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Abstract: The min-max clustered traveling salesmen problem (MMCTSP) is a generalized variant
of the classical traveling salesman problem (TSP). In this problem, the vertices of the graph are
partitioned into a given number of clusters and we are asked to find a collection of tours to visit all
the vertices with the constraint that the vertices of each cluster are visited consecutively. The objective
of the problem is to minimize the weight of the maximum weight tour. For this problem, a two-stage
solution method based on a genetic algorithm is designed according to the problem characteristics.
The first stage is to determine the visiting order of the vertices within each cluster, by abstracting
a TSP from the corresponding cluster and applying a genetic algorithm to solve it. The second stage
is to determine the assignment of clusters to salesmen and the visiting order of the assigned clusters.
In this stage, by representing each cluster as a node and using the result of the first stage and the
ideas of greed and random, we define the distances between each two nodes and construct a multiple
traveling salesmen problem (MTSP), and then apply a grouping-based genetic algorithm to solve it.
Computational experiments indicate that the proposed algorithm can obtain better solution results
for various scale instances and shows good solution performance.

Keywords: traveling salesman problem; multiple traveling salesmen problem; clustered traveling
salesman problem; min-max; genetic algorithm

1. Introduction

The traveling salesman problem (TSP) is a classical combinatorial optimization prob-
lem in computer science and operations research. Given some cities to be served and the
distance between each two cities, the problem requires computing a tour that can pass
through all cities once and only once and has the shortest total travel distance. Since the
TSP was introduced, it and its related variants have received extensive attention from
many researchers. The clustered traveling salesman problem (CTSP) and multiple traveling
salesmen problem (MTSP) are the two classical variants of the TSP, and they all generalize
the TSP.

In the CTSP, all cities to be served are divided into several clusters. Compared to the
TSP, this problem has an additional constraint that the cities within each cluster need to
be served consecutively. It is easy to see that the CTSP degenerates to the TSP when the
number of clusters is equal to 1 or each cluster only has one vertex.

In the MTSP, the number of salesmen increases from one to multiple. The problem
requires computing a tour for each salesman such that all tours together can pass through
all cities. If the weight of each tour is defined to be the sum of the lengths of all the edges in
that tour, the objective of the problem is usually divided into two types, one is to minimize
the sum of the weights of all tours (Min-Sum), and the other is to minimize the weight of
the maximum weight tour (Min-Max). It is not hard to see that regardless of the type of the
objective, if the number of salesmen is equal to 1, the MTSP also degenerates to the TSP.

Both the CTSP and the MTSP have a wide range of applications. For example, the
CTSP can model relevant practical problems in the fields of vehicle routing [1], production
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manufacturing [2], computer program restructuring [3], cytological sample observation [4],
integrated circuit testing [5], and so on. The MTSP can be used to solve related problems in
the fields of printing press scheduling [6], load balancing [7], school bus routing [8], design
of global navigation satellite system surveying networks [9], and so on.

For both the CTSP and the MTSP, there have been many studies using genetic algo-
rithms to solve them. For example, Potvin and Guertin [10] presented a genetic algorithm
combined with an edge recombination operator and a 2-opt search to solve the CTSP.
Ding et al. [11] proposed a two-stage genetic algorithm for the CTSP. Ahmed [12] de-
veloped a hybrid genetic algorithm using sequential constructive crossover and a 2-opt
search and a local search to the ordered CTSP in which the clusters are visited in the
prespecified order. For the MTSP, Tang et al. [13] designed a genetic algorithm with
a one-chromosome representation, Malmborg [14] and Park [15] presented a genetic algo-
rithm with a two-chromosome representation, Carter and Ragsdale [16] proposed a genetic
algorithm with a two-part chromosome representation, Brown et al. [17] and Singh and
Baghel [18] proposed a grouping genetic algorithm-based approach, respectively.

In this paper, we consider the min-max clustered traveling salesmen problem (MM-
CTSP). Given cities divided into clusters and a certain number of traveling salesmen, the
requirement of the MMCTSP is that, on the basis of the MTSP, each tour passes exactly
through some clusters and the cities within each cluster need to be passed through consec-
utively. The problem aims to achieve a min-max type objective, which means to minimize
the weight of the maximum weight tour.

