stills (SSs) with
different designs. To improve the load frequency control (LFC) of IMG, Khalil et al. [16]
applied ARO to IMG to simultaneously adjust the controller parameters of multiple con-
trolled sources. Pei et al. [17] used the SVM improved by GA and the shuffled frog leaping
algorithm (SFLA) [18] to identify fault features, respectively. Ma et al. [19] proposed an
identification method based on singular value decomposition (SVD) and MPSO-SVM.
Wang et al. [20] used VMD to decompose the acoustic vibration signal of water pipes, ex-
tracted three feature vectors, formed a new feature vector through multi-source information
fusion, and finally input it into the SVM classifier for leak identification. Li et al. [21] used
manta ray foraging optimization (MRFO) [22] to optimize the parameters of the proposed
SVM for short-term load forecasting. Zhang et al. [23] proposed an optical fiber vibration
signal identification method based on HOSA-SVM and EMD-AWPP. Saari et al. [24] trained
the model by using the fault features extracted from the vibration signals as the input of
one-class SVM and realized the automatic detection and identification of wind turbine
bearing faults. Ruan et al. [25] use the phase space reconstruction (PSR) method to extract
the feature set that represents the health condition of the trip mechanism from the vibration
signal and input it into the fault identification model based on SVM.

The ARO has the advantages of simple operation, few parameters to be set and strong
optimization performance, but its convergence accuracy is low, the convergence speed is
slow and it is easy to fall into local optimization. Therefore, the adaptive weight adjustment
method is selected to improve the ARO algorithm. The selection of penalty parameters
and kernel function parameters of the SVM is the key to affecting signal identification [17].
This paper proposes an identification method of the ARO algorithm with the adaptive
weight adjustment strategy to optimize SVM. The variational mode decomposition (VMD)
has high computing efficiency, a low number of decomposition layers, no mode aliasing
and endpoint effects [26], and its intrinsic mode component (IMF) contains most of the
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effective information. Therefore, the VMD method is used to decompose the different states
of the vibration signals of the hydraulic units, select the IMF component, and extract the
time-domain feature indicator of the IMF component. Through multi-source information
fusion, multiple time-domain feature vectors are combined into a new multi-dimensional
feature vector and finally input into the IARO-SVM model for vibration state identification.
The IARO-SVM model is compared with the ARO-SVM model, the ASO-SVM model, the
PSO-SVM model and the WOA-SVM model. The results show that the IARO-SVM model
has a higher identification accuracy and can effectively distinguish different signal states of
vibration states.

The main motivation of this paper is summarized as follows.

• The stable operation of hydraulic units is very important for the safe production of
hydropower stations. Vibration state monitoring is the premise of analyzing whether
the hydraulic unit is operating stably. It is very necessary to improve the identification
accuracy of the vibration states of hydraulic units to guarantee the secure operation of
the hydraulic units;

• Optimization algorithms are widely used in signal classification and identification.
However, many optimization algorithms have some shortcomings. Therefore, accord-
ing to the shortcomings of the ARO algorithm, this paper proposes an improvement
strategy based on the adaptive adjustment of the weight to improve the identification
accuracy of the vibration states of the hydraulic units;

The main contributions of this study are highlighted as follows.

• A method of adaptively changing the inertia weight according to the current rabbit
population distribution is proposed, which is used to improve the optimization ability
of the ARO algorithm;

• A total of 23 benchmark functions are used to test the performance of the IARO algo-
rithm. The experimental results show that the IARO algorithm has good exploration
and exploitation abilities;

• Through the application of vibration state signals of the hydraulic units, the identifica-
tion method of SVM optimized by the IARO algorithm is verified. The experimental
results show that the IARO-SVM model can well identify the different vibration states
of hydraulic units, and provide a guarantee for the stable operation of hydraulic units.

The residual section of this paper is as follows. Section 2 describes the basic principles
of the VMD algorithm, the ARO algorithm and SVM. In Section 3, a method of adaptively
changing the inertia weight according to the current rabbit population distribution is
proposed to improve the original version. Section 4 describes testing the performance of
the IARO algorithm using 23 benchmark functions. Section 5 verifies the practicality of the
IARO-SVM model in engineering practice by identifying the vibration states of hydraulic
units. Section 6 introduces the conclusion and future development direction.

2. The Proposed Method
2.1. Variational Mode Decomposition Algorithm

To solve the problems of modal aliasing and endpoint effects in signal decomposition
by classical recursive decomposition algorithms such as local mean decomposition (LMD)
and EMD, Dragomiretskiy et al. [27] proposed a completely non-recursive VMD algorithm.
The VMD [28,29] has strong noise robustness, by which non-stationary sequences with high
complexity and strong nonlinearity can be decomposed into several relatively stationary
subsequences with different frequency scales [30]. Its core is the construction and solution
of variational problems, which describe the VMD variational problem as follows: assume
that the original signal y(t) consists of K eigenmode functions {uk(t)}, (k = 1, 2, · · ·K) with

different center frequencies and limited bandwidth, and constrain the sum
K
∑

k=1
uk(t) of each



Biomimetics 2023, 8, 243 4 of 25

eigenmode function to restore the original signal y(t). The constrained variational problem
is expressed as follows:

min
{uk},{ωk}

(
∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
⊗ uk(t)

]
e−jωkt

∥∥2
)

s.t.∑
k

uk(t) = y(t)
(1)

where δ(t) is the pulse function, j represents imaginary number; ⊗ represents convolution,
y(t) is the original signal, ωk is the center frequency of each modal component uk(t), and
∂t represents the derivation of time.

To solve the above variational model Equation (1), the quadratic penalty factor and the
Lagrange multiplier are introduced to transform the above constrained variational problem
into an unconstrained variational problem:

L({uk}, {ωk}, λ) = α
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
⊗ uk(t)

]
e−jωkt

∥∥2
2

+

∥∥∥∥y(t)−
K
∑

k=1
uk(t)

∥∥∥∥2
2 +

〈
λ(t), y(t)−

K
∑

k=1
uk (t)〉

(2)

where 〈 ·〉 represents the inner product,
∥∥∥y(t)−∑K

k=1 uk(t)‖
2

2
is the second penalty, α reduce

the influence of Gaussian noise on signal reconstruction, and λ(t) ensure the strictness of
the constraints.

