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Abstract: Inspired by nature, oscillating foils offer viable options as alternate energy resources
to harness energy from wind and water. Here, we propose a proper orthogonal decomposition
(POD)-based reduced-order model (ROM) of power generation by flapping airfoils in conjunction
with deep neural networks. Numerical simulations are performed for incompressible flow past a
flapping NACA-0012 airfoil at a Reynolds number of 1100 using the Arbitrary Lagrangian–Eulerian
approach. The snapshots of the pressure field around the flapping foil are then utilized to construct
the pressure POD modes of each case, which serve as the reduced basis to span the solution space.
The novelty of the current research relates to the identification, development, and employment
of long-short-term neural network (LSTM) models to predict temporal coefficients of the pressure
modes. These coefficients, in turn, are used to reconstruct hydrodynamic forces and moment, leading
to computations of power. The proposed model takes the known temporal coefficients as inputs and
predicts the future temporal coefficients followed by previously estimated temporal coefficients, very
similar to traditional ROM. Through the new trained model, we can predict the temporal coefficients
for a long time duration that can be far beyond the training time intervals more accurately. It may
not be attained by traditional ROMs that lead to erroneous results. Consequently, the flow physics
including the forces and moment exerted by fluids can be reconstructed accurately using POD modes
as the basis set.

Keywords: power generation; long-short-term neural network; proper orthogonal decomposition;
flapping foils; reduced-order modeling

1. Introduction

Despite enormous advancements in computer-related technologies in the modern era,
performing numerical simulations of complex flows using computational fluid dynam-
ics (CFD) based tools demands a lot of resources in terms of computing time and data
storage capacity. To cope up with these challenges, the idea of developing reduced-order
models (ROMs), capturing the dynamics of engineering systems, is vital. The essence
of such ROMs is to simulate the behavior of a system for a chosen set of values for the
control parameters in the governing mathematical equations. For systems involved with
fluid flows, the actual models usually consist of a system of nonlinear partial differential
equations (PDEs). When the solutions are computed for a specific set of parameters, we
can build basis functions. These functions help generate approximate solutions for new
values of the governing parameters inexpensively. With the advantages offered by different
classes of ROMs, such models were extensively developed for numerous applications,
involving optimizations and control of complex engineering systems [1–5]. The success
of a ROM highly depends on the choice of basis functions to be used to approximate the
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solution. Although a variety of dimensionality-reduction techniques exist, most ROMs
are based on proper orthogonal decomposition (POD) technique [6,7] serving as the basis
functions. The POD method is very effective for dimensionality reduction complex models
of physical systems. Snapshots (measurements) of many nonlinear dynamical systems
often exhibit low-dimensional activity, and their contribution in a whole phenomenon is
minimal. It is because most of the energy (quantified through the variance of a signal)
is contained in a few modes computed through singular value decomposition (SVD) or
method of snapshots [8]. Such modes serve as the reduced-order basis to construct the low-
dimensional space for the construction of a ROM. The significance of the POD method in
the development of ROMs can be found in numerous fields, including complex flows [9],
flow control design [1,10–13], pattern recognition [8], and uncertainty quantification and
optimization [14]. The application of such POD-ROMs in turbulent flows is not straightfor-
ward. Some recent pieces of work on closure modeling attempts to extend the application
of POD-ROMs in complex flows [9,15–18]. Generally, the construction of a POD-ROM is a
two-step process: (a) post-processing of flow field data to compute the optimal basis func-
tions, and (b) Galerkin projection of the governing equations onto these basis functions to
develop a ROM. Linear combinations of POD modes and expansion coefficients (temporal
coefficients) are employed to represent a time-evolving flow field. POD-Galerkin-based
models suffer from issues related to instability and efficiency [18–23].

Although a significant reduction in computational time and cost may be attained
to find the solution of complex phenomena by using ROMs, there exists a lot of room
for researchers to formulate better alternates for further improvements. The inclusion of
machine learning (ML) in CFD brings a revolution in this field [24–27]. Han et al. [28]
introduced a deep-learning-based approach for solving highly complex systems of PDEs.
They used neural networks to predict the values of unknown parameters and concluded
that the solver performed well in terms of accuracy and computational cost. Hesthaven
and Ubbiali [29] utilized ANN to approximate the coefficients of a reduced-order model
for parameterized steady-state PDEs. Their results confirmed the speedup and accuracy of
the ANN-based model.

