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Abstract: Automation of wrist rotations in upper limb prostheses allows simplification of the human–
machine interface, reducing the user’s mental load and avoiding compensatory movements. This
study explored the possibility of predicting wrist rotations in pick-and-place tasks based on kinematic
information from the other arm joints. To do this, the position and orientation of the hand, forearm,
arm, and back were recorded from five subjects during transport of a cylindrical and a spherical object
between four different locations on a vertical shelf. The rotation angles in the arm joints were obtained
from the records and used to train feed-forward neural networks (FFNNs) and time-delay neural
networks (TDNNs) in order to predict wrist rotations (flexion/extension, abduction/adduction,
and pronation/supination) based on the angles at the elbow and shoulder. Correlation coefficients
between actual and predicted angles of 0.88 for the FFNN and 0.94 for the TDNN were obtained.
These correlations improved when object information was added to the network or when it was
trained separately for each object (0.94 for the FFNN, 0.96 for the TDNN). Similarly, it improved when
the network was trained specifically for each subject. These results suggest that it would be feasible
to reduce compensatory movements in prosthetic hands for specific tasks by using motorized wrists
and automating their rotation based on kinematic information obtained with sensors appropriately
positioned in the prosthesis and the subject’s body.

Keywords: wrist joint; wrist motion; arm joints; arm motion; kinematics; upper limb prosthesis;
artificial neural network; pick and place; prosthesis control

1. Introduction

Manipulation is a constant and necessary activity in daily life, so the loss of a hand
or arm is a serious disability. Hand prostheses can overcome some of the limitations.
However, despite technological advances in myoelectric prostheses in recent years, many
users abandon their use due to discomfort or dysfunctional control [1,2]. Currently, most
upper limb prostheses function with a fixed wrist joint or with a single passive degree of
freedom: pronation/supination (P/S) or flexion/extension (F/E). Active control of one or
more degrees of freedom in the wrist complicates mechanical design, makes control difficult,
and increases the user’s cognitive load. However, the absence of the wrist joint requires
compensatory movements of the arm or body during manipulation, movements that are
uncomfortable, make some tasks difficult, and can generate musculoskeletal problems in
the long term.

The importance of wrist mobility in upper limb prostheses has been demonstrated in
some previous work in the literature [3], in which the relative importance for manipulation
of degrees of freedom in the wrist compared to those in the hand itself was analyzed.
It was concluded that it is possible to simplify the design of the prosthetic hand if it is
compensated for with greater mobility in the wrist. However, simultaneous control of the
wrist and hand in a prosthetic device is complex. In the vast majority of current commercial
prostheses, this control is performed from surface electromyography (EMG) signals in the
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forearm. The control method is usually sequential, with a pair of electrodes or channels
that control, respectively, the flexion and extension movements of the wrist or the opening
and closing movements of the hand, with simultaneous activation of both channels used as
a mode to switch control between hand and wrist [4]. This control method is cumbersome
and slow when movements involve the activation of several degrees of freedom, so, in
recent decades, research has been carried out on other methods, such as pattern recognition
through the simultaneous use of multiple EMG sensors on the forearm or regression
between EMG signals and arm kinematics [4,5], in order to approach simultaneous and
proportional control of several degrees of freedom. However, a common problem with
EMG-based control methods is that they suffer from reliability and repeatability issues
due to multiple factors, such as inadequate sensor contact with the skin, the change in
the position of the contact point during manipulation, or the effect of sweat on the EMG
signal [1]. Alternatively, other options for the type of source signal used in the simultaneous
control of several degrees of freedom, such as ultrasound [6,7] or electrical impedance
tomography [8], have been studied at the laboratory level. However, these options are not
yet available at the clinical level.

All the control methods mentioned above use physiological signals generated from
the activation of the arm or forearm muscles to predict the movement intention of the
hand or wrist. In this work, it is hypothesized that, in some tasks, it is possible to relate
the movement of the wrist to the movement performed in other joints of the arm, which
would allow predicting the movement of the wrist from other kinematic parameters of the
arm. For example, in tasks where an object must be picked up and moved to a different
position on a shelf, wrist movements are related to the position of the object in the medial-
lateral or cranial-caudal directions. For instance, to pick up a cylindrical object resting
on a horizontal surface located below the elbow, the wrist needs to be slightly adducted,
whereas to position the same object on another horizontal surface located at head height,
the wrist needs to be abducted. Flexion and extension movements of the wrist also differ
depending on whether the object is to the left or right of the sagital plane passing through
the shoulder of the dominant arm. Another task in which wrist movement can be easily
related to the rest of the arm is driving a vehicle because, depending on the position of the
arm, it is possible to predict the necessary wrist movement to turn the steering wheel or
shift gears. In short, it seems feasible to automate wrist movement for certain tasks based
on the movement of other arm joints. The acquisition of kinematic signals using inertial
sensors (IMUs) has undergone significant advances in recent decades [9], so wrist control
based on this type of signal could be robust, simple, and an alternative or complementary
to the use of EMG or other more complex techniques, such as ultrasound or tomography.