On the basis of the transformation variational problem, the alternating direction
method of multipliers (ADMM) is used to alternately update un+1

k , ωn+1
k , and λn+1 to solve

the ‘saddle point’ of Equation (2), that is, to solve the optimal solution of the variational
problem. The iteration process is stopped when the following conditions are met:

∑k

∥∥∥∥_u n+1
k − _

u
n
k

∥∥∥ 2

2
/
∥∥∥_

u
n
k

∥∥∥ 2

2
< ε (3)

where ε is the discrimination accuracy.
After the end of the cycle, K modal components uk(t) can be obtained by inverse

Fourier transform of
_
u k(ω).

2.2. Artificial Rabbits Optimization Algorithm

The ARO is a new bionic heuristic algorithm [31] inspired by the famous Chinese
proverbs “Rabbits don’t eat the grass on the edge of the nest” and “A cunning rabbit has
three burrows”. Figure 1 depicts the three burrows of a cunning rabbit. The ARO algorithm
adopts the detour foraging and hiding strategies.
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2.2.1. Detour Foraging (Exploration)

Assume that each rabbit in the population has its own area, each area has edible grass
and d burrows, and rabbits always visit the foraging position randomly. The mathematical
model of the detour foraging is as follows [31]:

vi(t + 1) = xj(t) + R•(xi(t)− xj(t)) + round(0.5•(0.05 + r1))•n1, i = 1, · · · , n, j 6= i (4)

R = L•C (5)

L = (e− e(
t−1

T )
2
)• sin(2πr2) (6)

c(k) =
{

1
0

i f k == g(l)
else

k = 1, · · · , d and l = 1, · · · , dr3•de (7)

g = randperm(d) (8)

n1 ∼ N(0, 1) (9)

where vi(t + 1) is the candidate position of the ith rabbit at the time t + 1, xi(t) is the
position of the ith rabbit at the time t, n is the number of rabbits, d is the dimension, T is the
maximum number of iterations, d•e is the ceiling function. L is the step size. n1 is subject
to the standard normal distribution. c is the mapping vector.

2.2.2. Random Hiding (Exploitation)

To reduce the probability of being hunted, a rabbit randomly chooses a burrow to hide.
The ith rabbit is in the ith burrow, and the mathematical expression is as follows [31]:

bi,j(t) =xi(t) + H · g · xi(t) , i = 1, · · · , n and j = 1, · · · , d (10)

H =
T − t + 1

T
· r4 (11)

n2 ∼ N(0, 1) (12)

g(k) =
{

1 i f k == j
0 else

k = 1, · · · , d (13)

To simulate this random hiding behavior of rabbits, the following mathematical
equations are given [31]:

vi(t + 1) =xi(t) + R · (r4 · bi,r(t)− xi(t)) , i = 1, · · · , n (14)

gr(k) =
{

1 i f k == dr5 · de
0 else

k = 1, · · · , d (15)

bi,r(t) =xi(t) + H · gr · xi(t) (16)

where bi,r is a randomly selected burrow from d burrows. r4 and r5 are two random
numbers between (0, 1). According to Equation (14), the ith rabbit randomly selects a
burrow from its d burrows to update its position.
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After the detour foraging and random hiding are completed, the position of the ith
rabbit is updated as follows [31]:

xi(t + 1) =

{
xi(t) f (xi(t)) ≤ f (vi(t + 1))
vi(t + 1) f (xi(t)) > f (vi(t + 1))

(17)

2.2.3. Energy Shrink (Switch from Exploration to Exploitation)

An energy factor needs to be designed to simulate the transition from exploration to
exploitation throughout the iteration. The energy factor is defined as follows [31]:

A(t) = 4(1− t
T
) ln

1
r

. (18)

The behavior of A over 1000 iterations is depicted in Figure 2. In Figure 2, when the
energy factor A(t) > 1, rabbits tend to randomly explore the areas of different rabbits for
foraging in the exploration phase; thus, detour foraging occurs. When the energy factor
A(t) ≤ 1, rabbits tend to randomly exploit their own burrows in the exploitation phase;
thus, random hiding occurs.

Biomimetics 2023, 8, x FOR PEER REVIEW 6 of 27 
 

 

4 ,( 1)= ( ) ( ( ) ( ))i i i r iv t x t R r b t x t+ + ⋅ ⋅ −
,

1, ,i n=   (14)

51              
( ) 1, ,

0           r

if k r d
g k k d

else
 == ⋅   = =


  (15)

, ( )= ( ) ( )i r i r ib t x t H g x t+ ⋅ ⋅  (16)

where ,i rb   is a randomly selected burrow from d   burrows. 4r   and 5r   are two ran-

dom numbers between )1,0( . According to Equation (14), the i th rabbit randomly se-
lects a burrow from its d  burrows to update its position.  

After the detour foraging and random hiding are completed, the position of the i th 
rabbit is updated as follows [31]:  

( )            ( ( )) ( ( 1))
( 1)

(t+1)        ( ( )) ( ( 1))
i i i

i
i i i

x t f x t f v t
x t

v f x t f v t
≤ +

+ =  > +
 (17)

2.2.3. Energy Shrink (Switch from Exploration to Exploitation) 
An energy factor needs to be designed to simulate the transition from exploration to 

exploitation throughout the iteration. The energy factor is defined as follows [31]: 

1( ) 4(1 ) lntA t
T r

= − . (18)

 
The behavior of A over 1000 iterations is depicted in Figure 2. In Figure 2, when the 

energy factor ( ) 1>tA , rabbits tend to randomly explore the areas of different rabbits for 
foraging in the exploration phase; thus, detour foraging occurs. When the energy factor 

( ) 1≤tA , rabbits tend to randomly exploit their own burrows in the exploitation phase; 
thus, random hiding occurs.  

 
Figure 2. The behavior of A in 1000 iterations. 

  

Figure 2. The behavior of A in 1000 iterations.

2.3. Multi-Classification Design of SVM

SVM is a class of generalized linear classifiers for binary classification of data according
to supervised learning, and its decision boundary is the maximum margin hyperplane for
solving learning samples [32,33].

