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Abstract: The hitting position and velocity control for table tennis robots have been investigated
widely in the literature. However, most of the studies conducted do not consider the opponent’s
hitting behaviors, which may reduce hitting accuracy. This paper proposes a new table tennis robot
framework that returns the ball based on the opponent’s hitting behaviors. Specifically, we classify the
opponent’s hitting behaviors into four categories: forehand attacking, forehand rubbing, backhand
attacking, and backhand rubbing. A tailor-made mechanical structure that consists of a robot arm and
a two-dimensional slide rail is developed such that the robot can reach large workspaces. Additionally,
a visual module is incorporated to enable the robot to capture opponent motion sequences. Based on
the opponent’s hitting behaviors and the predicted ball trajectory, smooth and stable control of the
robot’s hitting motion can be obtained by applying quintic polynomial trajectory planning. Moreover,
a motion control strategy is devised for the robot to return the ball to the desired location. Extensive
experimental results are presented to demonstrate the effectiveness of the proposed strategy.

Keywords: table tennis robot; visual module; hitting behavior prediction; ball location control

1. Introduction

Recent advances in science and technology have generated higher requirements for
robot mobility, adaptability and survival ability [1–3]. To satisfy these requirements, robots
are required to sense changing conditions occurring in the environment so that appropriate
control decisions can be made [4–9]. Recently, a variety of bionic robots have been devel-
oped to complete various tasks, such as high-speed flexible movement [10], jumping [11],
swimming [12], walking [13], etc. However, how to effectively react to changing environ-
ments remains a challenging task. For example, in table tennis robot systems, how can we
accurately predict the trajectory of a spinning ball? One common approach is to measure
the rotations of the ball via a high-speed camera by setting a mark on it [14,15]. However,
these methods are conservative since they put a high requirement on the performances
of the camera and the measuring algorithms. It is common sense that the players predict
the rotation types of the ball according to the opponent’s hitting behaviors. Inspired by
this, this paper develops techniques to map the opponent’s hitting behaviors to the rotation
types of the ball.

Robot-arm-based table tennis robots have been studied for more than 40 years [16,17].
The authors of [18] developed a table tennis robot system that consists of a 7-degrees-
of-freedom (DoF) industrial robot arm DARM-2 and two linear cameras. This robot has
successfully completed two to three rounds against the wall. By using a 6-DoF PUMA260
industrial robot arm and four high-speed cameras, the table tennis robot [19] has achieved
man-machine matchmaking for the first time. With the rapid development of hardware and
software technology, the successful rate of returning the ball for the table tennis robot [20]
has attained 58%. In [21], the table tennis robot can play with humans for up to 50 rounds.
Additionally, the authors of [22] developed a self-designed lightweight robot arm, which
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can achieve quick and flexible strokes. In [23], a humanoid table tennis robot was developed.
The robot was designed according to the human skeleton and was able to achieve improved
human-machine interaction.

Notwithstanding these advances, most of the mentioned robots have the following
issues: (1) Fixed robotic arms and humanoid table tennis robots can only hit the ball within
a limited workspace; (2) There is no control over the attitude of the racket; (3) Current
studies ignore the perception and prediction of the opponent’s hitting behavior.

To deal with these issues, we develop a bionic table tennis robot in this paper that can
reach large workspaces and return the ball to the desired location based on the opponent’s
hitting behaviors. The developed robot shows high adaptability and stability. Specifically,
we first develop the vision system of the table tennis robot for tracking the trajectory of the
ball and capturing the opponent’s action. Based on the opponent’s behavior, procedures
are developed to predict the rotation type of the ball as well as the trajectory of the ball.
To return the ball precisely, a dynamic model of the robot arm is established. Then, based
on the quintic polynomial trajectory planning algorithm, we realize dynamic trajectory
planning even when the desired endpoint of the robot arm is changing constantly. Finally,
we show how to return the ball to the desired location. Note that, in our previous work [24],
we discussed how to predict the trajectory of the ball and return the ball to the desired
location. This work extends our previous work by considering the opponent’s stroke
behaviors when returning the ball. Compared with [24], the approach developed in this
paper has a higher success rate of returning the ball to the target area. In addition, benefiting
from the stroke behavior prediction, the developed robot system can respond to changes in
the environment more quickly compared with [24].

