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Abstract: A realistic and visible dynamic simulation platform can significantly facilitate research on
underwater robots. This paper uses the Unreal Engine to generate a scene that resembles real ocean
environments, before building a visual dynamic simulation platform in conjunction with the Air-Sim
system. On this basis, the trajectory tracking of a biomimetic robotic fish is simulated and assessed.
More specifically, we propose a particle swarm optimization algorithm-based control strategy to
optimize the discrete linear quadratic regulator controller for the trajectory tracking problem, as well
as tracking and controlling discrete trajectories with misaligned time series through introducing a
dynamic time warping algorithm. Simulation analyses of the biomimetic robotic fish following a
straight line, a circular curve without mutation, and a four-leaf clover curve with mutation are carried
out. The obtained results verify the feasibility and effectiveness of the proposed control strategy.

Keywords: robotic fish; track tracking; Unreal Engine; AirSim; discrete linear quadratic regulator;
particle swarm optimization

1. Introduction

As a result of the rapid growth of digital twin technology, game creation engines, such
as Unreal Engine and Unity 3D, became a prominent focus of research in the construction
of robot simulation systems [1–3]. These engines feature more realistic visual rendering
performance, highly replicable dynamic physical simulation effects, and the ability to create
highly depicted virtual scenes. The AirSim open-source simulation platform built using
the Unreal Engine can communicate with the simulation program’s robot model using
languages such as Python. This simulation benefits from a high level of input and visibility.
The robot’s control system may be shown in three dimensions, dynamic models can be
simulated, and tests can be verified with greater precision [4]. The utilization of Unreal
Engine, Airsim, Python, etc. to construct a visual simulation platform offers a novel concept
for the dynamic simulation platform of underwater robots.

In recent years, underwater robots were utilized in a variety of marine applications, in-
cluding marine resource exploitation, detection of submerged pipelines, underwater rescue,
and marine environment monitoring [5]. Some bionomists are developing new types of
underwater robots through borrowing the movement of marine organisms [6]. Simulation
technology for underwater robotics is a key enabling technology for the development and
testing of underwater robots. This technology can lower the cost of testing in the actual
aquatic environment, reduce the risk of testing, increase the efficiency of testing, and imitate
harsh settings to deliver large reserves of data required for design and testing. Due to its
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compact size, low energy consumption, and rapid mobility, the trevally-like robotic fish
with body/tail fin propulsion mode became the focus of research and development for
underwater robots [7]. This work utilizes Unreal Engine, Airsim, and Python to estab-
lish a dynamic simulation platform for underwater robots, before conducting simulation
experiments on trajectory tracking control and optimization of biomimetic robotic fish,
thus providing new simulation methods and control concepts for the study of biomimetic
swimming robots.

Many control approaches, such as central pattern generator, model predictive control,
neural network, synovial membrane control, and adaptive robust control, were developed
by domestic and international researchers for underwater robot trajectory tracking [8–10].
Liu et al. devised a finite-time trajectory tracking controller to assure finite-time con-
vergence of the motion tracking error through combining the second-order sliding mode
control and backstepping approach with a non-linear disturbance observer [11]. Zhang et al.
designed a neural network-based adaptive controller for UUV trajectory tracking control
in the presence of symmetric actuator saturation through employing neural network com-
pensation and adaptive estimating techniques [12]. A method of adaptive control with
prescribed performance was proposed to improve the effectiveness of motion control for
underwater vehicles, achieving the asymptotic stability of tracking errors [13]. Integrating
a central pattern generator (CPG) with sliding mode controller (SMC), Yan et al. suggested
a controller based on SMC-CPG, which can rapidly reduce position and heading angle
errors and achieve a stable state for the system [14]. Kong et al. combined the extended
state observer and the model predictive governor to track the underactuated 3D trajectory
of an underwater vehicle in a complicated and turbulent environment [15]. Heshmati et al.
proposed a method of robust non-linear model predictive control that enables underwater
robots to complete trajectory tracking under surge, lift, and yaw, as well as attain online
trajectory planning and obstacle avoidance functions [16].