Given input data and learning objectives X = {X1, · · · , XN}, y = {y1, · · · , yN}
(Xi ∈ Rn; yi ∈ {−1,+1}). If the samples are linearly separable, SVM transforms the classi-
fication problem into a convex quadratic optimization problem. min 1

2‖ω‖
2 + C

n
∑

i=1
ξi

s.t. yi(ω · Xi + b) ≥ 1− ξi

(19)

where ω is the weight. C is the penalty factor. ξ is the relaxation factor. b is the bias
constant.

The optimal classification decision function obtained is

sign[yi(ω · Xi + b)]. (20)
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When the order of the polynomial kernel is not 1, a SVM can be obtained.
The SVM optimization problem is min 1

2‖ω‖
2 + C

n
∑

i=1
ξi

s.t. yi[ω · φ(Xi) + b] ≥ 1− ξi ξi ≥ 0
(21)

The optimal classification decision function obtained is

sign[yi(ω · φ(Xi) + b)]. (22)

The binary classification SVM can be extended to multi-classification identification
based on a multi-classification strategy. The “one-to-one” (OVO) strategy is combined
with SVM to form a multi-classifier, which can obtain better classification performance [34].
When solving the multi-classification problem of K-class signals, constructing a two-class
SVM sub-classifier between any two categories of samples, a total of K(K− 1)/2 sub-
classifiers need to be constructed. In this study, since the Gaussian radial basis function
(RBF) has fewer parameters, it is used as the kernel function of the SVM [17].

3. Improvement of Artificial Rabbit Optimization Algorithm

The ARO has the advantages of simple operation, few parameters to be set and
strong optimization performance, but there are also points that can be improved, such as
convergence accuracy, convergence speed, and local optima avoidance. Using dynamic
inertial weights, in the early stage of algorithm iteration, due to the relatively dispersed
population, larger weight values can be assigned to accelerate the global search ability of
the algorithm. In the later stage of iteration, the algorithm can adaptively change the size of
the weight value according to the distribution of individuals in the current population, so
that it can search finely around the optimal solution and accelerate the convergence speed.

According to the inspiration of Kong et al. [35] on the improvement of the whale opti-
mization algorithm (WOA), this paper proposes a method to improve the ARO algorithm,
namely, the ARO with adaptive weight (IARO).

3.1. Adaptive Inertia Weight

The inertia weight is an important parameter in improving the ARO algorithm. The
appropriate weight value can improve the optimization ability of the algorithm. However,
the improper selection of linear inertia weight adjustment strategies will affect the con-
vergence speed of the algorithm. Therefore, this paper proposes a method to adaptively
change the weight value according to the current rabbit population distribution, which is
as follows:

w = a1 ·
(

Pj
worst − Pj

best

)
+

a2

t
·
(

xmaxj
i − xminj

i

)
(23)

x
max j
i = max xj

i
j∈[1,d]

i = 1, · · · , n (24)

x
max j
i = min xj

i
j∈[1,d]

i = 1, · · · , n (25)

a1 = cos(0.5π · r) (26)

a2 = 1− a1 (27)

where t represents the number of iterations of the current population. Piworst and Pibest
are the position vector of the worst rabbit and the position vector of the optimal rabbit in
the current rabbit population, respectively. The obvious difference between the proposed
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inertia weight and the weight in [35] is that our method uses the current population
information to update the lower and upper boundaries to adaptively adjust the search
space; another difference between them is that our method uses two random coefficients to
compromise the maximum individual distance and the distance in each dimension. The
adaptive adjustment for the weight of the current rabbit in the random hidden update
position is as follows:

vi(t + 1) =w · xi(t) + R · (r4 · bi,r(t)− xi(t)) (28)

After introducing the adaptive adjustment weight strategy, the algorithm can adap-
tively change the weight size according to the distribution of the current rabbit population.
In the early stage of algorithm iteration, if the rabbit population falls into the local optimal
solution, and there is little difference between the optimal solution and the worst solution,
the value of a1 ·

(
Pj

worst − Pj
best

)
is not affected by the population distribution, and this term

can still get a larger weight value of w, so as to avoid falling into a small search range in the
initial iteration. As the number of iterations increases, the value of a1 ·

(
Pj

worst − Pj
best

)
will

gradually become smaller, and its influence on the weight w will decrease. If the algorithm
does not get the optimal solution at this time, the design of a2 ·

(
xmaxj

i − xminj
i

)
/t can play

a leading role in the weight value w, which can make the algorithm search with a larger
step size. The advantage of this adaptive weight adjustment method is determined by two
parts. The first part changes the population when the number of iterations is too large, and
the second part changes the population when it falls into the local optimal.

3.2. The Specific Procedure of the IARO Algorithm

The flow chart of the IARO is shown in Figure 3, with the steps as follows:
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Step 1: Parameter initialization. Set the population size N, the maximum iteration
number T, and the parameter a1, a2;

Step 2: Population initialization. The initial solution is randomly generated, the
individual fitness degree {F(Xi), i = 1, 2, · · · , N} is calculated, and the best and worst
rabbits found so far are recorded;

Step 3: Calculate the weight w according to Equation (23); update parameters L, c, R,
A, H, g and b;

Step 4: If A > 1, update the current rabbit position according to Equation (4);
Step 5: If A ≤ 1, update the current rabbit position according to Equation (28);
Step 6: The population is updated and the best and worst rabbits found so far

are updated;
Step 7: If the algorithm reaches the maximum number of iterations, output the optimal

solution; otherwise, return to Step 3.