It is easy to see that the MMCTSP is a multiperson variant of the CTSP and a vertices
clustering variant of the MTSP as well. Therefore, the MMCTSP generalizes the CTSP and
the MTSP, respectively. It can model more practical problems and has a wider range of
practical applications. In the literature, the other two problems that are closely related to the
MMCTSP are the min-max cycle cover problem (MMCCP) and the clustered vehicle-routing
problem (CluVRP).

In the MMCTSP, if each cluster contains only one vertex or the vertex set is not
divided into clusters, the corresponding problem is called the MMCCP in the literature.
For this problem, when all tours have a common starting vertex, Frederickson et al. [19]
proposed an approximation algorithm with an approximation ratio of (ρ + 1 − 1/m),
where ρ is the approximation ratio for solving the TSP and m is the number of traveling
salesmen. For the MMCCP in which no starting vertex of any tour is specified, Xu et al. [20],
Jorati [21], Yu and Liu [22] successively developed approximation algorithms with better
approximation ratios.

The CluVRP is another problem that is closely related to the MMCTSP in the literature.
The main differences between these two problems are as follows. Firstly, in the CluVRP,
each customer (corresponding to the city) has a nonnegative demand, and each vehicle
(corresponding to the traveling salesman) has the same capacity, and the sum of the
demands of the customers visited by each tour in a feasible solution cannot exceed the
vehicle capacity. Secondly, the objective of the CluVRP is the min–sum type, which means
to minimize the sum of the weights of all tours. For the CluVRP, Battarra et al. [23]
proposed two exact algorithms, branch and cut as well as branch and cut and price, and
Vidal et al. [24], Exposito et al. [25], Defryn and Sörensen [26], Pop et al. [27], Hintsch and
Irnich [28], etc. presented solution methods from the perspective of heuristic algorithms.

As can be seen from the above, the MMCTSP generalizes the MMCCP and is also
a special case of the CluVRP if we neglect the objectives of the problems. In the MMCCP, if
the cities or customers to be served are grouped into several clusters due to geographical
location or priority constraint, then the MMCTSP arises. On the other hand, in the Clu-
VRP, if the vehicle capacity is much greater than the customer demand and the objective
focuses on customer satisfaction or the workload balance of vehicles, then the MMCTSP
arises again.

As the MMCTSP generalizes the MMCCP and thus it generalizes the TSP, it is
an NP-hard problem. For the NP-hard problem, there are three main types of solution
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methods in the literature; namely, an exact algorithm, an approximation algorithm and
a heuristic algorithm. Recently, Bao et al. [29] considered two variants of the MMCTSP and
designed approximation algorithms with constant approximation ratios, respectively. In
this paper, a two-stage solution method based on a genetic algorithm is designed from the
perspective of a heuristic algorithm according to the problem characteristics. Specifically,
in the first stage, a TSP is abstracted for each cluster, and then a genetic algorithm for the
TSP is applied to determine the visiting order of vertices within the cluster. In the second
stage: Firstly, each cluster is considered as a node, and the distances between each two
nodes is defined by combining the results of the first stage with a combination of greed and
random, and an MTSP is then constructed. Finally, a grouping-based genetic algorithm for
the MTSP has been applied to determine the assignment of clusters to salesmen and the
visiting order of the assigned clusters for each salesman.

In the computational experiments, small-scale, medium-scale and large-scale instances
were tested separately. The experimental results indicate that in the small-scale instances,
compared with the exact results obtained by the CPLEX solver, the best results obtained by
the proposed algorithm have a relative error of no more than 1.5%, but the solving time is
significantly reduced; in the medium-scale and large-scale instances, our algorithm shows
good solution performance compared with the two related two-stage solution strategies in
the literature.

The remainder of the paper is organized as follows. In Section 2, we give a formal
description and a hybrid integer programming formulation of the MMCTSP. The two-stage
optimization method based on a genetic algorithm for solving the MMCTSP is described in
Section 3 and the computational experiments and the achieved results are presented and
discussed in Section 4. Finally, we draw our conclusions in Section 5.