In addition, the linear quadratic regulator (LQR) was effectively applied to a variety
of complicated systems, such as double inverted pendulums, fuel cell systems, vibration
control systems, electric cars, and; it is also widely employed in robot trajectory tracking
control [17–19]. The quadratic cost function of the LQR controller consists of two weighting
matrices, i.e., the Q and R matrices; the Q weighting matrix is related to the trajectory
deviation of the state variable, and the R weighting matrix is related to the control quantity
and actuator saturation. Nonetheless, the key to creating LQR-optimized controllers for
real-time applications is largely dependent on the efficient selection of Q and R weighting
matrices, which necessarily involve trade-offs and are often tuned based on trial and
error [20]. In addition, improving the efficiency of solving the Riccati algebraic differential
equations is considered to be a progressive manifestation of designing LQR controllers [21].
Evolutionary computation (EC) was proposed as an alternative method to solve such
optimization problems [22]. Deng et al. developed Bryson’s method for adjusting the
Q and R weighting matrices in an effort to solve the drawbacks of the trial-and-error
method [23]. Gupta et al. determined the optimal LQR weighting matrix using the non-
dominated sorting genetic algorithm [24]. Elumalai et al. introduced an adaptive particle
swarm optimization (APSO) technique to tackle the LQR weight optimization problem,
which enhanced the system’s convergence speed [25]. Zhou et al. designed an image-
guided motion controller, which consisted of a direction controller and a linear quadratic
regulator (GA-LQR) speed controller based on a genetic algorithm, to achieve miniature
robot swarm tracking targets through precise control of direction and speed [26]. However,
the major drawback of this strategy is that there are no specific criteria for evaluating
the solution’s appropriateness. Hence, the quality of the solution varies from designer to
designer for identical situations utilizing the same optimization algorithm.

This paper aims to use Unreal Engine to build a dynamic visualization simulation plat-
form for underwater robots that simulates the real ocean environment, which is extensively
applied to the simulation research of biomimetic robotic fish. The main contributions of the
paper are summarized as follows:
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• Firstly, a visual simulation platform for underwater robots that simulates the real
ocean environment is established. At present, the simulation environment developed
based on the Unreal Engine is mostly employed to simulate the sky and land. This
paper builds an Unreal Engine-based simulation scene of the real ocean environment
and offers a dynamic and visualized underwater robot simulation platform.

• Secondly, a discrete linear quadratic regulator (DLQR) controller is designed for
the biomimetic robotic fish. As the target trajectory in the simulation experiment is
composed of discrete points, the LQR is discretized. Using the LQR controller, the
simulation and comparison experiments that involve tracking the trajectory of the
biomimetic robotic fish are carried out in three states: straight line, no-angle mutation
curve, and angle mutation curve.

• Thirdly, the DLQR controller is further optimized using the PSO and DTW methods.
When selecting the weighted Q and R matrices of the DLQR controller, in order to
reduce the workload of testing and the influence of human factors and the local
optimum, a trajectory tracking control strategy based on particle swarm optimization
(PSO)-DLQR is proposed. For the time series misalignment problem of the discrete
system tracking trajectory, a dynamic time warping algorithm is introduced as the
performance index of PSO, which improves the convergence of the algorithm.

The remainder of this paper is organized as follows: Section 2 establishes the dynamic
model of the biomimetic robotic fish, Section 3 presents the DLQR controller design process,
Section 4 uses the PSO method to optimize the DLQR controller, Section 5 describes the
construction steps involved in the dynamic simulation platform for underwater robots
based on Unreal Engine, and Section 6 provides the concluding remarks and discusses
ongoing work.

2. Mathematical Model of a Biomimetic Robotic Fish

In this paper, a single-joint model of the biomimetic robotic fish propelled using the
caudal fin is developed, as depicted in Figure 1. It is composed of two parts, i.e., a rigid
front part and a swinging rear part. The rigid front part consists of a head and a portion
of the body connected to the head that does not contribute to propulsion; the swing part
consists of a caudal peduncle and a caudal fin. The rigid part of the biomimetic robotic
fish does not generate any propulsive force. Utilizing the reaction force of water, its tail fin
oscillates periodically to generate propulsive force and propels the robotic fish forward.

Figure 1. Design prototype and model of biomimetic robotic fish: (a) design prototype; (b) simplified
model of robotic fish.