The rest of this paper is organized as follows: Section 2 introduces the overall structure
of our table tennis robot. Section 3 introduces the visual system. Section 4 develops the robot
arm control algorithm. Section 5 elaborates on the location control of the ball. Section 6
describes the experiments undertaken and provides analysis of the results. Section 7
summarizes the paper and presents proposals for our future work.

2. The Table Tennis Robot System

The developed table tennis robot system consists of a vision module, an execution
module, and a control module.

As shown in Figure 1, the vision module is composed of two visual systems, denoted
by visual systems 1 and 2, respectively. Each visual system contains two Baumer HXC20
high-speed monochromatic industrial cameras. Cameras are installed above the table
tennis table to track the trajectory of the ping-pong ball for visual system 1. Cameras are
installed above the robot arm to track the stroke motion of the player for visual system 2.
Two slide rails with a length of 185 cm are installed outside the two long sides of the table,
and another slide rail, with a length of 220 cm, is placed on the two slides on both sides,
enabling horizontal movement of the robot with 2-DoF. The control module is used for
visual processing, data communication, and manipulator motion control.

The world coordinate system of the overall system is defined as follows: the origin of
the system is located at the center of the table, the positive x-axis points to the robot along
the centerline on the table, the positive y-axis points to the right side of the robotic arm
along the width of the table, and the positive z-axis is vertical and upward.
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Figure 1. The developed table tennis robot system.

3. The Vision Module
3.1. Trajectory Prediction of Balls

Let us first discuss how to track the trajectory of the ball online. Specifically, we
develop a moving object detection algorithm, which combines techniques of background
subtraction and color segmentation. We first obtain the color threshold of the ball by
comparing different images under different light conditions. It is shown that the color
threshold of the ball is [176, 255]. Then, for each image, we recognize the ball by executing
background subtraction, image binarization, morphology open operation, and corrosion
expansion operation sequentially. Additionally, to improve the recognition accuracy and
reduce the recognition time, we adopt the region of interest (ROI) algorithm to narrow the
scan area of each image.

The internal and external parameters of the camera are obtained by Zhang’s calibration
method [25]. We conduct the coordinate transformation using the perspective-n-point (PnP)
algorithm [26]. Then, we can obtain the three-dimensional coordinates of the ball.

To control the robot to play table tennis with humans, it is crucial to predetermine
the possible hitting point so that the robot can return the ball to the desired location in
real-time. To achieve this, we need to predict the trajectory of the ball, which was solved
in our previous work [24]. Roughly speaking, the process consists of three steps. First,
a dynamic model of the ball is derived; second, to obtain the initial velocity of the ball, we
develop an initial velocity correction method based on the feedback of the location of the
ball; third, based on the dynamic model of the ball and the computed initial velocity, we
calculate the hitting position of the ball. We refer the reader to [24] for more details.

3.2. Stroke Type Classification and Rotation Type Prediction

In this paper, we adopt the Fast Pose 17 human posture model [27]. The 17 key points
of the human body for this model are given in Table 1. As shown in Figure 2, the binocular
camera first identifies the location of the key points, and then obtains the 3D position of
each key point via the 3D reconstruction. The identification error of the coordinate position
of the key points is within 2 cm, which satisfies the experimental requirements.
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Table 1. Key points of the Fast Pose 17 model.