3.3. Energy Shrink of the IARO Algorithm

In the iterative process of the IARO algorithm, the transition process of the energy
factor from exploration to exploitation is shown in Figure 4.
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4. Experimental Results and Analysis

To test the performance of the IARO algorithm, 5 algorithms, including IARO, ARO,
PSO, ASO (atom search optimization) [36] and WOA, are compared, and 23 benchmark
functions are used in the experiment [37]. The 23 benchmark functions are shown in
Tables 1–3 including 7 unimodal functions, 6 multimodal functions and 10 low-dimensional
multimodal functions. The IARO algorithm has been carried out using the MATLAB 9.7
(R2019b) desktop computer running Windows 10 64-bit with an Intel(R) Core(TM) i5-9400F
CPU 2.9 GHz processor and 8.00 GB RAM. The initial population size of all algorithms is
set to 50, the maximum number of iterations is 300, and each optimization algorithm runs
repeatedly 30 times. The performance of the algorithm is analyzed and evaluated by four
indicators such as the mean value (Mean), standard deviation (Std), worst value (Worst)
and best value (Best) of the optimal solution found so far.
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Table 1. Unimodal functions.

Name Function D Range fopt

Sphere f1(x) = ∑n
i=1x2

i 30 [−100, 100]D 0

Schwefel 2.22 f2(x) = ∑n
i=1|xi|+ ∏n

i=1|xi| 30 [−10, 10]D 0

Schwefel 1.2 f3(x) = ∑n
i=1(∑

i
j=1 xj)

2 30 [−100, 100]D 0

Schwefel 2.21 f4(x) = maxi{|xi| , 1 ≤ i ≤ n} 30 [−100, 100]D 0

Rosenbrock f5(x) = ∑n−1
i=1 (100(xi+1− xi)

2 +(xi − 1)2) 30 [−30, 30]D 0

Step f6(x) = ∑n
i=1(xi + 0.5)2 30 [−100, 100]D 0

Quartic f7(x) = ∑n
i=1ix4

i + random[0, 1) 30 [−1.28, 1.28]D 0

Table 2. Multimodal benchmark functions.

Name Function D Range fopt

Schwefel f8(x) = −∑n
i=1(xi sin(

√
|xi|)) 30 [−500, 500]D −12, 569.5

Rastrigin f9(x) = ∑n
i=1(x2

i − 10 cos(2πxi) + 10)2 30 [−5.12, 5.12]D 0

Ackley f10(x) = −20 exp(−0.2
√

1
n ∑n

i=1xi
2)− exp( 1

n ∑n
i=1 cos 2πxi)+ 20+ e 30 [−32, 32]D 0

Griewank f11(x) = 1
4000 ∑n

i=1(xi − 100)2 −∏n
i=1 cos( xi−100√

i
) + 1 30 [−600, 600]D 0

Penalized f12(x) = π
n
{

10 sin2(πy1) + ∑n−1
i=1 (yi − 1)2[1 + 10 sin2(πyi + 1)

]
+(yn − 1)2

}
+ ∑30

i=1 u(xi, 10, 100, 4)
30 [−50, 50]D 0

Penalized 2 f13(x) = 0.1
{

sin2(3πx1) + ∑29
i=1 (xi − 1)2 p

[
1 + sin2(3πxi+1)

]
+(xn − 1)2[1 + sin2(2πx30)

]}
+ ∑30

i=1 u(xi, 5, 10, 4)
30 [−50, 50]D 0

Table 3. Fixed dimension multimodal functions.

Name Function D Range fopt

Foxholes f14(x) =
[

1
500 + ∑25

j=1
1

j+∑2
j=1 (xi−aij)

6

]−1
2 [−65.536, 65.536]D 0.998

Kowalik f15(x) = ∑11
i=1

∣∣∣ai −
x1(b2

i +bi x2)

b2
i +bi x3+x4

∣∣∣2 4 [−5, 5]D 3.075× 10−4

Six Hump Camel f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5]D −1.0316

Branin f17(x) = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1− 1

8π ) cos x1 + 10 2 [−5, 10]× [0, 15] 0.398

Goldstein-Price
f18(x) =

[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2

+6x1x2 + 3x2
2)
]
× [30 + (2x1 + 1− 3x2)

2(18− 32x1
+12x2

1 + 48x2 − 36x1x2 + 27x2
2)
] 2 [−2, 2]D 3

Hartman 3 f19(x) = −∑4
i=1 exp

[
−∑3

j=1 aij(xj − pij)
2
]

3 [0, 1]D −3.86

Hartman 6 f20(x) = −∑4
i=1 exp

[
−∑6

j=1 aij(xj − pij)
2
]

6 [0, 1]D −3.322

Shekel 5 f21(x) = −∑5
i=1

∣∣∣(xi − ai)(xi − ai)
T + ci

∣∣∣−1 4 [0, 10]D −10.1532

Shekel 7 f22(x) = −∑7
i=1

∣∣∣(xi − ai)(xi − ai)
T + ci

∣∣∣−1 4 [0, 10]D −10.4028

Shekel 10 f23(x) = −∑10
i=1

∣∣∣(xi − ai)(xi − ai)
T + ci

∣∣∣−1 4 [0, 10]D −10.5363

4.1. Exploitation Assessment

Since the unimodal function (F1–F7) has only one optimal value, it can be used to
test the exploitation of the algorithm. The results of each indicator of the six algorithms in
different unimodal test functions are shown in Table 4. The best value of each indicator has
been marked in bold. Figure 5 shows the convergence curves of the five algorithms in each
unimodal test function.
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Table 4. Algorithm results of the unimodal test function.