Most ROMs based on the POD technique employ information about velocity fields [5,21]
whereas, the pressure field, specifically on the surface, also plays an important role in the
accuracy of POD-based ROMs [30]. Many studies were carried out for ROMs developed
based on pressure mode decomposition (PMD) method that also enabled accurate estima-
tions of hydrodynamic forces. Recently, Ahmed et al. [31] used PMD technique to develop
an ML-based ROM to predict the lift and drag forces for flows around circular cylinders.
Later, Farooq et al. [32] developed an ANN-based ROM to approximate the hydrodynamic
forces on a NACA-0012 airfoil exerted by the fluid flows, passing over it at different angles-
of-attack (AoA). The trained model produced accurate values of lift and drag forces that
match well with the true values obtained through direct numerical simulations. Despite
vast research in this field, the current situation demands more novel ideas and techniques
stemming from ANN-based ROMs for accurate prediction of hydrodynamic forces on
flapping foils similar to the conventional ROMs, where the solution can be predicted for a
long time duration.

Most of the research studies of flapping foils/wings [33–37] are focused more to
examining biological and bio-inspired propulsion mechanisms with the primary objective of
developing efficient engineered propulsive devices. Alternatively, the flapping foils/wings
can also be employed to harness energy from the fluid flows, passing over them. Flapping
foils-based power extraction systems are usually classified into three categories according
to their activation mode [38,39]: (i) a fully forced system in which both plunge and pitch
motions are prescribed [38,40–44]; (ii) a semi-passive system in which the pitch motion
is prescribed while the plunge motion is induced from the interactions between the foil,
the incoming flow, and the elastic supports [45–50]; and (iii) a fully-passive system in
which both plunge and pitch motions are entirely driven by interactions of the foil with the
surrounding fluid and the supporting dynamical mechanisms [42,44,51–54]. In this work,
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we consider a fully forced system for developing a deep-learning-based ROM for power
generation by flapping foils. Generally, the power extraction performance of a flapping
foil is measured through a parameter called power extraction efficiency [41]. Kinsey and
Dumas [41] conducted a numerical parametric study to investigate the performance of
the fully forced system of a NACA-0015 airfoil at a Reynolds number (Re) of 1100 for the
range of flapping frequency and pitching amplitude. The main objective of their study was
to determine the ranges for the optimal frequency and pitching amplitude for maximum
power extraction efficiency. Their study demonstrated that the power extraction efficiency
could exceed 20% when setting the pitching amplitude greater than 55◦. It reaches its
maximum value of 34% when considering the plunging amplitude equal to the foil’s
chord length and selecting the pitching amplitude higher than 75◦. In another numerical
study conducted by Ashraf [55], the power extraction efficiency of NACA-0014 airfoil
at Re = 20,000 was examined. He investigated the effect of the phase angle between the
plunge and pitch kinematics. The peak value of the power coefficient and efficiency (32%)
was achieved at the phase angle of 95◦ with a plunging amplitude equal to 5% more
than the foil’s chord length. Recently, Farooq et al. [40] conducted a numerical study
to investigate the power extraction performance of a fully forced NACA-0012 airfoil at
Re = 1100. They performed a parametric study by varying the Strouhal number and the
amplitude of the pitching angle to identify two operational flow regimes: power generation
and thrust-producing propulsion using the feathering criterion [41]. Their parametric study
revealed that the foil could reach up to 42% power generation efficiency when setting the
pitching amplitude in the range of 60◦ to 70◦ with Strouhal number synchronized with the
non-dimensional excitation frequency. Moreover, they identified the locations where the
fluid pressure was dominant during the oscillating cycle of the flapping airfoil, operating
in the power generation regime and designed a piezoelectric energy harvester for electrical
power production [56].

The novelty of our present research is to develop and employ a recurrent neural
network (RNN) [57] model to predict temporal coefficients of the pressure modes. These
coefficients, in turn, are used to reconstruct hydrodynamic forces and moment, leading to
computations of power. It is important to mention here that, in a conventional ROM, tem-
poral coefficients are evaluated by integrating the time-evolving dynamical system, which
is usually a set of initial-valued ordinary differential equations and can lead to erroneous
results for complex flows. However, in ML-based ROMs, these temporal coefficients can be
predicted accurately by employing an RNN-based model [58,59]. Note that the pressure
temporal coefficients are not only required for the reconstruction of hydrodynamic forces
and moment but also are useful for the development of efficient ROMs for shear flows [30].
The main focus of the current study is to develop a ROM for a power generation system
using a variant long-short-term neural network (LSTM) for the prediction of temporal data.
Our newly proposed model is very similar to a traditional ROM, which takes the known
temporal coefficients as input and predicts the future temporal coefficients followed by
previously estimated temporal coefficients. Consequently, we can predict the temporal
coefficients for a long time duration that can be far beyond the training time intervals more
accurately, which may not be attained by traditional ROMs that lead to erroneous results.
The model’s efficiency is verified by reconstructing hydrodynamic forces and moment
accurately. Note that for reconstruction, we do not employ the training temporal data.
The motivation behind the choice of the LSTM model compared to others is that LSTM
models are particularly well-suited for tasks that require modeling sequential data with
long-term dependencies. These models were previously shown to perform well in a wide
range of applications for reduced-order modeling of fluid flow problems [60–63], which
made them a popular choice in many deep-learning tasks. LSTM models have some advan-
tages over other models, such as for capturing long-term dependencies. These techniques
can overcome the “vanishing gradient" problem, as explained in Section 5.3. Handling
variable input sequence length, they do not need fixed inputs and output sizes, unlike
feedforward neural networks. Having memory and recurrent connections, they models
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can store and propagate information over time steps, which is useful for tasks, requiring
temporal dependencies.