As illustrated in Figure 1b, the center of mass of the rigid front part of the biomimetic
robotic fish is located at point b, and the center of mass of the swinging rear part is located
at point t. The mass center from the rigid front part to the swinging rear part is represented
by the vector rbt, and the swing angle of the tail fin is θ.
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2.1. Dynamic Modeling of Biomimetic Robotic Fish

Next, the force analysis is carried out from the rigid front part to the swing rear part.
The dynamic model of the biomimetic robotic fish was established using the Newton–Euler
formula. The hydrodynamic forces at its swinging rear are generated via additional mass
forces and viscous drag. The following equation describes viscous drag.(

Fd
Md

)
= −1

2
C

(
sign(Vb)‖Vb‖2

sign(Ωb)‖Ωb‖2

)
(1)

The force and moment for the swinging rear can be expressed as{
F = −mt

.
Vt

M = −Jt
.

Ωt −Ωt × JtΩt + rbt × F
(2)

The forces and moments on the rigid front can be expressed as the sum of the forces
from the swinging rear and the hydrodynamic force.{

F + Fd = mb
.

Vb + mbΩb ×Vb

M + Md = Jb
.

Ωb + Ωb × JbΩb
(3)

The velocity and angular velocity of the swinging rear can be converted into the
representation of the velocity and angular velocity of the rigid front.{

Vt = Vb +
(

Ωb +
.
θe3

)
× rbt

Ωt = Ωb +
.
θe3

(4)

Through combining Equations (1)–(4), the kinematic parameters of the rigid front part
of the biomimetic robotic fish can be expressed as{ .

Vb = F+Fd−mbΩb×Vb
mb.

Ωb = M+Md−Ωb×JbΩb
Jb

(5)

where F is the force on the swing rear part, M is the moment on the swing rear part, Fd is
the viscous drag produced using the swing rear part swinging through the water, Md is the
viscous drag moment, C is the viscous coefficient, mb is the mass of the rigid front part, mt
is the mass of the swing rear part, Vb is the velocity of the rigid front part, Ωb is the angular
velocity of the rigid front part, Vt is the velocity of the swing rear part, Ωt is the angular
velocity of the swing rear part, and e3 =

[
0, 0, 1]T .

2.2. Path Tracking Error Model

The path followed by the biomimetic robotic fish in this paper is in a horizontal plane
with a fixed depth; thus, the motion error model of the biomimetic robotic fish in the
world coordinate system only considers the two-dimensional case. Consequently, only the
yaw angle ϕ needs to be considered when calculating the attitude angle. The position and
posture error pe, which is located between the actual position and posture pc =

(
xc, yc, ϕc)T

and the desired position and posture pr =
(
xr, yr, ϕr)T , can then be expressed as

pe =

xe
ye
ze

 =

cos ϕr − sin ϕr 0
sin ϕr cos ϕr 0

0 0 1

xr − xc
yr − yc
zr − zc

 (6)

3. Design of DLQR Controller

The LQR controller is employed to solve a biomimetic fish’s trajectory tracking prob-
lem, which, in turn, solves a continuous system of state quantities to track a reference
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trajectory. However, in general, the target trajectory is a discrete trajectory composed of
discrete points; thus, the LQR controller is discretized to obtain a DLQR controller. The
state space equations of the discrete control system can be expressed as

x(k + 1) = Ax(k) + Bu(k) (7)

The purpose of the DLQR controller is to make the biomimetic fish trajectory tracking
state error as small as possible while maintaining the input of the control quantity as small
as possible to ensure the control stability. Thus, the objective function is defined as follows:

J =
1
2∑∞

k=k0
xT(k)Qx(k) + uT(k)Ru(k) (8)

where Q is a semi-positive definite matrix that constrains the state cost of the system, R is a
positive definite matrix that constrains the input cost of the system, and the control law
which yields the best response is shown as follows:

u = −Kx(t) (9)

In order to stabilize the control system, a constant matrix P is designed, and the
optimal state feedback matrix K can be obtained as follows:

K =
(

R + BT PB
)−1

BT PA (10)

where P is the solution of the Riccati algebraic differential equation.

P = −AT PB
(

R + BT PB
)−1

BT PA + AT PA + Q (11)

4. PSO-Based Optimization of DLQR Controller

When using the DLQR controller to control the robot’s trajectory tracking, the tracking
performance’s evaluation index is determined based on the weighting matrices Q and R.
Therefore, selecting a suitable weighting matrix parameter is the key to controlling the
trajectory tracking. In the previous parameter selection process, the parameters of Q and R
matrices are usually obtained via experimental or trial-and-error methods and summarized
according to personal experience, which is often not the optimal solution. To achieve
more accurate control of robot trajectory tracking, this paper introduces the Particle Swarm
Optimization (PSO) algorithm to optimize the parameter selection of Q and R matrices,
which improves the trajectory tracking control performance of traditional DLQR controllers
to a certain extent.