Number Key Point Number Key Point

0 Nose 9 Left wrist
1 Left eye 10 Right wrist
2 Right eye 11 Left waist
3 Left ear 12 Right waist
4 Right ear 13 Left knee
5 Left shoulder 14 Right knee
6 Right shoulder 15 Left ankle
7 Left elbow 16 Right ankle
8 Right elbow

-500

0

-2500

500

1000

Z(
m

m
)

800-2000 600

X(mm)
400
Y(mm)

-1500 200-10000

Figure 2. Three-dimensional coordinates of the key points.

As shown in Table 2, each type of ball rotation corresponds to a different type of stroke,
which includes forehand attacking, forehand rubbing, backhand attacking, and backhand
rubbing. To better return a ball, we need to identify the stroke type of the opponent. To this
end, for each stroke type, we collect 500 motion sequences of coordinate of the opponent’s
racket hand, as shown in Figure 3. Based on the collected data, the SVM (support vector
machine) can be trained and then used to predict the stroke type of the opponent.

Table 2. Strokes and the corresponding types of the rotation.

Type Stroke Rotation

1 Forehand attacking Topspin, left sidespin
2 Backhand attacking Topspin, right sidespin
3 Forehand rubbing Backspin, left sidespin
4 Backhand rubbing Backspin, right sidespin

Forehand Attack Forehand Rub

Backhand RubBackhand Attack

-1250

-1200

-1150

-1100
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-1050

-1000
0

-600 -500 -950-400 -300

Y (mm)
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100

-900-100 0 100 -850200 300
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m
)
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Forehand Attack
Backhand Attack
Forehand Rub
Backhand Rub

Figure 3. Four types of strokes.
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Since the stroke types of the opponent and the motion sequence of the wrist are highly
correlated, we select the position of the wrist as the feature point of the SVM algorithm.
Specifically, we use the Fast Pose 17 human posture model to locate the position of a
human’s wrist. Then, the current velocity of the wrist is predicted by the Kalman filter
algorithm [28]. Each feature vector of the SVM consists of velocities of the wrist in the past
20 samplings. For each stroke type, different control strategies to the end attitude of the
robot arm are performed. The details of the control are discussed in the following sections.

By predicting the opponent’s hitting behavior and trajectory, we can simulate the flight
path and the rotation direction of the ball. The overall working diagram for the visual
module is depicted in Figure 4.

Vision System

Control System

Binocular Vision 1

Identify and Track 
Table Tennis Balls

Determine the Hit 
Point

Estimating the 
Initial Speed

Binocular Vision  
2

Describe Human 
Posture

Convert 3D Pose

Trajectory 
Prediction 

Identify Racket 
Movements

Judge Action 
Type

Figure 4. Flowchart of the visual system.

4. Humanoid Robotic Arm Control

To return the ball, we design a humanoid 4-DoF robotic arm. Figure 5 shows how
the humanoid robotic arm simulates the forehand and backhand attacking or rubbing of
a player. Specifically, Figure 5a–d show that the player has completed a forehand stroke;
in Figure 5e–h, the robot imitates the forehand stroke behaviors shown in Figure 5a–d,
respectively. Similarly, Figure 5i–l illustrate that the player has completed a backhand
stroke, and in Figure 5m–p, the robot imitates the backhand stroke behaviors shown in
Figure 5i–l, respectively.

(a) (b) (c) (d)

Figure 5. Cont.
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(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5. Forehand and backhand stroke simulations. (a) Forehand stroke: stage 1; (b) Forehand
stroke: stage 2; (c) Forehand stroke: stage 3; (d) Forehand stroke: stage 4; (e) Forehand stroke
imitation: stage 1; (f) Forehand stroke imitation: stage 2; (g) Forehand stroke imitation: stage 3;
(h) Forehand stroke imitation: stage 4; (i) Backhand stroke: stage 1; (j) Backhand stroke: stage 2;
(k) Backhand stroke: stage 3; (l) Backhand stroke: stage 4; (m) Backhand stroke imitation: stage 1;
(n) Backhand stroke imitation: stage 2; (o) Backhand stroke imitation: stage 3; (p) Backhand stroke
imitation: stage 4.