The remaining manuscript is organized as follows. The governing mathematical
models for incompressible two-dimensional flows over flapping foils are presented in
Section 2. In addition, important details about our computational techniques are presented
here. Next, the validation studies of our numerical methodology is provided in the Section 4.
Details on the feature extraction technique, POD of the pressure fields, using the method of
snapshots and the ANN training model and its behavior constitute Section 5.

2. Numerical Methodology
2.1. Governing Formulations for Incompressible Fluid Flows

The mathematical model, describing the two-dimensional (2D) unsteady incompress-
ible flows around flapping airfoils consists of the continuity and Navier-Stokes equations,
which are defined in their respective tensor as given below:

∂ui
∂xi

= 0 (1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p
∂xj

+
1

Re

(
∂2ui

∂x2
j

)
(2)

where the ui represents the fluid velocity, p is the pressure, and ρ is the density of the
fluid. This governing model (Equations (1) and (2)) is provided in the nondimensional
form, where nondimensionalization is carried out by considering the free-stream uniform
velocity (U∞) as the velocity scale and the chord-length (c) of the airfoil as the length scale.
Thus, the Reynolds number (Re) is defined as Re = ρcU∞/µ, where µ is dynamic viscosity
of the fluid.

In order to handle the effects of moving bodies in a flowing fluid, we employ Arbitrary
Lagrangian–Eulerian (ALE) approach in which the momentum equation (Equation (2)) is
modified as:

∂ui
∂t

+ ũj
∂ui
∂xj

= −1
ρ

∂p
∂xj

+
1

Re

(
∂2ui

∂x2
j

)
(3)

Here, the term ũj represents the relative velocity of the fluid with respect to the
corresponding grid node-velocity, that is, ũj = uj − ugj . The term ugj represents the grid
node velocity, which has to be computed at each time level. Note that Equations (2) and (3)
will becomes identical for ugj = 0, which shows Eulerian description and the underlying
grid thus remains fixed. On the other hand, for uj − ugj = 0, Equation (3) then represents
the Lagrangian description of flow dynamics. Typically, the success of the ALE approach
depends on the strategy for how the computational grid deforms during simulations.
In this study, we employ the radial basis function (RBF) interpolation technique, for grid
deformations. This method was originally proposed and developed by [64], and it is known
for its robustness, accuracy, and its capability to maintain good grid quality even for large
structural translations and rotations [65]. Moreover, the computation grid used here is an
‘O’-type body-fitted grid around a NACA-0012 airfoil, as shown in Figure 1. Note that we
consider a grid of size 400× 304 with 400 points in the radial direction and 304 points on
the surface of the airfoil. The outer radius of the circular domain around the airfoil is 30c.
Moreover, the same grid size and resolution are used to compute the POD modes.
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Figure 1. Two-dimensional layout of an ‘O’-type body-fitted grid over the NACA0012 airfoil. Here,
the horizontal arrows show the direction of the incoming flow.

Because the computational domain has curved grid lines, the following expressions
are used to transform the governing equations into the curvilinear coordinates (α, β),
depending on the Cartesian coordinates (x, y):

α = α(x, y), β = β(x, y) (4)

Thus, after some mathematical manipulations and simplifications, we obtain the
following form:

∂Um

∂αm
= 0, (5)

∂(G−1ui)

∂t
+

∂Fim
∂αm

= 0, (6)

where the flux is defined as

Fim = Ũmui + G−1 ∂αm

∂xi
p− 1

Re
Qmn ∂ui

∂αn
. (7)

where G−1 = det
( ∂xi

∂ξ j

)
is the inverse of the Jacobian or the volume of the cell; Ũm = G−1 ∂αm

∂xj
ũj

is the volume flux (contravariant velocity multiplied by G−1) normal to the surface of
constant ξm; and Qmn = G−1 ∂αm

∂xj

∂αn
∂xj

is the “mesh skewness tensor”.
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2.2. Prescribed Flapping Kinematics

The mathematical models for combined plunging and pitching (or flapping) kinemat-
ics are defined as:

y(t) = Ay sin(2π fet), (8a)

ẏ(t) = Ay(2π fe) cos(2π fet) (8b)