In the design process, the desired trajectory and the actual trajectory calculated using
the DLQR controller are trajectories composed of discrete points. The errors of the corre-
sponding points are significant and inevitable because their time series are not aligned;
thus, the objective optimization function of DLQR cannot be directly used as the fitness
function of the PSO optimization algorithm. Since trajectory tracking mainly evaluates
the overlapping similarity of two trajectories, a common approach is to use the Euclidean
distance to calculate the error distance of two trajectories. However, a growing number of
studies show that Euclidean distance has serious drawbacks in measuring the similarity of
time series. These drawbacks mainly lie in the fact that if two sequences are only unaligned
at data points, while the trajectories are very close, the calculated Euclidean distance error
will still be very large, which will not accurately measure the similarity of the two sequences.
The Dynamic Time Warping (DTW) algorithm can effectively solve the above problem via
a very clever dynamic planning method to achieve the dynamic regularization of the time
axis, meaning that all data points have the best alignment [27]. The algorithm focuses on
the shape of the time series and eliminates the errors caused by the unaligned data points,
thus obtaining more accurate distance values.
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The DTW algorithm is defined as follows. Given a target sequence X = (x1, x2, · · · xi)
and a test sequence Y =

(
y1, y2, · · · yj

)
, the function Dist(i, j) = f

(
xi, yj

)
is the Euclidean

distance from the point to the point of the corresponding sequence, and the distance matrix
D is constructed for the sequences X and Y. Based on the constructed distance matrix D,
a path is found from the upper left corner to the lower right corner such that the sum
of the element values through which the route passes is minimized. Next, according to
monotonicity and constraint, the previous point of (i, j) can only be one of the three points
on (i− 1, j), i− 1, j− 1), and (i, j− 1) is one of the three points. Thus, the formula to
calculate the distance becomes

DTW(i, j) = Dist(i, j) + min[DTW(i− 1, j), DTW(i, j− 1), DTW(i− 1, j− 1)] (12)

where DTW(i, j) denotes the cumulative distance between the two trajectories, and Dist(i, j)
indicates the Euclidean distance between the i-th and j-th points of the two sequences.

The algorithm calculates the sum of the distances of errors between two trajectories to
measure the similarity between two time series trajectories and use it as the fitness function
of the PSO algorithm. Compared with using the controller’s objective function to calculate
the fitness value of the optimization algorithm, the computational efficiency of PSO is
improved to a certain extent, thus effectively improving the convergence.

The position and velocity of the biomimetic fish are set as the state quantities
x =

(
xe, ye,

.
xe,

.
xe
)T , and the acceleration u =

( ..
xe,

..
ye
)

is set as the control quantity and
brought into the state space Equation (7) of the bulk control system, where

A =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

, B =


0 0
0 0

∆T 0
0 ∆T


The initial Q and R matrices are set as unit matrices, and the desired acceleration u

is calculated.
The weighting matrices Q and R are optimized using the particle swarm optimization

algorithm, and the optimization flow chart is shown in Figure 2.
The specific optimization steps of the particle swarm optimization algorithm are

as follows:

• Step 1: Particle population initialization: we initialize the number of populations
as N = 10, the feasible solution dimension as D = 6, and the maximum number of
iterations as 100. Moreover, the Q matrix parameters are restricted to Qlimit = [1, 10],
the R matrix parameters are limited to Rlimit = [0.1, 1], the inertia weight is w = 0.7298,
the cognitive learning factor is c1 = 1.497, and the social learning factor is c2 = 1.497.

• Step 2: The particle population individual P = [Q1, Q2, Q3, Q4, R1, R2], which is, in
turn, assigned to Q and R matrices, is brought into the Riccati algebraic differential
equation to calculate the optimal state feedback matrix K. The trajectory tracking
program of the biomimetic machine fish is run to correctly calculate and record the co-
ordinate data points of the actual motion trajectory. The reference and actual trajectory
are brought into Equation (11) to calculate and evaluate the fitness function values
iteratively, and the optimal historical position pbest and the optimal global position
gbest of the particle population are obtained.