NO. INDEX IARO ARO PSO ASO WOA

F1

Mean 0 1.89 × 10−34 9.08 × 10−50 1.47 × 10−33 2.31 × 10−16

Std 0 6.59 × 10−34 4.78 × 10−49 7.15 × 10−33 2.68 × 10−16

Worst 0 3.07 × 10−33 2.62 × 10−48 3.93 × 10−32 1.03 × 10−15

Best 0 1.89 × 10−34 9.08 × 10−50 1.47 × 10−33 2.31 × 10−16

F2

Mean 0 1.04 × 10−19 1.09 × 10−32 1.56 × 10−19 3.12 × 10−4

Std 0 2.18 × 10−19 3.06 × 10−32 3.24 × 10−19 1.02 × 10−3

Worst 0 8.70 × 10−19 1.61 × 10−31 1.12 × 10−18 4.18 × 10−3

Best 0 1.04 × 10−19 1.09 × 10−32 1.56 × 10−19 3.12 × 10−4

F3

Mean 0 4.82 × 10−25 4.98 × 10+4 1.52 × 10−22 3.13 × 10+3

Std 0 1.45 × 10−24 1.54 × 10+4 8.21 × 10−22 9.39 × 10+2

Worst 0 7.70 × 10−24 8.59 × 10+4 4.50 × 10−21 5.16 × 10+3

Best 0 4.82 × 10−25 4.98 × 10+4 1.52 × 10−22 3.13 × 10+3

F4

Mean 0 1.78 × 10−14 4.35 × 10+1 5.01 × 10−14 8.70 × 10−2

Std 0 5.07 × 10−14 3.20 × 10+1 2.16 × 10−13 1.68 × 10−1

Worst 0 2.14 × 10−13 8.788 × 10+1 1.18 × 10−12 7.08 × 10−1

Best 0 1.78 × 10−14 4.35 × 10+1 5.01 × 10−14 8.70 × 10−2

F5

Mean 1.55 × 10+0 2.01 × 10+0 2.80 × 10+1 7.43 × 10−1 6.16 × 10+1

Std 3.16 × 10+0 5.10 × 10+0 3.34 × 10−1 9.57 × 10−1 9.49 × 10+1

Worst 1.50 × 10+1 2.69 × 10+1 2.87 × 10+1 4.68 × 10+0 5.31 × 10+2

Best 1.55 × 10+0 2.01 × 10+0 2.80 × 10+1 7.43 × 10−1 6.16 × 10+1

F6

Mean 0 0 0 0 4.0 × 10−1

Std 0 0 0 0 8.14 × 10−1

Worst 0 0 0 0 4
Best 0 0 0 0 4.0 × 10−1

F7

Mean 8.92 × 10−5 9.02 × 10−4 4.04 × 10−3 9.43 × 10−4 5.78 × 10−2

Std 9.76 × 10−5 5.93 × 10−4 3.76 × 10−3 6.21 × 10−4 2.14 × 10−2

Worst 4.35 × 10−4 2.37 × 10−3 1.50 × 10−2 2.59 × 10−3 1.17 × 10−1

Best 8.92 × 10−5 9.02 × 10−4 4.04 × 10−3 9.43 × 10−4 5.78 × 10−2
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From Table 4, for functions F1, F2, F3, F4 and F7, the ‘Mean’, ‘Std’, ‘Worst’ and ‘Best’
of the IARO algorithm are the best among the five algorithms. For function F6, the four
indicators of the IARO and ARO, WOA and PSO algorithms are the best. For function
F5, the ‘Std’ provided by the WOA algorithm is the best. The ‘Mean’, ‘Worst’ and ‘Best’
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provided by the PSO algorithm are the best. Therefore, for the unimodal functions, the
IARO algorithm is superior to other algorithms when dealing with the unimodal function.

From Figure 5, for functions F1, F2, F3, F4 and F7, the IARO algorithm has higher
convergence accuracy and faster convergence speed. For function F6, the convergence
accuracy of the IARO and ARO, WOA, and PSO algorithms is the best, but the convergence
speed of the IARO algorithm is slower than the other three algorithms. For function F5, the
convergence accuracy and convergence speed of the IARO algorithm are lower than that of
the PSO algorithm but higher than other algorithms. Therefore, for functions F1, F2, F3, F4,
F6 and F7, the convergence accuracy of the IARO algorithm is optimal. For function F5, the
convergence accuracy of the IARO algorithm is only lower than that of the PSO algorithm.
For functions F1, F2, F3, F4 and F7, the convergence speed of the IARO algorithm is the
fastest. For functions F5 and F6, the convergence speed of the IARO algorithm is in the
middle of the five algorithms. From the above analysis, the IARO algorithm performs the
best in Figure 5.

4.2. Exploration Assessment

Since the multimodal function (F8–F23) has multiple extreme values, it can be used
to test the exploration ability of the algorithm. The results for each indicator of the five
algorithms on different multimodal functions are shown in Tables 5 and 6. Figures 6 and 7
show the convergence curves of the five algorithms in each multimodal function.

Table 5. Results of algorithms of the multimodal functions.

NO. INDEX IARO ARO PSO ASO WOA

F8

Mean −9.90× 10+3 −1.02 × 10+4 −1.02 × 10+4 −1.02 × 10+4 −7.18× 10+3

Std 4.68 × 10+2 5.09 × 10+2 1.73 × 10+3 5.68 × 10+2 6.89 × 10+2

Worst −9.03 × 10+3 −8.79× 10+3 −7.79× 10+3 −8.98× 10+3 −5.88× 10+3

Best −9.90× 10+3 −1.02 × 10+4 −1.02 × 10+4 −1.02 × 10+4 −7.18× 10+3

F9

Mean 0 0 0 0 3.09 × 10+1

Std 0 0 0 0 9.33
Worst 0 0 0 0 4.78 × 10+1

Best 0 0 0 0 3.09 × 10+1

F10

Mean 8.88 × 10−16 8.88 × 10−16 5.27 × 10−15 1.01 × 10−15 7.98 × 10−9

Std 0 0 2.22 × 10−15 6.49 × 10−16 4.43 × 10−9

Worst 8.88 × 10−16 8.88 × 10−16 7.99 × 10−15 4.44 × 10−15 2.36 × 10−8

Best 8.88 × 10−16 8.88 × 10−16 5.27 × 10−15 1.01 × 10−15 7.98 × 10−9

F11

Mean 0 0 4.86 × 10−3 0.00 × 10+0 1.31 × 10−3

Std 0 0 2.66 × 10−2 0 4.51 × 10−3

Worst 0 0 1.46 × 10−1 0 2.21 × 10−2

Best 0 0 4.86 × 10−3 0 1.31 × 10−3

F12

Mean 5.22 × 10−3 4.51 × 10−4 1.62 × 10−2 5.13 × 10−4 2.11 × 10−2

Std 3.73 × 10−3 4.31 × 10−4 9.48 × 10−3 3.14 × 10−4 4.29 × 10−2

Worst 1.68 × 10−2 2.44 × 10−3 3.78 × 10−2 1.62 × 10−3 1.30 × 10−1

Best 5.22 × 10−3 4.51 × 10−4 1.62 × 10−2 5.13 × 10−4 2.11 × 10−2

F13

Mean 4.61 × 10−2 8.14 × 10−3 4.26 × 10−1 6.03 × 10−3 7.33 × 10−3

Std 3.64 × 10−2 1.09 × 10−2 2.05 × 10−1 9.97 × 10−3 1.94 × 10−2

Worst 1.37 × 10−1 4.47 × 10−2 8.31 × 10−1 4.59 × 10−2 9.89 × 10−2

Best 4.61 × 10−2 8.14 × 10−3 4.26 × 10−1 6.03 × 10−3 7.33 × 10−3
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Table 6. Algorithm results of the fixed dimension multimodal test functions.