α(t) = Aα sin(2π fet +
π

2
), (8c)

α̇(t) = Aα(2π fe) cos(2π fet +
π

2
) (8d)

where Ay and Aα are the nondimensional plunging and pitching amplitudes, respectively
and fe is the oscillating excitation frequency. The terms y(t) and α(t) represent the instanta-
neous plunging and pitching displacements of the airfoil. For these kinematic settings, the
Strouhal number (StA) here is defined as the ratio between the product of the oscillating
frequency ( fe) and peak-to-peak amplitude (2Ay) of the trailing edge of the airfoil and
the uniform velocity (U∞), i.e., StA=2 fe Ay/U∞. In our present study, we keep the value
of fe fixed at 0.375 Hz. Additionally, it is important to mention, the superscript (·) in
Equation (8b),(8d) represents the time derivative.

2.3. Discretization Strategy

The fractional step method is an effective and strong candidate technique for dealing
with incompressible Navier-Stokes equation. It transforms the momentum equation into
the convection-diffusion equation and pressure-Poisson equation [32,40,51,66]. We utilize a
non-staggered grid in which the velocity and pressure fields are computed at the center of
each cell. The fluxes (Ũ, Ṽ) are calculated on the corresponding faces at their midpoints.
Except for the convective term, all the spatial derivatives are approximated using the second-
order central difference method. The use of a central difference scheme for convective
terms may result in unnecessary fluctuation and thus, may lead to incorrect or erroneous
solutions. However, such issues can be resolved by implementing an appropriate higher-
order difference scheme. For this purpose, an upwind scheme with quadratic upwinding
interpolation for convective kinematics (QUICK) [67] is employed here to discretize the
convective terms. To advance the solution in time, a hybrid method composed of explicit
and semi-implicit schemes is used. The Crank–Nicolson (C-N) scheme is employed to
discretize the diagonal viscous terms only, whereas all the remaining terms are discretized
using the second-order Adams–Bash (AB-2) scheme. It is important to mention here that
both these schemes are second-order accurate.

3. Hydrodynamic Performance Metrics

The hydrodynamic forces and moments on an oscillating body are produced due
to pressure distribution and shear stress distribution over the surface of the body. The
net effect of these terms integrated over the complete body surface gives us the resultant
hydrodynamic force (R) and moment on the body, where R can be split into components;
normal and axial forces, as illustrated below.

FN =
∮

c
dN = −

∮
c
(p sin(θ)− τ cos(θ)) ds, (9a)

FA =
∮

c
dA = −

∮
c
(p cos(θ) + τ sin(θ)) ds, (9b)

M = −
∮

c
(xb − xp)dFN +

∮
c
(yb − yp)dFA, (9c)

where FN and FA are the axial and normal force components that are parallel and per-
pendicular to the chord of the airfoil, respectively. The term τ represents the shear stress,
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whereas p is the pressure. Furthermore, M is the pitching moment about the pitching axis
point (xp, yp), and s is the arc-length of the body. Thus, the hydrodynamic lift (L) and drag
(D) forces over the airfoil at the pitching angle α can be computed as:

L = FN cos(α)− FA sin(α), (10a)

D = FN sin(α) + FN cos(α) (10b)

The dimensionless forces and moment coefficients can be defined by using dynamic
pressure (q∞ = 1

2 ρU2
∞) as follows:

CL =
L

q∞c
, (11a)

CD =
D

q∞c
, (11b)

CM =
M

q∞c2 . (11c)

4. Validation

In order to demonstrate the effectiveness and accuracy of our in-house computational
solver, we simulate the flows over the NACA-0015 airfoil, undergoing simultaneous
plunging and pitching motions at Re = 1100. We compute the hydrodynamic lift and
drag coefficients and compare the temporal profile of CD with those reported by [37].
Here, kinematic amplitudes are Ah = 0.4, Aα = 20◦, for plunging and pitching motions,
respectively. Figure 2 presents that the results from our computational solver are in excellent
agreement with those from [37]. A body-fitted nearly orthogonal grid of size 353× 501
around the foil is used for our simulations. The outer boundary of this grid is located at a
radius of 25c that is far from the surface of the foil, as shown in Figure 1). For simulating
the flow over the moving body here, we use the time-step equal to 2× 10−4. For more
details on grid convergence and time-step independence, interested readers are referred to
the Refs. [40,51].