• Step 3: If the terminal condition is satisfied, we output the global optimal Q and R
matrix parameters and end the program. Otherwise, we continue the execution.

• Step 4: We update the velocity and position of the particle and turn to Step 2 to
continue the execution. According to the optimal historical position and the op-
timal global position of the particle, the velocity and position are updated using
Equations (13) and (14).
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Figure 2. Flow chart explaining how to use PSO algorithm for optimization of weighting matrix.

vt+1
i = wvt

i + c1r1
(

pbestt
i − xt

i
)
+ c2r2

(
gbestt

i − xt
i
)

(13)

xt+1
i = xt

i + vt+1
i (14)

where vt+1
i and xt+1

i denote the velocity and position of the i particle at time slot t + 1, and
r1 and r2 are random numbers in the interval [0, 1].

The fitness function E is expressed as follows:

E = DTW (15)

The optimized weighting matrix is

Qop =


10 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1

 and Rop =

[
0.8 0
0 1

]
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5. Establishment of UE-Based Simulation Platform

The simulation environments developed via traditional robot simulation platforms,
such as Gazebo, Webots, and CoppeliaSim (formerly known as V-REP), have multiple prob-
lems, such as simpler design and lack of ability, which make it difficult to build large and
complex scenarios under guaranteed simulation realism [28–30]. To solve the simulation
platform environment modeling ability shortage and improve the simulation effect’s visu-
alization, this paper builds a simulation environment based on Unreal Engine and AirSim
to simulate dynamic ocean for underwater robotics. Due to its realistic visual rendering
performance, effects that assist dynamic physical simulation, and robust data interfaces,
Unreal Engine facilitates the environment simulation necessary for scientific study. AirSim
is an open-source simulation environment designed specifically for unmanned robots. It
became a simulation platform for marine settings via transforming simulation models and
simulation environments.

The specific steps required to establish a UE-based ocean simulation environment are
as follows:

• Step 1: Build an ambient light source. Add “Directional Light”, “Sky Light”, and
“Visual Effects” from “Light Sources” to the “Sky Atmosphere”, “Volume Clouds”,
and “Exponential Height Fog” in the viewport area. In order to simulate effects such
as ambient light effect and refraction and reflection of the water surface, materials and
writing scripts should be complemented.

• Step 2: Build the undersea landscape. In the “Landscape Mode”, draw the undersea
landscape, add surface materials and undersea obstacles, and add some underwater
elements to enrich the scene, such as seaweed, rocks, shipwrecks, etc.

• Step 3: Add the ocean water body. Add the “Water” plug-in in “Selection Mode”, and
adjust the land and seafloor shape, curve, etc.

• Step 4: Simulate ocean waves. According to the Gerstner Wave formula, the offset
value and normal value are calculated to simulate the effect of sharp crests of water
waves. The Gerstner Wave calculation formula can be expressed as

P(x, y, t) =

x + ∑(Qi Ai × Di · x× cos(ωiDi · (x, y) + ϕit))
y + ∑(Qi Ai × Di · y× cos(ωiDi · (x, y) + ϕit))

∑(Ai sin(ωiDi · (x, y) + ϕit))

 (16)

where Qi is the is the parameter that controls the steepness of the wave; Ai is the amplitude,
which represents the range of water wave fluctuations; Di is the wave vector, which
represents the direction of the water wave moving in the plane; ωi represents the angular
frequency, and the wavelength can be calculated from λi = 2π/ωi; and ϕi is the phase
difference, which represents the offset of the water wave in the direction of a component.

• Step 5: Add the biomimetic robotic fish model and associate the model with AirSim.
The control script is written in Python to run and call the control interface of the
AirSim platform for real-time dynamic control simulation implementation in the ocean
scene edited using Unreal Engine.

The establishment process and the effect of the established UE-based dynamic visual-
ization simulation platform are shown in Figure 3. Among them, (a) shows the process of
establishing the simulation environment and the corresponding realized scenes, (b) indi-
cates the realized sea surface and wave scenes, and (c) indicates the realized subsea scenes.
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Figure 3. Ocean simulation environment realization process and effect.