NO. INDEX IARO ARO PSO ASO WOA

F14

Mean 9.98 × 10−1 9.98 × 10−1 1.8859 9.98 × 10−1 1.5523
Std 7.14 × 10−17 7.14 × 10−17 1.88 8.25 × 10−17 6.76 × 10−1

Worst 9.98 × 10−1 9.98 × 10−1 10.76 9.98 × 10−1 3.1209
Best 9.98 × 10−1 9.98 × 10−1 1.8859 9.98 × 10−1 1.5523

F15

Mean 3.76 × 10−4 3.27 × 10−4 6.53 × 10−4 3.12 × 10−4 1.31 × 10−3

Std 8.24 × 10−5 3.56 × 10−5 4.16 × 10−4 7.47 × 10−6 1.02 × 10−3

Worst 6.44 × 10−4 4.59 × 10−4 2.25 × 10−3 3.37 × 10−4 6.49 × 10−3

Best 3.76 × 10−4 3.27 × 10−4 6.53 × 10−4 3.12 × 10−4 1.31 × 10−3

F16

Mean −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Std 5.17 × 10−16 5.56 × 10−16 1.93 × 10−9 5.30 × 10−16 5.98 × 10−16

Worst −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Best −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

F17

Mean 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

Std 0 6.97 × 10−14 7.68 × 10−6 8.21 × 10−14 0
Worst 3.98 × 10−1 0.3979 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

Best 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

F18

Mean 3.0000 3.0000 3.9003 3.0000 3.0000
Std 1.50 × 10−15 5.34 × 10−16 4.93 × 10−1 1.34 × 10−15 1.61 × 10−15

Worst 3.0000 3.0000 30.0077 3.0000 3.0000
Best 3.0000 3.0000 3.9003 3.0000 3.0000

F19

Mean −3.8628 −3.8628 −3.8576 −3.8628 −3.8628
Std 2.52 × 10−15 2.49 × 10−15 9.09 × 10−3 2.46 × 10−15 2.60 × 10−15

Worst −3.8628 −3.8628 −3.8235 −3.8628 −3.8628
Best −3.8628 −3.8628 −3.8576 −3.8628 −3.8628

F20

Mean −3.2943 −3.3101 −3.2848 −3.3141 −3.3220
Std 5.11 × 10−2 3.63 × 10−2 6.57 × 10−2 3.02 × 10−2 1.36 × 10−15

Worst −3.2031 −3.2031 −3.0778 −3.2031 −3.3220
Best −3.2943 −3.3101 −3.2848 −3.3141 −3.3220

F21

Mean −9.9787 −10.1531 −7.6137 −10.1530 −8.47
Std 8.37 × 10−1 8.12 × 10−4 3.0335 1.27 × 10−3 3.1122

Worst −5.5962 −10.1488 −2.6296 −10.1463 −2.6829
Best −9.9787 −10.1531 −7.6137 −10.1530 −8.4749

F22

Mean −10.4029 −10.2258 −7.8582 −10.1794 −9.8929
Std 1.38 × 10−10 9.70 × 10−1 2.86 1.22 1.942

Worst −10.4029 −5.0877 −2.7642 −3.7243 −2.7519
Best −10.4029 −10.2258 −7.8582 −10.1794 −9.8929

F23

Mean −10.5364 −10.5364 −7.8230 −10.5364 −10.5364
Std 6.00 × 10−5 2.54 × 10−7 3.1920 2.03 × 10−11 1.32 × 10−15

Worst −10.5361 −10.5364 −2.4216 −10.5364 −10.5364
Best −10.5364 −10.5364 −7.8230 −10.5364 −10.5364

From Table 5, for function F8, the ‘Std’ and ‘Worst’ of the IARO algorithm are the best
among the five algorithms. The ‘Mean’ and ‘Best’ of the ARO and WOA, PSO algorithms
are the best among the five algorithms. For function F9, the four indicators of the IARO
and ARO, WOA, and PSO algorithms are the best. For function F10, the four indicators
of the IARO and ARO algorithms are the best. For function F11, the four indicators of the
IARO and ARO, PSO algorithms are the best. For function F12, the ‘Mean’ and ‘Best’ of
the ARO algorithm are the best. Therefore, for the multimodal functions, the IARO shows
better exploration when tackling multimodal functions.
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Figure 7. Convergence curve of the fixed dimension multimodal test functions.

From Figure 6, for function F5, the IARO algorithm has a faster convergence speed. For
function F10, the IARO algorithm has higher convergence accuracy and faster convergence
speed. For functions F8, F12 and F13, the convergence accuracy and convergence speed of
the IARO algorithm are at the middle level among the five algorithms.

From Table 6, for functions F8 and F15, the four indicators of the IARO and ARO
algorithms are the best among the five algorithms. For functions F16 and F17, the ‘Mean’,
‘Worst’ and ‘Best’ of the five algorithms are the best. The ‘Std’ of the IARO algorithm is the
best. For function F18, the ‘Mean’, ‘Worst’ and ‘Best’ of the IARO and ARO, PSO, and ASO
algorithms are the best. The ‘Std’ of the ARO algorithm is the best. For function F19, the
‘Mean’, ‘Worst’ and ‘Best’ of the IARO and ARO, PSO, and ASO algorithms are the best.



Biomimetics 2023, 8, 243 15 of 25

For function F22, the four indicators of the IARO algorithm are the best. For function, F23,
the ‘Mean’, ‘Worst’ and ‘Best’ of the IARO and ARO, PSO, and ASO algorithms are the best.