2. Problem Description and Mathematical Modeling

The MMCTSP can be described as follows: Given a complete undirected graph
G = (V, E), V = {1, 2, · · · , n} is the vertex set, where 1 is the common starting vertex
of all salesmen, and each vertex in the set {2, · · · , n} corresponds to a city. The vertex set
V is partitioned into l clusters V1, V2, · · · , Vl , where V1 = 1 . Each edge (i, j) in the set E is
associated with a non-negative real number dij representing the distance between city i
and city j. Given a set E′ ⊂ E, define the weight of E′ as the sum of the lengths of all the
edges in E′. Given m salesmen, the MMCTSP requires computing a tour for each salesman
such that all cities are visited and cities within each cluster are visited consecutively. The
objective of the problem is to minimize the weight of the maximum weight tour. Figure 1
shows a schematic diagram of a feasible solution for the MMCTSP, where the dashed lines
represent edges between clusters and between common starting vertex and clusters, while
the solid lines indicate edges within clusters.

Figure 1. Schematic diagram of a feasible solution to the MMCTSP.
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Next, the mathematical model of the MMCTSP is given first. The following decision
variables are defined:

xijk =

{
1 if salesman k travels form vertex i to vertex j
0 otherwise

yik =

{
1 if vertex i is visited by salesman k
0 otherwise

The hybrid integer linear programming model for this problem is:
objective function:

min Zmax (1)

subject to:
n

∑
i=1

n

∑
j=1,j 6=i

dijxijk ≤ Zmax, k = 1, 2, · · · , m (2)

m

∑
k=1

n

∑
j=2

x1jk = m (3)

m

∑
k=1

n

∑
j=2

xj1k = m (4)

m

∑
k=1

yik = 1, i = 1, 2, · · · , n (5)

n

∑
j=1,j 6=i

xijk = yik, i = 2, 3, · · · , n, k = 1, 2, · · · , m (6)

n

∑
j=1,j 6=i

xjik = yik, i = 2, 3, · · · , n, k = 1, 2, · · · , m (7)

ui − uj + n
m

∑
k=1

xijk ≤ n− 1, i, j = 2, 3, · · · , n, i 6= j (8)

n

∑
i,j∈Vz ,i 6=j

m

∑
k=1

xijk = |Vz| − 1, z = 1, 2, · · · , l (9)

ui ≥ 0, i = 2, 3, · · · , n (10)

xijk ∈ {0, 1}, i, j = 1, 2, · · · , n; k = 1, 2, · · · , m (11)

yik ∈ {0, 1}, i = 2, 3, · · · , n; k = 1, 2, · · · , m (12)

The objective function (1) represents the minimization of Zmax which is given as an upper
bound on travel distances of m salesmen in constraint (2). Constraints (3) and (4) ensure
that each salesman starts and ends at vertex 1, constraint (5) requires each vertex to be
visited by only one salesman, constraints (6) and (7) guarantee the continuity of route of
each salesman, inequality (8) is the subtour elimination constraint, constraint (9) guarantees
that vertices in each cluster are visited continuously, and constraints (10)–(12) represent
constraints on the values of decision variables .

3. Algorithm Design

Due to the NP-hardness of the MMCTSP and the combinatorial complexity of the
NP-hard problems, heuristic algorithms are an effective method of solving such problems
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for large-scale practical problems. Genetic algorithm is a common heuristic algorithm
used in the literature for solving the TSP and the MTSP. For the MMCTSP, a two-stage
solution method based on a genetic algorithm is proposed in this paper according to the
problem characteristics and the rich literature results of applying genetic algorithms to
solve problems closely related to it.

Given a feasible solution to the MMCTSP, each cluster is associated with a Hamiltonian
path on that cluster, which gives the visiting order of the vertices within the cluster. To
determine the visiting order of vertices within a cluster and enrich the connections between
clusters, in the first stage of the proposed algorithm, we firstly abstract a TSP from each
cluster. Then, we apply a genetic algorithm to solve the TSP and give the visiting order of
vertices within a cluster (i.e., calculate a Hamiltonian cycle). To determine the assignment
of clusters to salesmen and the visiting order of the assigned clusters, in the second stage of
the proposed algorithm, by representing each cluster as a node and combining the results
of the first stage and the ideas of greedy and random, we define the distances between
each two nodes and construct an auxiliary MTSP, and then apply a grouping-based genetic
algorithm to solve it.