6. Results and Discussion

Based on the built simulation environment, the trajectory tracking control simulation
of the biomimetic robotic fish is performed before and after optimizing the weighting matrix
parameters of the DLQR controller to track a straight line, a circular curve without angular
mutation, and a four-leaf clover curve with angular mutation trajectory, respectively. In
the simulation diagram, the solid green line is the reference trajectory, and the solid red
line is the tracking trajectory. In the trajectory diagram, the black line is the reference
trajectory, the red line is the DLQR-controlled tracking trajectory, and the green line is the
PSO-optimized controlled tracking trajectory.

6.1. Tracking a Straight Line

In the process of tracking the straight line trajectory of the biomimetic robotic fish,
the sum of the distance error between the reference trajectory and the tracking trajectory
before the optimization of the weighting matrix obtained using the dynamic time warping
algorithm is DTWno = 33.403 m, while after the optimization, it is DTWop = 10.321 m.
Moreover, the average distance error of the corresponding points of the trajectory before
the optimization is Distno = 0.042 m, while after the optimization, it is Distop = 0.013 m.
According to Figures 4 and 5, the robotic fish can follow the target trajectory faster after the
parameter optimization, while the overall error of the tracking trajectory and the lag of the
tracking trajectory are smaller. The DLQR controller has good control effect on the robot’s
straight line tracking trajectory.
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Figure 4. Tracking results of a straight line trajectory: (a) results with a straight line without optimiza-
tion; (b) optimal results with a straight line.

Figure 5. Comparison of tracking results for a straight trajectory.

6.2. Tracking a Circular Curved Trajectory

According to the dynamic time warping algorithm, the sum of the distance error be-
tween the target trajectory and the tracking trajectory before the optimization of the weight-
ing matrix is DTWno = 124.183 m, while after the optimization, it is DTWop = 23.586 m.
The average distance error between the corresponding points of the trajectory before the
optimization is Distno = 0.155 m, while after the optimization, it is Distop = 0.029 m. From
Figures 6 and 7, it can be observed that the DLQR control before and after the optimization
of the weighting matrix can better control the machine fish’s tracking circular curve trajec-
tory, while the offset of the tracking trajectory in the y direction is smaller because there is
no abrupt change in the angle of the circular curve. However, the tracking trajectory of the
DLQR controller before the parameter optimization has a large lag; thus, it leads to a larger
tracking error.
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Figure 6. Tracking results of a circular trajectory: (a) results with a circular trajectory without
optimization; (b) optimal results with a circular trajectory.

Figure 7. Comparison of tracking results for a circular trajectory.

6.3. Tracking a Four-Leaf Clover Trajectory

The sum of the distance errors between the reference trajectory and the tracking trajec-
tory before the optimization of the weighting matrix obtained using the dynamic time warp-
ing algorithm is DTWno = 479.332 m, while after the optimization, it is DTWop = 180.515 m.
The average distance error between the corresponding points of the trajectory before the
optimization is Distno = 0.299 m, while after the optimization, it is Distop = 0.112 m.
Observing Figures 8 and 9, it becomes evident that the biomimetic machine fish in the
tracking curve trajectory of the sudden change is at an angle. Due to the lag affecting the
controller, the tracking trajectory produced a significant deviation;m thus, the average
error distance for the tracking trajectory is larger. The DLQR controller with optimized
parameters of PSO can adjust the control object to follow the reference trajectory faster. The
DLQR controller with initial parameters, on the other hand, is less effective in the process
of tracking curved trajectories with abrupt angular changes.
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Figure 8. Tracking results of biomimetic robotic fish with a four-leaf clover trajectory: (a) results with
a four-leaf clover trajectory without optimization; (b) optimal results with a four-leaf clover trajectory.

Figure 9. Comparison of tracking results for a four-leaf clover trajectory.