From Figure 7, for functions F14, F15, F16, F17, F18, F19 and F20, the IARO algorithm
has higher convergence accuracy and faster convergence speed. For functions F21, F22 and
F23, the IARO algorithm has higher convergence accuracy, and the convergence speed is
significantly higher than that of the ASO and WOA algorithms.

By using 23 benchmark functions to test the performance of five algorithms, the
minimum values and convergence curves of four indicators of each algorithm in different
benchmark functions are obtained. Through comparative analysis, it can be concluded that
the IARO algorithm has the strongest ability to find the optimal solution.

5. IARO for Vibration State Identification of Hydraulic Units
5.1. Acquisition of Experimental Data

The Zhanghewan Pumped Storage Power Station is located in Shijiazhuang City,
Hebei Province, with a total installed capacity of 1000 MW. Four single-stage mixed-flow
reversible pump turbine units with a single capacity of 250 MW are installed. In the
power station, the rated head of the water pump turbine unit is 305 m, the rated speed
is 333.3 r/min, the annual power generation is 1.675 billion kW·h, the annual pumping
power is 2.204 billion kW·h, the annual power generation utilization time is 1675 h, the
annual pumping utilization time is 2204 h, and the comprehensive efficiency coefficient
of the power station is 0.76. After the completion of the power station, it is connected to
the power grid in southern Hebei and undertakes the tasks of peak shaving, valley filling,
frequency modulation, phase modulation and emergency backup in the system [38,39].

The experimental data comes from the 1# Unit data of the Zhanghewan Pumped
Storage Power Station. The selected three vibration states are the stability test of power
generation condition, the Karman vortex street phenomenon test and the simulated fault
shutdown test. For each vibration state, three parts are selected as the sensor measuring
points, and the X direction and the Y direction are arranged in coordination. The six
measuring points are, respectively, the X and Y directions of the upper guide bearing, the
X and Y directions of the water guide bearing and the X and Y directions of the lower
guide bearing.

The experimental data of three vibration states are classified as shown in Table 7. Each
vibration state is classified, that is, the power generation condition stability test No. 1,
Karman vortex street phenomenon test No. 2 and simulated fault shutdown test No. 3.

Table 7. Classification of experimental data.

Vibration State Measuring Point
Position

Experimental
Point Direction Category

Label

Stability test
of power generation

condition

upper guide bearing 1 X

1

upper guide bearing 2 Y
water guide bearing 3 X
water guide bearing 4 Y
lower guide bearing 5 X
lower guide bearing 6 Y

Karman vortex street
phenomenon test

upper guide bearing 1 X

2

upper guide bearing 2 Y
water guide bearing 3 X
water guide bearing 4 Y
lower guide bearing 5 X
lower guide bearing 6 Y

Simulated fault
shutdown test

upper guide bearing 1 X

3

upper guide bearing 2 Y
water guide bearing 3 X
water guide bearing 4 Y
lower guide bearing 5 X
lower guide bearing 6 Y
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5.2. Vibration Signal Processing and Extraction

The different vibration states of hydraulic units are studied experimentally, and the
vibration signals are denoised and extracted by the VMD decomposition. Firstly, the
center frequency method [40] is used to determine the number of decomposition layers
K. Secondly, the residual index method [41] is used to determine the update step tau. In
each vibration state, the number of decomposition layers K and the update step tau of the
six measuring points are shown in Table 8. Finally, according to the data in Table 8, for
each vibration state, the vibration signals of six measuring points are decomposed by VMD,
respectively, and the corresponding IMF components can be obtained.

Table 8. Number of decomposition layers and update steps of different vibration signals.

Vibration State
Measuring Point

Position and
Direction

Number of
Decomposition

Layers (K)
Update Steps (tau)

Stability test
of power

generation
condition

upper guide bearing,
X direction 13 0.0043

upper guide bearing,
Y direction 12 0.0312

water guide bearing,
X direction 13 0.0012

water guide bearing,
Y direction 12 0.0315

lower guide bearing,
X direction 12 0.0314

lower guide bearing,
Y direction 12 0.0068

Karman vortex street
phenomenon

test

upper guide bearing,
X direction 14 0.0192

upper guide bearing,
Y direction 13 0.0321

water guide bearing,
X direction 12 0.0077

water guide bearing,
Y direction 12 0.1331

lower guide bearing,
X direction 15 0.0205

lower guide bearing,
Y direction 11 0.0474

Simulated fault
shutdown test

upper guide bearing,
X direction 12 0.0318

upper guide bearing,
Y direction 15 0.0483

water guide bearing,
X direction 10 0.3245

water guide bearing,
Y direction 12 0.0505

lower guide bearing,
X direction 14 0.0230

lower guide bearing,
Y direction 12 0.0053

In order to unify the number of IMF components, according to Table 8, K = 10
is selected as the number of decomposition modes extracted from each group of
vibration signals; that is, IMF1-IMF10 is selected as the decomposition mode
X = [X1, X2, X3, X4, X5, X6, X7, X8, X9, X10].
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5.3. Feature Vectors Selection

For each vibration state, the signals of six measuring points are averaged. The ob-
tained mean value is substituted into the time-domain feature model. After calculation and
analysis, nine time-domain features are selected as the feature vectors
Y = [Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9] of each vibration state, which are the maximum value,
minimum value, mean value, peak-to-peak value, rectification mean value, variance, stan-
dard deviation, root mean square and square root amplitude. The comparison of the nine
time-domain features of the three vibration states is shown in Figure 8.
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5.4. SVM Classification and Identification Model Construction

The identification of vibration states of hydraulic units is a multi-classification identifi-
cation problem. The SVM [42,43] is a classification algorithm to solve binary classification
problems, and it cannot be directly used to solve multi-classification problems. In this paper,
the “one-to-one” (OVO) strategy is combined with SVM to form a multi-classifier. There-
fore, the SVM multi-classifier design is applied to the identification of vibration signals in
hydraulic units. After conducting VMD decomposition, the calculated time-domain feature
vector is used as the input of the SVM multi-classifier. Combined with the IARO algorithm,
the penalty parameter c and kernel function parameter g of the SVM multi-classifier are
optimized. The IARO-SVM identification model is constructed, as shown in Figure 9, to
identify the vibration states of the hydraulic units.
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5.5. Validation of the Proposed IARO-SVM Model

The parameters of the IARO-SVM model are initialized: the initial population number
is 30, and the maximum number of iterations is 500. The time-domain feature vectors of
each vibration state of the hydraulic unit are divided into the training set and the test set, in
which the first 70% of data of each group of feature vectors are used as the training set, and
the remaining 30% data are used as the test set. All data are normalized to form a sample
set. After training the IARO-SVM model using the training samples, the test samples are
input into the model.