From a mathematical perspective, the estimation of wrist movements based on dif-
ferent types of recorded signals (EMG, kinematics, etc.) has been approached with dif-
ferent perspectives in the recent literature. Some works focus on signal classification
techniques to assign them to a discrete movement or a specific wrist angle. For example,
Fajardo-Perdomo et al. [10] used techniques such as support vector machine (SVM) and
multilayer perceptron (MLP) neural networks to classify five different static positions
between the maximum flexion and extension of the wrist based on EMG signals recorded
in the forearm. Yang et al. [7] used dimensional reduction techniques, such as subclass
discriminant analysis (SDA) and principal component analysis (PCA), to classify different
hand postures and wrist pronation/supination based on ultrasound signals. Dynamic
estimation of wrist angles represents a qualitative advance over the previous approach.
It was approached by Xie et al. [6] based on ultrasound signals. They used SVM and
backpropagation neural network (BPNN) techniques to predict the wrist extension angle
adequately in various extension cycles from the neutral position at different frequencies.
Liu et al. [11] used a recurrent neural network with hidden states, including long short-term
memory (LSTM) cells, to predict wrist position in space during assembly tasks, anticipating
up to 2 s based on the previous movement obtained using depth cameras. Zheng et al. [8]
used linear regression methods, such as the least absolute shrinkage and selection operator
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(LASSO) and support vector regression (SVR), to estimate the dynamic movement of the
wrist based on electrical impedance tomography signals. Qin et al. [5] used convolutional
neural networks (CNNs) similar to those used in image processing to process the amplitude
information from a matrix of 32 EMG sensors as images and predict dynamic movements
that included a sequence of flexion/extension and pronation/supination of the wrist and
opening and closing of the hand. They compared predictions with those obtained by
other regression methods, such as linear regression, k-nearest neighbors (KNNs), SVR,
and decision trees, confirming a better correlation with the proposed CNN-based method.
Casini et al. [12], on the other hand, used PCA to obtain the principal components of the
human wrist rotations during gripping actions with a variety of objects to implement the
determined synergies in an underactuated prosthetic wrist. In this case, the focus was not
on estimating wrist rotations but on the dimensional reduction of its common movements.

In this work, we analyzed the possibility of predicting wrist movement in certain
tasks based on arm kinematics using neural networks and linear regression models. To this
end, we used experimental data for position and orientation recorded from five subjects
performing an object transport task (pick and place) in which two different objects were
relocated between several positions on a vertical shelf. The kinematic data were processed
to obtain angles between arm joints, and then neural networks were trained to anticipate the
required wrist rotation angles based on other kinematic data for the arm recorded prior to
the required instant. Different network architectures and input parameters were analyzed,
as well as the effect of temporal anticipation on the predictive capacity of the network.

2. Materials and Methods
2.1. Experiments

Five healthy volunteers without any known upper limb pathology participated in an
object manipulation experiment following a protocol approved by the Ethics Committee of
Universitat Jaume I (reference CD/37/2022). The subjects were university students, with
a mean age of 20.4 years (standard deviation 1.5) and mean height of 174.8 cm (standard
deviation 6.1). All of them were right-handed males except for one who was ambidextrous.
The subjects were equipped with different sensors using the Polhemus Fastrak motion
capture system, which allows the position and orientation of up to four sensors to be
instantaneously recorded with respect to a fixed transmitter. Four sensors were used placed
in the following positions on the subject (Figure 1): hand, forearm, arm, and trunk (back).
The arm sensors were sewn onto elastic Tubigrip® bands placed on the subject’s right arm,
forearm, and hand. The trunk sensor was attached with Velcro to a posture-correcting
harness for the back. The arm sensors were positioned so that the x-axis of the sensor
pointed in the distal direction and that of the back was directed towards the ground. The
Fastrak system transmitter was fixed on the horizontal upper surface of the shelf in the back
left corner so that the reference x-axis pointed towards the subject’s right, the y-axis towards
the subject, and the z-axis downwards (see Figure 2). With the chosen setup, all sensors
moved during the experiment in the x > 0 hemisphere of the Fastrak system transmitter.

The subjects performed transport tasks with the two lightweight abstract objects
from the Southampton Hand Assessment Protocol (SHAP) [13] corresponding to power
cylindrical grip (cylinder with a diameter of 50 mm, height of 100 mm, and mass of 18 g)
and spherical grip (sphere with a diameter of 70 mm and mass of 26 g) (objects shown in
Figure 3). The object transport tasks were performed from a starting position to a target
position, with the starting and target positions being the different combinations of the four
possible positions (UL, UR, DL, DR) of a vertical shelf placed on a table in front of the
subject, as indicated in Figure 2.