Figure 2. Validation of solver: Comparison of CD of the flapping airfoil with the temporal data of [37].
Here T represents the oscillation time period.
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5. Results and Discussions

In this study, we perform numerical simulations for incompressible flows over a
NACA-0012 foil that is subjected to sinusoidal plunging and pitching (flapping) motions
simultaneously at Re = 1100. Before analyzing the accuracy of a deep-learning neural
network-based ROM for the pressure field, we first discuss the performance of a flapping
foil, operating in the power generation regime. Under these conditions, the directions of
the lift force and plunging velocity are mostly the same in an oscillation cycle. Thus, the
flapping foil experiences a positive work by the fluid, passing over it. Such positive work
can be utilized for power extraction [40,41]. We simulate several cases from the parametric
space of (StA, Aα) = {0.1 ≤ StA ≤ 0.35 and 15◦ ≤ Aα ≤ 100◦} and compute the power
generation efficiency (η) defined as:

η = C̄P
c

YP
(12a)

C̄P =
1
T

∫ t+T

t

[
CL

ẏ(t)
U∞

+ CM
α̇(t)c
U∞

]
dt (12b)

where YP is the difference between the highest and the lowest points reached by the foil,
and T = 1/ fe is the time period. Furthermore, the term CP represents the power coefficient
that can be decomposed as CP = Cp

P + Cν
P. Here Cp

P denotes the power coefficient based on
pressure only, whereas Cν

P is the shear stress-based power coefficient.
For the foil pitching with an amplitude of Aα = 20◦, we identify well-known opera-

tional regimes in the range of 0 < StA ≤ 1.0, including drag-production, thrust-production,
and deflected wake regions (see Figure 3). Moreover, we observe that the neutral wake
(i.e., the case for which the mean drag coefficient is zero) is formed at StA = 0.18. As the
power generation efficiency of the foil is a concern, we show the variation in η in terms
of a contour plot for the pitching amplitude Aα and Strouhal number StA in Figure 4. In
this parametric space, we obtain a remarkable power efficiency of 42%. For comprehensive
details about the hydrodynamic performance and the wake topology of the flapping foil,
the readers are referred to read the following article [40].

Figure 3. Operational regimes of flapping foil at a pitching amplitude of Aα = 20◦.
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Figure 4. Contours of power generation efficiency in parametric space (StA, Aα).

Next, we develop a ROM for the pressure profiles over the flapping foil, exhibiting
power generation mode [41] through pressure-based POD and deep-learning neural net-
work techniques. Our primary objective is to reconstruct the forces and moments exerted
by the fluid on the body through the trained deep-learning model more efficiently. For this
purpose, we choose a case of a foil flapping with Aα as 67◦ and StA = 0.33 (or Ah = 0.44),
because these kinematic parameters correspond to a remarkable power generation effi-
ciency of 40% at Re = 1100 (see Figure 4). We simulate this case for a long enough time
duration in order to mitigate the transient effects and obtain the periodic steady state. The
time histories of the lift and the pitching moment coefficients are shown in Figure 5. We
observe a phase of 90◦ between CL and CM. We present the snapshots of vorticity contours
over a complete oscillation cycle in Figure 6. From these plots, we observe a pair of vortices,
formed at the leading-edge during the first half-cycle, and similar coherent flow structures
produced during the other half-cycle. These pairs then interacts with those formed at
the trailing-edge, resulting in a dominant single vortex in the wake. As reported earlier,
the leading edge vortex dominates the output of positive power generation [41,47], we
notice a similar phenomenon here. Next, we discuss the strategies for computing pressure
POD modes and training a deep-learning neural network model to develop ROMs for
hydrodynamic forces and moments in the following passages.

Figure 5. Time histories of lift (solid line) and pitching moment (dashed line) coefficients at StA = 0.33.
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Figure 6. Spanwise vorticity contours over a complete oscillating cycle of flapping foil at StA = 0.33.
Plots from one-half oscillating cycle are depicted in (a–d), which are corresponding to the time-
instants from t/T = 0 to 3/8 while the plots from the other half cycle are depicted in (e–h). Here, the
symbol T represents the time period of an oscillating cycle.

5.1. Proper Orthogonal Decomposition

Here, we elaborate the methodology to compute dominant coherent structures of
the flow field. One of the commonly known techniques is the POD method to extract
dominant modes of the pressure field. Generally, the POD modes can be computed through
the procedure of either SVD or the method of snapshots [68,69]. In this study, we utilize
the method of snapshots because it is computationally inexpensive compared to SVD for
high-fidelity simulations. The set of ensemble S time-discrete snapshots (pn = p(x, tn),
tn = ts + (n− 1)∆t, n = 1, 2, · · ·, S) is used as an input for POD of a flow property, such
as pressure. Moreover, the time-dependent flow field p can be decomposed into its mean
p̄(x) and fluctuating part p′(x, t), and the fluctuating part p′(x, t) is expanded in a Galerkin
fashion in terms of temporal and spatial variables, as given below:

p(x, t) = p̄(x) + p′(x, t) = p̄(x) +
∞

∑
j=1

aj(t)ϕj(x, t)