Figure 10 illustrates the identification results of the IARO-SVM model. The identifica-
tion accuracy of the Karman vortex and the fault shutdown signals achieve 100%, and the
identification accuracy of the power generation condition achieves 93.33%.
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To further verify the superiority of the IARO-SVM model, the results of the ARO-
SVM model, ASO-SVM model, PSO-SVM model and WOA-SVM model are compared,
respectively.

Figure 11 illustrates the identification results of the ARO-SVM model. The identifica-
tion accuracy of the Karman vortex and the fault shutdown signals achieve 100%, and the
identification accuracy of the power generation condition achieves 83.33%.
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Figure 12 illustrates the identification results of the ASO-SVM model. The identifi-
cation accuracy of the fault shutdown signals achieves 100%. The identification accuracy
of the power generation condition and the Karman vortex achieve 86.67% and 83.33%,
respectively.
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Figure 13 illustrates the identification results of the PSO-SVM model. The identification
accuracy of the Karman vortex achieves 100%. The identification accuracy of the power
generation condition and the fault shutdown achieve 76.67 and 83.33%, respectively.
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Figure 14 illustrates the identification results of the WOA-SVM model. The identifi-
cation accuracy of the Karman vortex and the fault shutdown signals achieve 100%, and
the identification accuracy of the power generation condition achieves 80.0%. Comparing
Figures 10–14, it can be found that the identification results about the power generation
condition are obviously different and the IARO-SVM model achieves the best accuracy,
while other models achieve poorer accuracies. This is due to that signal differentiation
corresponding to the power generation condition is the lowest, reducing the identification
accuracy of the models. However, the IARO-SVM model still keeps a higher identifica-
tion accuracy, indicating the LARO algorithm has a better optimization performance for
the SVM.
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Figure 14. Identification results of the WOA-SVM model for test signals.

After 3 experiments, the average identification accuracy of the IARO-SVM model, the
ARO-SVM model, the ASO-SVM model, the PSO-SVM model and the WOA-SVM model
are summarized in Figure 15. Based on Figure 15, the average identification accuracy of the
IARO-SVM model is the best at 97.78%, which is followed by the ARO-SVM model (94.44%),
WOA-SVM model (93.33%), ASO-SVM model (90.00%) and PSO-SVM model (86.67%).
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To further test the efficiency of the IARO-SVM model, the 2# Unit data is selected, and
the same three vibration states need to be identified: the stability test of power generation
condition, the Karman vortex street phenomenon test and the simulated fault shutdown
test. Except for the different units selected, the methods of data collection and classification,
processing and extraction, selection of feature vectors, training and identification are the
same as those of the 1# Unit data.

The parameters of the IARO-SVM model, ARO-SVM model, ASO-SVM model, PSO-
SVM model and WOA-SVM model are initialized in the same way: the initial population
number is 30, and the maximum number of iterations is 500. The time-domain feature
vectors of each vibration state are divided into the training set and test set, in which the first
70% of data of each group of feature vectors is used as a training set, and the remaining 30%
of data is used as a test set. All data are normalized to form a sample set. After training and
prediction, the average identification accuracy of the three vibration states of the 2# Unit is
shown in Figure 16. Inspecting this figure, it is seen that, compared with other models, the
IARO-SVM model obtains the best results with an average accuracy at 96.67%, followed by
the ARO-SVM model (95.56%) and the WOA-SVM model (90.00%).
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6. Conclusions

This paper proposes an identification method based on ARO with the adaptive weight
adjustment strategy to SVM (IARO-SVM). By introducing the adaptive weight adjustment
strategy, the algorithm can adaptively change the weight size according to the distribution
of the current rabbit population. Using 23 benchmark functions, IARO is compared with
ARO, PSO, ASO and WOA, and the performance of IARO is better than that of other algo-
rithms by comparing the minimum values of the four indicators and convergence curves.

This method optimizes the parameters of the SVM multi-classifier through the IARO
algorithm. Meanwhile, the VMD method is used to decompose the vibration status signals
of hydraulic units, and the time domain characteristic indicators of IMF components are
extracted as multi-dimensional time-domain feature vectors and input into the IARO-SVM
model, ARO-SVM model, ASO-SVM model, PSO-SVM model and WOA-SVM model for
state identification of vibration signals. The experimental results show that the identification
rate of the IARO-SVM model is 97.78%, the identification rate of the ARO-SVM model is
94.44%, the identification rate of the ASO-SVM model is 90.0%, the identification rate of PSO-
SVM model is 86.67%, and the identification rate of WOA-SVM model is 93.33%. Through
the comparative analysis of five models, the IARO-SVM model has obvious advantages
over its competitors in the state identification of vibration signals of hydraulic units, which
is 3.34% higher than the closest ARO-SVM model. For the second experiment, the IARO-
SVM also achieve competitive results. Therefore, IARO has obvious advantages over other
algorithms in optimizing the SVM for vibration status identification of hydraulic units.
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Although the IARO-SVM model has excellent performance, it also has some limitations.
(1) The amount of experimental data is limited, so in the experimental process, sometimes
there will be large deviations, which will affect the accuracy of vibration state signal
classification and identification. (2) Due to the experimental conditions, the data used in
the paper is only the data of pumped storage hydraulic units, and the data including other
types of hydraulic units cannot be verified, the state identification for other types needs
further verification. However, these shortcomings are also directions for future research.
On the one hand, the amount of data can be increased and the sample set capacity can be
expanded when collecting data in the future. On the other hand, the vibration state signals
of other types of hydraulic units are collected to verify whether the IARO-SVM model still
has obvious advantages in vibration state classification and identification for other types.
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