As shown in Figure 6, the execution module of the robot is comprised of the 4-DoF
robotic arm and the two-dimensional slide rail. The robot is anthropomorphic in the sense
that: (i) a 2-DOF rail (Rails 1 and 2) is used to imitate the movement of the human; (ii) joints
3 and 4 are used to imitate the rotations of the human waist and elbow, respectively;
(iii) joints 5 and 6 function as a universal joint to imitate the human wrist. Benefiting from
the anthropomorphic design of the robot arm, it can improve the accuracy of returning
the ball.

Joint 6

Joint 5

Joint 4

Joint 3

Rail 1

Rail 2

Figure 6. The structure of the robot arm.
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To track the designed acceleration and velocity of the robot in real time, we need to
analyze the robot’s dynamic model. To this end, we first analyze the kinematics of the
robot arm. As shown in Figure 6, we establish the coordinate system of the robot. The
D-H parameter method is used to obtain the position and attitude of the racket. The D-H
parameters of the table tennis robot system can be found in our previous work [24].

4.1. Joint Position Calculation

Here, i denotes the ith joint, di denotes the offset at the joint i axis, θi is the angle of
joint i, and L1, . . . , L4 are illustrated in Figure 6. The homogeneous transformation matrix
between two adjacent coordinate systems can be derived as i−1

i T. The transformation
matrix from the base to the terminal of the robot arm can be calculated as follows:

0
6T = 0

1T1
2T2

3T3
4T4

5T5
6T =

[0
6R 0

6P
0 1

]
(1)

0
6R =

[0
6R1

0
6R2

0
6R3

]
(2)

0
6R1 =

c(θ4)c(θ5)s(θ6)s(θ3)− c(θ3)s(θ6)− c(θ6)s(θ3)s(θ4)s(θ5)
c(θ3)c(θ6)s(θ4)s(θ5)− c(θ3)c(θ4)c(θ5)c(θ6)− s(θ3)s(θ6)

s(θ4 + θ5)c(θ6)

 (3)

0
6R2 =

s(θ3)s(θ4)s(θ5)s(θ6)− c(θ4)c(θ5)s(θ3)s(θ6)− c(θ3)c(θ6)
c(θ3)c(θ4)c(θ5)s(θ6)− c(θ6)s(θ3)− c(θ3)s(θ4)s(θ5)s(θ6)

−s(θ4 + θ5)s(θ6)

 (4)

0
6R3 =

 s(θ4 + θ5)s(θ3)
−s(θ4 + θ5)c(θ3)
−c(θ4 + θ5)

 (5)

0
6P =

 d2 − L2c(θ3) + L3c(θ4)s(θ3) + L4c(θ4)s(θ3)s(θ5) + L4c(θ5)s(θ3)s(θ4)
−d1 − L2s(θ3)− L3c(θ3)c(θ4)− L4c(θ3)c(θ4)s(θ5)− L4c(θ3)c(θ5)s(θ4)

L1 − L4 − c(θ4 + θ5) + L3s(θ4)

 (6)

where 0
6R and 0

6P represent the rotation matrix and the translation matrix between the
base coordinate system and the terminal coordinate system, respectively; c(θ) represents
cos(θ); s(θ) represents sin(θ). To precisely control the posture and position of the racket,
an algebraic approach is applied to obtain the inverse kinematic model. The elements are
transformed from Euler angles or quaternions as:

0
6Tm =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (7)

Based on the D-H parameters, we obtain all the required variables by substituting into
the transformation matrix i−1

i T.
By Algorithm 1, there are 16 possible solutions of the robot inverse kinematics, of which

2–8 solutions are correct, and the remaining solutions are wrong. In practical applications, it
is necessary to estimate the correctness of the solutions in real-time and then choose the most
appropriate solution according to the optimal control principle of the shortest displacement.