≈ p̄(x) +
m

∑
j=1

aj(t)ϕj(x) (13)
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where m represents the finite number of modes in the expansion, ϕ(x) represents the
POD modes of p to be determined through the eigenvalue problem, and aj(t) denotes the
temporal coefficients. Note that, in this study, our primary aim is to propose and train a
deep-learning model to estimate aj. The instantaneous solutions at the time t1, t2, ··, ts ∈
(0, t) of P are stored in a matrix of size N × S, where S� N, and N denotes the number of
grid points. The problem is to seek a low dimensional basis {ϕ1, ϕ2 · ·ϕm} that satisfies the
following relation:

min
1
S

s

∑
i=1

∥∥∥∥∥p′(·, ti)−
m

∑
j=1

(
p′(·, ti), ϕj(·)

)
H

∥∥∥∥∥
2

H

(14)

subject to the condition of orthogonality, (ϕi, ϕj)H = δi,j, 1 ≤ i, j ≤ m, where δi,j is the
Kronecker delta function and H is a real Hilbert space such that p(·, t) ∈ H |t ∈ (0, T). To
solve Equation (14), we consider the following eigenvalue problem

Cv = λv (15)

where vk for k = 1, 2, · · ·, S are the eigenvectors, λ1 ≥ λ2 · ·· ≥ λS > 0 are eigenvalues, and
C ∈ RS×S is the correlation matrix that can be defined as

Cij =
1
S
(

p′(·, tj), p′(·, ti)
)

H (16)

It can be shown that the solution of Equation (14) is given by [68]

ϕk(·) =
1√
λk

S

∑
j=1

(vk)j p′(·, tj), 1 ≤ k ≤ m (17)

We compute the normalized eigenvalues (λk/ ∑j λj) to exhibit the quantification of
variance/energy in the POD modes. In Figure 7, the pressure-based eigenvalues (λp) are
shown along with the cumulative amount of energy. It can be inferred that the first 20 POD
modes contain almost 99.98% of total energy. Consequently, the first 20 modes should be
enough for a low-dimensional model of the pressure field, and hence, of the hydrodynamic
forces and moment based on pressure only.

Figure 7 presents the contributions of the modes towards the energy of this nonlinear
dynamical system. It also indicates that the first four modes carry 98% of the total energy.
Unlike the circular cylinder [70] and static airfoils at different angles of attack [32], where
pressure modes are either pairwise symmetric or antisymmetric, the modes in the case
of flapping airfoil corresponding to the power generation regime do not exhibit pairwise
symmetry or antisymmetry. It is observed that after a symmetric mode about the center
line (y = 0), there is a pair of antisymmetric modes. In Figure 8, we show the mean and first
four pressure POD modes. The mean mode (Mode 0) is symmetric as it shows a symmetric
wake, causing zero mean lift, i.e., C̄L = 0). Here, we compute these POD modes using
200 snapshots per oscillating cycle in order to include small-scale coherent structures of
pressure field in the computational process.
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Figure 7. Normalized eigenvalues of the correlation matrix C and their corresponding contributions
for the cumulative energy content.

5.2. Models of Hydrodynamic Forces and Moment

We develop the low-dimension models for fluidic forces (lift and drag) and mo-
ment (pitching moment) by projecting their respective full-dimensional models (given in
Equation (9a)–(9c)) into space generated by pressure POD modes. It means that the modal
forms of normal and axial, and pitching moment can be obtained by replacing the term p
with its mode in Equation (13) as follows:

Fm
N = −

∮
c

(
p̄s sin(θ) +

M

∑
j=1

aj(t)ϕs
j sin(θ)

)
ds

= L0
o +

M

∑
j=1

aj(t)L0
j (18a)

Fm
A = −

∮
c

(
p̄s cos(θ) +

M

∑
j=1

aj(t)ϕs
j cos(θ)

)
ds

= D0
o +

M

∑
j=1

aj(t)D0
j (18b)

Mm = (D1
o − L1

o) +
M

∑
j=1

aj(t)(D1
j − L1

j ) (18c)

where
Ln

o = −
∮

c
(xb − xp)

n p̄s sin(θ)ds, (19a)

Ln
j = −

∮
c
(xb − xp)

n ϕs
j sin(θ)ds, (19b)

Dn
o = −

∮
c
(yb − yp)

n p̄s cos(θ)ds, (19c)

Dn
j = −

∮
c
(yb − yp)

n ϕs
j cos(θ)ds, (19d)

where the subscripts o and j represent the decomposition of p̄s and ϕs
j into their sine and

cosine components, respectively. The terms p̄s and ϕs
j represent the data on the surface of
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the foil surface from the p̄ and ϕj, respectively. Besides, xb and yb are the coordinates of the
nodal points on the body surface, which are, in general, functions of arc-length and time in
the case of flapping foil, i.e., xb = xb(s, t) and yb = yb(s, t). The exponent ’n’ is an integer
that is either 0 or 1. It is important to note that in the case of stationary bodies, terms L0

j and

D0
j are called lift decomposition coefficient and drag decomposition coefficient, respectively,

and make respective contributions to the lift and drag coefficients as the weight of the
temporal coefficient [32,70].