3.1. Phase 1

For each cluster, the chromosome is encoded using natural numbers and the total
number of genes in a chromosome is the number of all vertices within the cluster. In
a chromosome, each gene represents a vertex and the gene order determines the order
in which the vertices are visited. An example is given in Figure 2, where the tour is
identified as:

2→ 6→ 3→ 1→ 8→ 9→ 5→ 4→ 7→ 10→ 2

In the genetic algorithm of this stage, the fitness function of each individual chromo-
some in the population is the inverse of the weight of the corresponding tour. For the
genetic operators, we apply selection, crossover and mutation operators widely used in the
literature. Specifically, we use the roulette wheel as selection operator, and apply the partial-
matched crossover and the order crossover as crossover operators with equal probability,
and adopt the swap mutation and the reverse mutation as mutation operators with equal
probability. Meanwhile, we employ the elitist strategy during the population iteration.

Figure 2. Chromosome encoding in the first stage.

3.2. Phase 2

Consider each cluster as a node of which the index corresponds to the cluster index.
Next, we firstly provide the connection method between each two clusters, and then
combine it with the result obtained in the first stage and present the distances between each
two nodes, and finally construct an MTSP. By solving this MTSP, a feasible solution to the
MMCTSP is obtained.

3.2.1. Connections between Clusters

To enrich the feasible solutions obtained by our algorithm, two connection strategies
between clusters are used with equal probability based on the TSP tour corresponding to
each cluster. Given the initial vertex A of the previous cluster 1, the following explains how
these two strategies are applied to determine the vertex leaving this cluster, using Figure 3
as an example.

The first strategy is to choose the vertex with the shortest distance to the subsequent
cluster 2, among the two vertices B and C that are adjacent to A, as the vertex leaving
this cluster. In Figure 3a, the distance from B to cluster 2 is the shortest, B is chosen as
the vertex leaving cluster 1, and thus the visiting order of vertices within that cluster is
A→ C → D → B.
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The second strategy is to randomly select vertex B or C as the vertex leaving this
cluster. In Figure 3b, C is randomly selected as the vertex leaving cluster 1, so the visiting
order of vertices within that cluster is A → B → D → C. Note that the vertex with the
shortest distance from vertex C to the subsequent cluster 2 is E.

Next, we present the specific implementation process of applying a genetic algorithm
to solve the MTSP. Since the objective function of the problem addressed in this paper is
of min-max type, the grouping-based genetic algorithm exhibits better performance than
a traditional genetic algorithm when solving this type of problem [17]. Inspired with the
work of Singh and Baghel [18] and Han et al. [30], Wang et al. [31] proposed an improved
grouping genetic algorithm and the associated genetic operators. Since the grouping genetic
algorithm of Wang et al. [31] was originally designed to solve the min–sum type MTSP, we
have made appropriate modifications to solve the min-max type MTSP in this stage.

(a) (b)

Figure 3. Schematic diagram of connections between clusters. (a) Strategy 1. (b) Strategy 2.

3.2.2. Chromosome Coding

In this stage, the chromosome is also encoded using natural numbers. The total
number of genes in a chromosome is equal to the number of all clusters other than cluster
V1, and each gene represents a cluster. These genes are divided into m groups, and each
group of genes determines the assignment of clusters to salesmen and the visiting order
between clusters. The weight of the tour corresponding to each group is calculated, and the
groups of genes are sorted in ascending order based on their weights. Figure 4 provides an
example where salesman 1 visits clusters in the order of V3, V7 and V4, salesman 2 visits
clusters in the order of V2, V9, V10 and V6, and so on for salesman 3, and the weights of the
corresponding tours increase from left to right.

Figure 4. Chromosome encoding in the second stage.

3.2.3. Fitness Function

The fitness function is the inverse of the weight of the maximum weight tour.

3.2.4. Crossover Operator

The crossover operator is created through three steps, and each step is executed
as follows.

In step 1, groups of genes are iteratively generated one by one from left to right until
m groups of genes are constructed. When building the group of genes at position i, first,
a random number r ∈ (0, 1) is generated and if r < 0.5, the group of genes at position
i of the first parent is selected, otherwise the counterpart corresponding to the second
parent is selected. Then the genes contained in that group of genes are removed from both
parents, and the process continues to compute the next group of genes. Figure 5 provides
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an example of this process. Let n = 10, m = 3, and the two parents be denoted as P1 and
P2, respectively.