4.2. Joint Velocity Calculation and Trajectory Planning

To return the ball successfully, we need to control the robot to reach the final hitting
point quickly and accurately while preserving the continuous acceleration and jerk of the
motors and avoiding vibrations and shocks on the joints. To this end, we execute the
trajectory planning for all joints of the robot arm to ensure its accuracy and stability and to
keep it as continuous as possible.
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Algorithm 1: Solving parameters of 0
6Tm

Solving θ4 + θ5 = ±a cos(az)
Solving θ6 = ±a cos(nz/ sin(θ4 + θ5))
Solving θ3 = ±a cos(ny cos(θ6)− oy sin(θ6)/az)
Solving θ4 = ±a sin((pz − L4az − L1)/L3) or

θ4 =

π − a sin((pz − L4az − L1)/L3) if 0 ≤ a sin((pz − L4az − L1)/L3) ≤ π/2

−π − a sin((pz − L4az − L1)/L3) if − π/2 ≤ a sin((pz − L4az − L1)/L3) ≤ 0
(8)

Solving θ5 = (θ4 + θ5)− θ4
Solving

d1 = −py − L2s(θ3)− L3c(θ3)c(θ4)− L4c(θ3)c(θ4)s(θ5)− L4c(θ3)c(θ5)s(θ4)
Solving d2 = px + L2c(θ3)− L3c(θ4)s(θ3)− L4c(θ4)s(θ3)s(θ5)− L4c(θ5)s(θ3)s(θ4)

First, we need to obtain the angular velocity and the angle of each joint when the
racket reaches the final hitting point and meets the expected hitting velocity. The angle of
rotation of each joint can be obtained by inverse kinematics, and the angular velocity of
each joint can be obtained by[

vd1 vd2 vθ3 vθ4 vθ5 vθ6
]T

= J−1[vx vy vz ωx ωy ωz
]T (9)

where vd1 and vd2 are the linear velocities of the two slide rails, vθ3 ∼ vθ6 are the angular
velocities of the joints of the robot arm, vx, vy, vz are the linear velocities of the racket in the
x, y, and z directions, respectively, ωx, ωy, ωz are the angular velocities of the racket in the
x, y, and z directions, respectively, and J−1 is the inverse matrix of the Jacobi matrix of the
table tennis robot.

Next, we perform trajectory planning for each joint of the robot using quintic polyno-
mials as follows.

θi(t) = ci0 + ci1t + ci2t2 + ci3t3 + ci4t4 + ci5t5 (10)

Substituting the computed ci0 ∼ ci5 into (10), we obtain the position that the racket
will reach in the next moment ts. The above process is repeated after each ts. Note that
θi(ts) and θ̇i(ts) are given by the stroke decision returned by the vision module and are
reset after each stroke. In addition, note that θ̈i(ts) = 0, i.e., the angular acceleration of joint
i is zero when hitting the ball. In this way, we can drive the racket to the desired position
with the desired velocity. The trajectory planning for this stroke is complete.

5. Ball Location Control

In this section, we first establish the collision rebound model. A square area of 60
cm in length and width is set as the target area to return the ball. Then, based on the
established collision rebound model, we can calculate the stroke speed and angle for the
robot to return the ball to the target area. When the ball collides with the table, its velocity
will decrease in both the horizontal and vertical directions. The collision rebound model
can be expressed by:

−−→
Vout = Kt

−→
Vin +

−→
Bt , (11)

where Kt is a diagonal matrix representing the velocity loss coefficient after the ball collides
with the table,

−→
Bt is the velocity compensation bias after the collision,

−→
Vin is the incident

velocity of the collision between the ball and the table, and
−−→
Vout is the exit velocity after the

collision between the ball and the table. The coordinates of
−→
Vin and

−−→
Vout should be relatively

static with respect to the collision plane.
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The axes of these coordinates are perpendicular to the collision plane and point in the
ball’s incoming direction.