6.4. Discussion

Synthesizing the above trajectory tracking testing results, we found that the Unreal
Engine-based ocean simulation environment can make the experimental process more
realistic and intuitive, and can effectively observe the dynamic changes of the environment
and the real response of the experimental object during the experiment, which can effec-
tively improve the dynamic simulation experiment effect. The test results indicate that the
DLQR controller with initial Q and R weighting matrix parameters can track the target
trajectory more quickly when using the biomimetic robotic fish to track straight and curved
trajectory without abrupt angle changes; however, the tracking lag is larger. When tracking
the curved trajectory with abrupt angle changes, it is difficult to adjust the control attitude
quickly to track the target trajectory under the continuous large angle changes due to the
large tracking lag, while the tracking effect is poor. The DLQR controller with optimized
Q and R weighting matrix parameters based on the PSO algorithm can track the target
trajectory quickly and with more limited tracking errors when using the biomimetic robotic
fish to track straight trajectory and curve trajectory without abrupt angle changes. When
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tracking the curve trajectory with abrupt angle changes, the trajectory deviates due to the
hysteresis of the tracking; however, it can still adjust the control attitude quickly and track
the target trajectory.

To further analyze the control effectiveness of the DLQR method, we compared it to
the model predictive control method. At each sampling moment, the model predictive
controller’s current control action is determined through solving a finite time domain
open-loop optimal control problem. The current state of the process is viewed as the
starting point for the optimal control problem, and the optimal control sequence found only
implements the first control action. In Equation (17), we allow the robotic fish’s position
and velocity to be state variables, and allow the acceleration to be control input variables.

x =


px
py
vx
vy

, u =

[
ax
ay

]
(17)

Therefore, the state equation of the system can be expressed as

.
x(t) = Ãx(t) + B̃u(t) (18)

When
.
x = x(k+1)+x(k)

∆T , the following formula can be obtained via discretizing the
above system.

x(k + 1) = (I + ∆TÃ)x(k) + ∆TB̃u(k) (19)

If we assume that A = (I + ∆TÃ), B = ∆TB̃, it is also true that

x(k + 1) = Ax(k) + Bu(k) (20)

where A =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

 and B =


0 0
0 0

∆T 0
0 ∆T

.

The biomimetic robotic fish is then controlled using the model predictive control
approach, which is also optimized using PSO algorithm, to track the reference trajectories,
which are a straight line, a circle, and a four-leaf clover-shaped curve. The DTW distance
and average DTW of trajectory tracked through the optimized DLQR method and the
optimized MPC method are shown in Tables 1–3. The trajectories of the bionic robotic
fish determined using the two methods are shown in Figures 10–12. According to the
obtained results, the optimized DLQR approach outperforms the optimized MPC method
in line tracking. However, there will be some latency when the reference trajectory abruptly
changes. While the improved MPC technique performs better on curve tracking, it cannot
properly reconstruct the shape of curves when an abrupt change occurs.

Table 1. Results of tracking a straight line using both methods.

Tracking Methods PSO_DLQR PSO_MPC

DTW distance (m) 6.027 15.054
Average DTW (m) 0.007 0.019

Table 2. Results of tracking a circle using both methods.

Tracking Methods PSO_DLQR PSO_MPC

DTW distance (m) 18.147 15.684
Average DTW (m) 0.011 0.001
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Table 3. Results of tracking a four-leaf clover-shaped curve using both methods.

Tracking Methods PSO_DLQR PSO_MPC

DTW distance (m) 65.009 49.129
Average DTW (m) 0.041 0.031

Figure 10. Results of a line trajectory using both methods.

Figure 11. Results of a circle trajectory using both methods.
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Figure 12. Results of a four-leaf clover trajectory using both methods.

7. Conclusions

This paper develops an Unreal Engine-based framework for dynamic simulation
of real ocean environments. It integrates the AirSim simulation system to visualize the
trajectory tracking control of the biomimetic robotic fish and observe the motion state of
the biomimetic robotic fish in real time as it swims in the ocean environment, resulting in
a more realistic simulation effect and a higher degree of visualization. On this dynamic
simulation platform, we propose a control strategy based on the PSO algorithm to optimize
the DLQR controller for the trajectory tracking problem of the biomimetic robotic fish,
as well as to track and control discrete trajectories with misaligned time series through
introducing the dynamic time warping algorithm. After employing PSO to optimize the
Q and R weighting matrices, the simulation results indicate that the DLQR controller’s
accuracy can be effectively enhanced.

Although this paper gives some fascinating simulated examples of trajectory tracking
of biomimetic robotic fish under perfect settings, it does not take into account aquatic
environmental influences, and the control model design is also relatively simplistic. To
further investigate the dynamic control mechanism of the biomimetic robotic fish operated
in ocean scenarios, we will increase the complexity of the control model and further explore
the impact of environmental changes and obstacles in future work.
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