P1 = {{1, 2, 3, 4}, {5, 6}, {7, 8, 9, 10}},

P2 = {{2, 6, 3}, {1, 8, 9, 5}, {4, 7, 10}}.

In step 2, in order to enhance the convergence accuracy of the algorithm, the greedy
strategy and the 2-opt strategy are randomly applied to insert the unassigned genes into
the offspring generated in step 1. The execution probabilities of the two strategies are p1
and 1− p1, respectively.

In step 3, the weight value of the corresponding tour for each group of genes is first
calculated and then all the groups of genes are sorted in ascending order according to their
weight value to form a new offspring.

Figure 5. Schematic diagram of the first step of the crossover operator in the second stage.

3.2.5. Mutation Operator

Each gene from a parent is copied to the offspring with a probability p2. For the
unassigned genes, they are inserted into the previously calculated offspring by applying
the same method as in step 2 of the crossover operator.

3.2.6. Mutually Exclusive Execution

The crossover operator and the mutation operator are mutually exclusive with execu-
tion probabilities of p3 and 1− p3, respectively.

3.3. Comparisons of Methods

In order to validate the effectiveness of the algorithm proposed in this paper, we
compared it with the CPLEX solver and two related solution strategies in the literature,
respectively. Specifically, the related comparisons were as follows.

Firstly, the results of the proposed algorithm were compared with those derived
with the CPLEX solver for small-scale instances. For all eight test instances, the CPLEX
solver provided exact solutions. Taking these results as a reference, the effectiveness of the
proposed algorithm had been verified to some extent. The corresponding comparison is
shown in Table 1.
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Table 1. Solution results for small-scale instances.

Instance Information CPLEX Algorithm of This Paper GapsName n m k CBest Time (s) IBest IAverage Time (s)

att48-4 48 4 8 17,492 8216 17,492 17,492 5.21 0.00
att48-5 48 5 8 15,936 4217 15,936 15,936 5.21 0.00
st70-4 70 4 10 660 6213 660 660 7.28 0.00
st70-5 70 5 10 518 3987 518 518 7.30 0.00

kroc100-4 100 4 10 14,000 13,762 14,210 14,482 10.67 0.015
kroc100-5 100 5 10 10,836 10,826 10,863 11,339 10.69 0.002
rd100-4 100 4 10 4396 24,676 4396 4396 10.65 0.00
rd100-5 100 5 10 3643 16,385 3643 3643 10.74 0.00

Note: Because a conventional performance notebook could not solve the above instances in a shorter time, in
order to verify the effectiveness of the algorithm of this paper, CBest results were obtained by running the CPLEX
program on a server configured with a 64-core Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz (100GB RAM).

For medium-scale and large-scale instances, due to the difficulty of obtaining better
results in a shorter time using the CPLEX solver, as well as the lack of research results
on the MMCTSP in the literature, two related solution strategies in the literature were
compared with the algorithm proposed in this paper to verify its effectiveness.

The first solution strategy came from Exposito et al. [25]. This strategy was used
to solve the CluVRP, referred to as the Clustered Capacitated VRP in [25], which is also
a two-stage method. In the first stage, the concept of centroid was introduced to represent
each cluster, a Capacitated VRP (CVRP) was generated and solved to determine the visiting
order between clusters. In the second stage, for each cluster, based on the result obtained in
the first stage, the visiting order of vertices within each cluster was determined, by solving
a Hamiltonian path problem with two given endpoints, where the starting point was the
endpoint of the route corresponding to the previous cluster and the endpoint was the
centroid of the following cluster. To verify the good performance of the algorithm proposed
in this paper in determining the visiting order between clusters and the visiting order of
vertices within clusters, and to make the solution strategy in Exposito et al. [25] comparable
to our algorithm, we generated the first comparison Algorithm A1 as follows. We first
constructed an auxiliary MTSP based on the centroid informations, and then obtained the
visiting order between clusters by applying the grouping-based genetic algorithm to solve
it. Finally, we determined the visiting order of vertices within each cluster according to
Exposito et al.’s algorithm.