The flight trajectory of the ball after the collision can be obtained through the pre-
diction model according to the calculated exit velocity

−−→
Vout and the coordinates of the

collision point.
Before each stroke, the flight trajectory of the incoming ball can be predicted, and the

hitting position, velocity, and time can also be calculated. To return the ball to the desired
location, we can compute the initial velocity of the ball based on feedback on the location
of the ball. Specifically, according to the hitting position P0 and the central point of the
target area Pn, we can obtain the desired velocity of the ball after hitting. By using the
collision rebound model, the transformation matrix of the ball’s velocity between the world
coordinate system and the racket coordinate system can be derived as follows:

R =

− cos(φ) sin(ψ) cos(φ) cos(ψ) sin(φ)
− sin(ψ) sin(φ) cos(ψ) sin(φ) − cos(φ)
− cos(ψ) − sin(ψ) 0

 (12)

where φ and ψ are the pitch and psi in the Tait–Bryan angles.
In addition to the collision rebound model between the ball and the table, there is a

similar collision rebound model between the ball and the racket. We have

R(
−→
Vw

r −
−→
VO) = KrR(

−→
VI −

−→
VO) +

−→
Br , (13)

where
−→
VI = [vIx, vIy, vIz],

−→
VO = [vOx, vOy, vOz], and

−→
Vw

r = [vrx, vry, vrz] are the velocity of
the ball before the collision, the velocity of the ball after the collision, and the velocity of
the racket with respect to the world coordinate system. Similarly, Kr is a diagonal matrix
representing the velocity loss coefficient between the ball and the racket, kx, ky, kz are

the elements on the diagonal of the Kr, and
−→
Br is the velocity compensation bias after the

collision. Let the velocities of the ball in the directions of Z and Y be 0. Then, we can obtain
the following nonlinear equation system:

vOzSφ − bx − vIzkxSφ + vOyCφCψ + CφSψ(vw
rx − vOx)− vIykxCφCψ − kxCφSψ(vw

rx − vIx) = 0 (14)

vOyCψSφ − vOzCφ − by + SφSψ(vrx − vOx) + vIzkyCφ − kySφSψ(vrx − vIx)− vIykyCψSφ = 0 (15)

Cψ(vrx − vOx)− vOySψ − bz + vIykzSψ − kzCψ(vrx − vIx) = 0, (16)

where Sφ = sin(φ), Cφ = cos(φ), Sψ = sin(ψ), and Cψ = cos(ψ).
By solving these equations, we can obtain the racket speed and attitude for returning

the ball to the desired area. Because of the complexity of the nonlinear equations, it is
difficult to directly calculate the analytical solution. To deal with this issue, we propose
Algorithm 2 to approach the solutions from the initial value by using the Newton method.

The reason we use a linear model to model the ping-pong ball collision is that we
consider the collision to be inelastic. Therefore, the problem of modeling the collision of
ping-pong balls can be solved by determining the Kt, Kr,

−→
Bt and

−→
Br . By trial and error,

we get

Kt =

0.50259 0 0
0 0.75 0
0 0 −0.9

−→Bt =

0.50652
0
0

 Kr =

0.82 0 0
0 −0.88 0
0 0 −0.82

−→Br =

0.1
0

0.1

 (17)

Using the inverse kinematics, the desired joint position can be calculated. Then, by ap-
plying the trajectory planning in the joint space, the angle, angular velocity, and angular
acceleration of each joint of the robot can be uniquely determined over time.
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Algorithm 2: Solutions of the nonlinear equations
Step 1 : Let Equation (14) be f1, Equation (15) be f2, and Equation (16) be f3.
Let φ0 = π/2, vrx0 = −2m/s, ψ0 = π/2 if Y > 0, and ψ0 = −π/2 if Y ≤ 0.
Let the jacobian matrix F′ be