Although the pressure temporal coefficient aj is predicted from the trained ANN
model. However, in the training phase, we need aj apriori. To fulfill this requirement, we
utilize orthogonality condition of the modes and derive the following relation in order to
compute aj corresponding to each centralized snapshot: aj =

(
p′(x, tj), ϕj(x)

)
H . We use

data from ten oscillating cycles of the periodic steady-state phase. Two hundred snapshots
per cycle are recorded that makes a total of 2000 snapshots in ten cycles. Then, we utilize
these temporal coefficients for training the ANN model, as explained in the next subsection.

5.3. Long-Short-Term Neural Network

In 1997, Sepp Hochreiter and Jurgen Schmidhuber proposed the use of LSTM networks
as a deep-learning approach for time series data [71]. LSTM networks are a type of recurrent
neural network (RNN) that are designed to address the problem of vanishing gradients [72].
A recurrent neural network can process sequential data, where the output of a previous step
is used as an input for the next step. However, traditional RNNs suffer from the problem
of the vanishing gradients, where a gradient used to update the weights becomes very
small as it propagates through the layers, making it difficult for the network to learn. The
basic purpose of using LSTM networks is to overcome this critical problem. They consist
of an LSTM cell, which includes three gates: an input gate, an output gate, and a forget
gate. These gates control the flow of information in the LSTM cell and help prevent from
the vanishing gradient problem. The input gate controls the flow of new information into
the cell, the output gate controls the flow of information out of the cell, and the forget gate
controls what information should be forgotten from the cell. These gates and the states
within the LSTM cell can be calculated using the following equations:

Input gate: it = σ(Wi · [yt−1, at] + bi), (20a)

C̃t = tanh(WC · [yt−1, at] + bC), (20b)

Forget gate: ft = σ(W f · [yt−1, at] + b f ), (20c)

Ct = ft ∗ Ct−1 + it ∗ C̃t, (20d)

Output gate: ot = σ(Wo · [yt−1, at] + bo), (20e)

yt = ot ∗ tanh(Ct−1). (20f)
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Figure 8. POD modes of pressure field at StA = 0.33.

The input of an LSTM cell is [yt−1, at], where yt−1 is the previous hidden state, and
at is the current input. Each gate is calculated by applying a sigmoid function to the dot
product of the input [yt−1, at] and the corresponding weight matrix plus bias. The sigmoid
function outputs a value between 0 and 1.
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The cell state Ct is calculated by multiplying the previous cell state with the forget gate
value and adding the input gate value multiplied by the candidate cell state computed by
applying a tanh function to the dot product of the input [yt−1, at] and the weight matrix Wc
plus bias bc. The tanh function produces a value between −1 and 1 as the output. Finally,
the hidden state yt is quantified by applying the output gate value to the tanh of the cell.
TensorFlow, a python library for numerical computing [73], is utilized to train the neural
network. The Adam optimizer; a method for updating the weights of the network, is
employed during the training process. The Adam optimizer incorporates an exponential
decay and learning rate adjustment in its governing mathematical equation, as described
by [74].

The input layer of the LSTM consists of the temporal coefficients at time level ‘t’. The
input data {a(t)1 , a(t)2 , ..., a(t)n } ∈ Rn is then routed via hidden layers followed by the tanh
activation function. The output layer consists of the temporal coefficients at time level ‘t+ 1’
{a(t+1)

1 , a(t+1)
2 , ..., a(t+1)

n } ∈ Rn. A schematic diagram to illustrate the training architecture
is provided in Figure 9.

σ

σ

σ tanh
tanh

x +

x

x

at 

yt-1

ct-1

yt

ct

yt

Figure 9. LSTM architecture with different gates. a represents the temporal coefficients where y
represents the hidden state.

The data set is first divided into training and testing categories, with the training
category making up 50% of the entire data set. The LSTM algorithm is then used to predict
the next value in an initial sequence of data. The prediction process begins by providing
the LSTM with the initial sequence of a length t and then, using the LSTM algorithm to
predict the value at t + 1. This prediction process is then repeated recursively, using the
newly predicted value as an input for the next prediction. This process allows the LSTM to
make predictions for future values in the sequence based on the patterns it learns from the
training data.