The corresponding comparisons are shown in Tables 2 and 3 for medium-scale and
large-scale instances, respectively.

On the other hand, in order to verify the effectiveness of our algorithm in applying the
grouping-based genetic algorithm for solving the MTSP constructed in the second stage, the
second comparison Algorithm A2 was created as follows. We replaced the grouping-based
genetic algorithm, in our algorithm, with the single-chromosome coding algorithm (with
the same experimental parameters) proposed by Tang et al. [13] for solving the MTSP. Apart
from this, there were no other changes. The corresponding comparisons are shown in
Tables 2 and 3 for medium-scale and large-scale instances, respectively.
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Table 2. Solution results for medium-scale instances.

Instance Information Algorithm of This Paper Algorithm A1 Algorithm A2

Name n m k IBest IAverage
Time

(s) I′Best I′Average
Time

(s) I′′Best I′′Average
Time

(s)

ch130-3 130 3 13 2331 2425 26.36 3076 3721 29.53 2764 2882 19.8
ch130-5 130 5 13 1573 1639 37.68 2176 2851 35.46 1983 2068 19.14
ch130-10 130 10 13 1342 1404 51.30 2239 2239 47.68 1492 1553 17.48
ch150-3 150 3 15 6821 7212 28.92 9184 10744 44.62 7669 7778 33.33
ch150-5 150 5 15 4365 4451 42.36 6224 7284 54.75 4874 4874 35.87
ch150-10 150 10 15 3109 3158 67.24 5518 6297 61.12 3733 3733 32.11

kroB200-3 200 3 20 40,823 41,798 36.21 56,364 65,108 52.82 42,806 44,451 42.75
kroB200-5 200 5 20 25,062 25,831 56.30 38,511 45,109 71.82 27,822 29,099 41.67
kroB200-10 200 10 2 15,602 15,722 92.77 22,329 28,783 79.14 17,423 18,347 40.73

gr229-3 229 3 23 1654 1741 41.15 3097 3509 59.41 1969 2027 35.63
gr229-5 229 5 23 1061 1125 61.42 2038 2507 73.63 1254 1316 34.84

gr229-10 229 10 23 676.10 709.27 103.17 1145 1531 78.06 722.29 796.53 38.60
lin318-3 318 3 32 84,797 85,915 57.64 104,810 133,910 87.39 88,476 89,740 73.48
lin318-5 318 5 32 54,858 55,273 81.56 72,122 81,894 87.30 56,093 58,220 70.35

lin318-10 318 10 32 29,540 30,211 159.41 41,242 51,173 112.46 31,866 34,450 66.00
rd400-3 400 3 40 30,983 31,738 68.98 39,959 43020 99.06 33253 33,483 85.53
rd400-5 400 5 40 19,696 19,874 100.82 25,287 28,449 124.17 20,663 21,480 83.78

rd400-10 400 10 40 10,506 10,602 194.65 14158 17,085 143.61 12,328 13,168 85.19
d493-3 493 3 49 65,827 67,969 115.84 93,084 113,684 129.72 71,669 72,592 108.73
d493-5 493 5 49 44,124 44,714 153.97 57,537 73,767 133.92 46,260 48,768 105.41

d493-10 493 10 49 25,902 26,170 236.36 35,458 41,956 169.01 29,055 30,506 105.72

Table 3. Solution results for large-scale instances.

Instance Information Algorithm of This Paper Algorithm A1 Algorithm A2
Name n m k IBest IAverage

Time
(s) I′Best I′Average

Time
(s) I′′Best I′′Average

Time
(s)

att532-3 532 3 53 215,743 220,341 119.71 289,158 318,530 138.06 228,991 232,097 116.04
att532-5 532 5 53 137,012 138,704 168.22 184,605 207,937 143.48 146,175 156,059 111.77

att532-10 532 10 53 72,866 74,939 263.21 98,817 124,253 181.24 80,924 91,853 109.59
gr666-3 666 3 67 8065 8184 154.44 10,995 11,756 175.88 8585 8633 142.70
gr666-5 666 5 67 5116 5145 203.38 6844 7863 170.93 5274 5668 140.14