F′(φ, ψ, vrx) =


∂ f1
∂φ

∂ f1
∂ψ

∂ f1
∂vrx

∂ f2
∂φ

∂ f2
∂φ

∂ f2
∂vrx

∂ f3
∂φ

∂ f3
∂ψ

∂ f3
∂vrx


Step 2 : Solving elements of F′: ∂ f1

∂φ , ∂ f1
∂ψ , ∂ f1

∂vrx
, ∂ f2

∂φ , ∂ f2
∂ψ , ∂ f2

∂vrx
, ∂ f3

∂φ , ∂ f3
∂ψ , ∂ f3

∂vrx

Step 3 : Let S0 =

 φ0
ψ0

vrx0

.

Step 4 : Calculate S1 = S0 − F′(S0)
−1

 f1(S0)
f2(S0)
f3(S0)

.

Step 5 : If S1 − S0 ≤ 10−6, return S1, and otherwise, set S0 ← S1 and go to Step 4.

6. Experiment

As shown in Figures 7 and 8, a target square area is prespecified and (−900, 200) is set
as the target point. In Figure 7, the squares composed of the dotted lines and solid lines
correspond to the outer square and the inner square, respectively, in Figure 8. Moreover,
to clearly show the performance of our method, we use “+” to mark the target point.

In this experiment, the robot plays against a player who returns the ball at a random
velocity and angle. Specifically, the robot plays a total of 20,648 rounds to approximate the
performance of the robot precisely. The stroke type prediction accuracy and success rate of
returning the ball to the target area are shown in Tables 3 and 4. In Table 3, the prediction
accuracy of the model for forehand attack, backhand attack, forehand rub and backhand
rub is 95.52%, 94.8%, 93.17% and 93.41% respectively. It can be seen that the rub stroke has
a worse prediction accuracy. This is mostly because our model has a higher propensity to
identify the rub as an attack. The detail of the experimental results are shown in Figure 7.
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Figure 7. Actual landing points and target area (4 experiments with same target point). (a) Landing points
of the returned ball: forehand attack; (b) Landing points of the returned ball: backhand attack; (c) Landing
points of the returned ball: forehand rub; (d) Landing points of the returned ball: backhand rub.

Table 3. Stroke type prediction accuracy.

Stroke Type Accuracy

Forehand attack 95.52%
Backhand attack 94.8 %

Forehand rub 93.17%
Backhand rub 93.41%
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Table 4. Success rate of returning the ball to the target area.

Rounds Hitting Success
Rate

Within the
Inner Target

Area

Within the
Outler Target

Area

Mean
Placement of

the Ball

20,648 98.35% 82.52% 95.16% (−875.13, 178.27)

(a) (b) (c)

(d) (e) (f)

Figure 8. Experimental process. (a) Backhand attack: touching; (b) Backhand attack: flying; (c) Back-
hand attack: landing; (d) Backhand attack return: touching; (e) Backhand attack return: flying;
(f) Backhand attack return: landing.

Following further investigation, we discovered that misidentification was the primary
cause of several balls failing to strike the inner target area. Our identification system may
mistake the player’s white cuff for a ball, thus supplying the robot with the incorrect
position of the ball. Although the influence of this error can be gradually eliminated in
trajectory prediction, if the recognition error is too large, the robot’s performance will suffer
and the ball will finally travel out of bounds.

7. Conclusions

This paper proposed a bionic table tennis robot system. A novel mechanical structure
and a robust algorithm were designed. Extensive experimental results demonstrated that
the algorithm can effectively improve the stability and accuracy of the robot’s performance.
However, due to the limitations of the mechanical structure, the robot failed in most of
the cases where the returned ball had a high speed exceeding 10 m/s as well as strong
rotation. In the future, both the structure and algorithm of the table tennis robot will be
further refined to enable the robot to return the ball with even greater speed and spin.
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