In our present work, we employ 200 hidden units with four hidden layers with
2000 epoch. In addition, dropout is used to prevent overfitting. After training, the network
is utilized as a function to predict future time steps using the initial condition very similar
to a conventional ROM, where the set of initial-valued ordinary differential equations is
integrated over time. Figure 10 presents time histories of the predicted temporal coefficients
along with their true values. The dashed vertical line serves as a boundary to separate
the training data and testing data. The data used for testing is not meant for training and
is hidden from the trained network. The trained LSTM model efficiently approximates
the pressure POD coefficients, as evident from the comparison in Figure 10. We use the
predicted temporal coefficients in the low-dimensional models of hydrodynamic forces and
moment (Equation (18a)–(18c) and reconstructed the pressure-based lift coefficient (C{m,p}

L )

and pitching moment coefficient (C{m,p}
M ) using ten POD modes. The comparison of time

histories of C{m,p}
L and C{m,p}

M along with the data of direct numerical simulation (DNS) are
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presented in Figure 11. Moreover, we measure the accuracy of our model by computing the
root-mean-square deviation (RMSD) between the predicted quantity and true DNS-based
quantity. We notice that the RMSD values, in 10 oscillation cycles, containing both training
and tested data (five cycles of each), are 13.76% and 8.26% in the lift and pitching moment
coefficients, respectively. Thus, it exhibits 86.24% and 91.74% accuracy of the model for lift
and pitching moment coefficients, respectively.

Figure 10. POD temporal coefficients: predicted (dashed line) and true (solid line). The vertical line
splits the training and testing data.

It is important to note that the pressure temporal coefficients are not only required for
the reconstruction of hydrodynamic forces but also they are very useful for the development
of efficient ROMs for shear flows. Noack et al. [30] reported that POD-based ROM (or
POD-ROM) of incompressible shear flows with the inclusion of pressure term improves
the accuracy of POD-ROMs. They emphasized that the lack of pressure term resulted in
an amplitude error that could not be compensated by simply increasing the number of
modes. Besides, Tallet et al. [75] further explained the importance of pressure terms in
the development of an efficient POD-ROM for shear flows. They utilized the projection
of momentum equations to compute both the velocity and pressure temporal coefficients.
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They examined the effectiveness of their methodology for POD-ROMs for a periodic
flow past a circular cylinder and reconstructed the hydrodynamic coefficients as well
as the Strouhal number, which provides a good agreement with those of the full-order
model. Usually, projection of the pressure-Poisson equation is carried out, which results
in a coupled velocity-pressure temporal coefficients system, and thus, it does not remain
straightforward to be solved. This approach also stays limited to low-Reynolds number
flows [21]. Moreover, [70] used the quadratic stochastic estimator to construct a relation
between the temporal coefficients of pressure to the temporal coefficients of the velocity
field through a mapping function. It helped us develop a ROM of the pressure field for
flows over a cylinder at Re = 100 instead of using the conventional approach [21]. Thus,
estimating the temporal coefficients (of either velocity or pressure, or both) using deep-
learning neural networks provides an effective solution to handle serious deficiencies of
conventional techniques for developing efficient, accurate, and robust ROMs. Furthermore,
the proposed LSTM model is not limited to pressure coefficients only, velocity coefficients
can also be appended in training. Although this addition increases the amount of the data
set and hence, the training time along with the tuning of training parameters.
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Figure 11. Reconstruction of pressure-based (a) lift coefficient Cp
L and (b) moment coefficient Cp

M
using ten modes: predicted and true.

6. Conclusions

In this study, a two-dimensional incompressible fluid flow around a NACA-0012
flapping foil is simulated and validated. The objective of this study is to develop a ROM for
a power generating flapping foil using a deep neural networks model that works similarly
to traditional ROMs. In the conventional ROMs of flow fields, the dynamical system
along with the initial set of data, or precise initial conditions, are integrated over time
for the prediction of future data, which may lead to erroneous results when prediction is
required for a long-time duration. Here, we employ an LSTM network along with pressure
POD to develop an efficient and a robust ROM for the pressure field over the surface of a
flapping foil. The LSTM model is trained by temporal coefficients of a power generation
system at St = 0.33 and Aα = 67◦, which correspond to almost 40% power generation
efficiency of a flapping foil. It is also tested with the data that are not used in the training
process. Furthermore, we gauge the robustness of the new LSTM-based model to predict
the future temporal coefficients for a long time duration that is far beyond the training time
interval. The results show a good efficiency and robustness of the proposed LSTM model,
which can accurately predict the temporal coefficients and corresponding hydrodynamic
forces and moment. It also demonstrates a good agreement with the true values obtained
from the full-order simulation. We find 86.24% and 91.74% accuracy of the model in the
reconstruction of lift and pitching moment coefficients, respectively. Therefore, the LSTM
model can be a viable tool for the prediction of a flow field for a long-time duration. It is
also more efficient and accurate compared to the conventional Galerkin projection-based
POD-ROM techniques.
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