gr666-10 666 10 67 2713 2795 322.30 4055 4688 238.86 3135 3378 140.87
rat783-3 783 3 78 24,431 24,561 184.07 30,672 33,129 185.00 25,240 25,668 172.77
rat783-5 783 5 78 14,796 15,197 237.54 19,637 21,021 239.58 15,551 16,721 170.97
rat783-10 783 10 78 7817 7978 374.08 11,152 12,747 266.16 9606 10,283 166.22
pr1002-3 1002 3 100 984,119 994,034 223.48 1,150,203 1,224,429 250.80 997,444 1,009,880 210.33
pr1002-5 1002 5 100 596,696 608,471 297.74 751,828 783,754 292.38 615,550 660,968 207.04
pr1002-10 1002 10 100 312,674 315,691 469.51 401,110 452,747 356.00 379,443 413,564 208.75
d1291-3 1291 3 129 271,403 276,562 295.72 324,725 34,473 344.27 278,225 282,548 283.36
d1291-5 1291 5 129 168,879 170,007 388.43 194,747 231,967 348.42 177,698 190,622 280.13
d1291-10 1291 10 129 89,356 90,421 606.09 116,666 157,610 472.67 98,753 114,074 287.97
fl1577-3 1577 3 158 213,987 216,568 357.20 256,092 271,006 414.86 216,275 218,102 350.05
fl1577-5 1577 5 158 132,424 133,564 474.69 158,467 184,102 420.36 137,305 143,273 341.93

fl1577-10 1577 10 158 68,813 69,769 754.05 117,114 125,894 581.34 83,239 90,810 345.49
d2103-3 2103 3 210 503,707 507,482 476.70 573,438 604,803 572.05 505,744 520,019 473.37
d2103-5 2103 5 210 309,633 310,758 632.80 348,375 379,010 572.48 318,063 343,450 463.39
d2103-10 2103 10 210 159,885 161,239 1007.44 186,445 266,479 763.19 190,118 212,572 454.45

4. Experimental Results and Analysis
4.1. Test Environment and Experimental Instances

This paper implemented the proposed algorithm using Matlab programming and ran
it on a PC configured with a 64-core AMD Ryzen 7 4800H with Radeon Graphics @2.90 GHz
(16 GB RAM). A total of 18 instances were selected from distance symmetric instances in
TSPLIB in three sizes: small, medium and large. The instances were att48, st70, kroC100,
rd100, ch130, ch150, kroB200, gr229, lin318, rd400, d493, att532, gr666, rat783, pr1002, d1291,
fl1577 and d2103 with the number following each instance name representing the number
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of cities included in that instance. Computational experiments were conducted for each
instance by dividing different clusters and setting different numbers of salesmen.

4.2. Parameter Determination

In the two-stage genetic algorithm designed in this paper, the parameters to be consid-
ered include: p1, p2 and p3 in the second stage, population size, and the maximum number
of iterations maxgen. The evaluation of the final solution obtained with the algorithm
serves as a reference for parameter tuning. To experiment with parameter tuning, we fixed
other parameters while adjusting one parameter, and conducted 10 experiments for each
parameter. Finally, the parameters were determined as: p1 = 0.35, p2 = 0.9, p3 = 0.8,
size = 100, and maxgen = 500.

4.2.1. Small-Scale Instances Experiments

In the small-scale instances experiments, for each size of instance, we used the same
grouping method and generated a total of eight instances by setting the number of salesmen
to 4 and 5, respectively. For the evaluation indicator, the best relative error GBest was used.

GBest =
IBest − CBest

CBest
.

Here, CBest represents the optimal value obtained with the CPLEX solver, and IBest denotes
the best result obtained with the algorithm proposed in this paper for 10 times. The
comparison between the results obtained with the proposed algorithm and those obtained
with the CPLEX solver is shown in Table 1, where name represents the names of the
instances, n is the number of cities, m is the number of traveling salesmen, k represents
the number of clusters, and IAverage denotes the average value obtained with the proposed
algorithm for 10 times. Meanwhile, the bold numbers in the table represent the best results
obtained with the CPLEX solver and the algorithm of this paper. From Table 1, it can be
observed that:

1. In terms of computational accuracy, our algorithm achieved optimal results in IBest for
six instances, including att48-4, att48-5, st70-4, st70-5, rd100-4 and rd100-5. Although
IBest did not reach the optimal results in kroc100-4 and kroc100-5, the best relative
error GBest was no more than 1.5%.

2. In terms of computational time, our algorithm exhibited significantly lower solving
time than the CPLEX solver on all eight instances, indicating a clear advantage in
computational efficiency.

Based on the above, our algorithm showed good solving performance on
small-scale instances.

4.2.2. Medium-Scale Instances Experiments: Comparisons with Algorithms A1 and A2

In the experiments of medium-scale instances, for each size of instance, the same
grouping method was used, and the number of salesmen was set to 3, 5, and 10, respec-
tively, resulting in 21 instances. The performance of our algorithm was compared with
Algorithms A1 and A2 based on the experimental results presented in Table 2, where IBest,
I′Best, and I′′Best represent the best results obtained by running our algorithm, Algorithms
A1 and A2 10 times, respectively, and IAverage, I′Average, and I′′Average represent the average
results obtained by running our algorithm, Algorithms A1 and A2 10 times, respectively.
Here, the bold numbers in the table represent the best results obtained with the algorithm
of this paper, Algorithms A1 and A2. As can be seen from the table, in a total of 21 instances,
our algorithm consistently outperformed Algorithms A1 and A2 in terms of computational
accuracy for both the best and average results.

In Algorithm A1, the centroid of each cluster was computed first, then the visiting
order between clusters was determined based on the information of all centroids, and
finally the visiting order of vertices within each cluster was determined using the endpoint
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of the previous cluster and the centroid of the subsequent cluster. On the other hand, our
algorithm determined the visiting order of vertices within each cluster first, and then used
a combination of greedy and random ideas to determine the connecting edges between
clusters and the visiting order between them based on this result.

In determining the visiting order between clusters, Algorithm A1 relied on the centroid
information for each cluster, while our algorithm relied on the information of the visiting
order of all vertices within each cluster. The latter allowed for a more comprehensive char-
acterization of each cluster. Meanwhile, when considering the connecting edges between
clusters, our algorithm employed both the greedy and random strategies, leading to a wider
range of options for selecting connecting edges and increasing the diversity of solutions.
Based on the above two factors, our algorithm exhibited a better solving performance.

For the MMCTSP, the solution method proposed in this paper was a two-stage strat-
egy, where the second stage determined the visiting order between clusters by solving
a constructed MTSP. For the MTSP, in comparison to Algorithm A2 based on a single
chromosome encoding, our algorithm employed a grouping-based encoding scheme. The
chromosomes generated with this encoding represented a feasible solution space with less
redundancy, resulting in an improved search efficiency. Furthermore, the genetic operators
and local search strategies under this encoding scheme further enhanced the convergence
accuracy and search efficiency of the algorithm.

4.2.3. Large-Scale Instances Experiments: Comparisons with Algorithms A1 and A2

The experimental results of our algorithm, Algorithms A1 and A2 for large-scales
instances are shown in Table 3, where the bold numbers represent the best results ob-
tained with the algorithm of this paper, Algorithms A1 and A2. It can be observed
from the table that for a total of 21 instances in large scales, our algorithm outperformed
Algorithms A1 and A2 in terms of computational accuracy for both the best and average
results, demonstrating higher precision in the solutions.

5. Conclusions

In this paper, we considered the MMCTSP and proposed a two-stage solution method
based on a genetic algorithm according to the characteristics of the problem. In the
first stage, the visiting order of vertices within each cluster was determined by solving
an abstracted TSP from the corresponding cluster. In the second stage, the visiting order
between clusters was determined by solving an auxiliary MTSP. For both the TSP and the
MTSP, we employed a genetic algorithm based methods to solve them, respectively. Com-
putational experiments were conducted for instances of various scales. The experimental
results demonstrated that our algorithm could obtain better solutions in a shorter time for
small-scale instances, and exhibited a better computational performance compared to the
two comparative algorithms for medium-scale and large-scale instances. In future research,
it is worth paying attention to the corresponding routing problems where the service object
is an edge or arc set of a given graph and all the service objects are divided into clusters.
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