At the beginning of the experiment, the subject was positioned in the anatomical
position (Figure 1). The object to be transported (cylinder or sphere) was located in one of
the four possible positions (UL, UR, DL, DR). At the experimenter’s command, the subject
made a natural arm movement from the anatomical position, without moving their feet,
to pick up the object from its starting position, transport it to the predetermined target
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position indicated by the experimenter prior to the trial, release it in that position, and
return the arm to the anatomical starting position. This task was performed three times
consecutively with the same starting and target positions for the object after some trial
repetitions prior to recording the experiment. The experiment was then repeated but with
the starting and target positions of the object changed. The transport tasks were performed
for all 12 possible combinations between the four positions (UL, UR, DL, DR) taken two
at a time (origin, destination), with three repetitions of each combination. The cylindrical
object was placed with its axis vertical in the starting and destination positions. The trials
with each subject were all conducted in the same session and the order of the transports
was the same for all subjects, with movements with the cylinder being performed first and
then with the sphere. A short break of a few minutes was allowed between trials with
each object.

Sensor 1
Hand

Sensor 2
Forearm

Sensor 3
Arm

Sensor 4
Trunk

Figure 1. Placement of sensors on the subject.
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Figure 2. Arrangement of subject and objects during experiments (dimensions in cm).
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S35 mm

Figure 3. Objects of the SHAP protocol transported in the experiments.

2.2. Treatment of Experimental Records

The data recorded by the Fastrak system sensors were processed using Matlab. Initially,
the data from each sensor in each repetition were obtained. These data consisted of the x, y,
and z coordinates of each sensor relative to the transmitter and the three Euler angles of
orientation of the sensor relative to the transmitter. The Euler angles were subsequently
properly processed to avoid abrupt jumps since the values were recorded in the range
between −180◦ and +180◦. Subsequently, synchronization of the measurements recorded
in each of the three repetitions of the experiment was performed in order to obtain the
same duration for each repetition. For this purpose, the dynamic time warping algorithm
dtw from the “Signal Processing Toolbox” of Matlab was used. Then, all the measurements
were filtered with a third-order Butterworth low-pass filter using the butter function of
Matlab from the same toolbox. The final filtered and synchronized data were interpolated
and time was normalised to represent each trial with 101 points evenly distributed between
the start and end of the trial corresponding to normalised time steps of 0.01. Since the
average duration of a trial was around 5 s, each relative time increment corresponded to
approximately 50 ms. For each instant of time, the three Euler angles corresponding to the
rotation between the sensors located on both sides of each joint were calculated. These
angles were approximations of the actual anatomical angles in these joints. Specifically,
the rotation angles were calculated in the wrist for rotation between sensor one (hand)
and sensor two (forearm), in the elbow and the pronation/supination of the forearm
for rotation between sensor two (forearm) and sensor three (arm), and in the shoulder
from the rotations between sensor three (arm) and sensor four (trunk). For each joint,
the order of the rotations performed for the calculation of the angles was the rotation
corresponding to flexion/extension (F/E) followed by abduction/adduction (A/A) and,
finally, pronation/supination (P/S).

2.3. Neural Networks

The F/E and A/A angles in the wrist and the P/S in the forearm were taken as the
objective angles to be predicted by the neural networks in this study since the main P/S
movement for the hand is performed in the forearm and the P/S rotation in the wrist joint
itself is negligible. The remaining two angles at the elbow joint (F/E and A/A) and the
three at the shoulder were used as input data.

The training and testing of the neural networks was performed using Matlab. Two
different approaches were considered with different levels of complexity, using a simple
feed-forward neural network (FFNN) in one case and a time-delay neural network (TDNN)
in the other. For this purpose, the feedforwardnet and timedelaynet functions of Matlab’s
“Deep Learning Toolbox” were used, respectively.

Since two different objects were moved in the trials performed involving differ-
ent grip modes and also predictably different wrist movements, the effects of training
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the neural networks with the experiments on each object separately or considering all
of them together were analyzed. Similarly, the effects of training the network for a
specific subject or jointly including all subjects were studied. Moreover, the effect of
the number of neurons in the hidden layer on the predictive capacity was also ana-
lyzed, as well as the effect of the training algorithm among the several available in
Matlab. Specifically, for the number of neurons in the hidden layer, values between 5
and 20 were analyzed, considering that the number of cases available for training was
720 (5 subjects × 12 trials × 2 objects × 3 repetitions × 2 instants) and that there are rec-
ommendations for an optimal number of neurons around the logarithm of base 2 of the
number of cases [14]. A random percentage of 15% of cases was selected for the final test of
the network, while the rest were used for training. For other parameters of the networks
and their training, the default values of the Matlab functions were taken. To analyze the
possible effect of randomness in the selection of the test cases, the results shown were
obtained as the average of 5 different training sessions for the network.

2.3.1. Feed-Forward Neural Network (FFNN)

In the case of the FFNN, in order to limit the problem, the intended output data
were the angles of the wrist only at the instants of picking up the object (pick, PK) and
releasing it (place, PL), and the input data were taken at a specific instant of the movement
anticipated with respect to the instants PK and PL. The justification was that, in this way, in
a subsequent application to a wrist prosthesis, this anticipation would allow the motorized
wrist to rotate during the time lag between the instant of measurement of the input data
and the desired final posture. The instants PK and PL were identified from the minimum
values of the Y coordinate of the hand sensor position in the parts of the record prior to the
transport movement (for PK) and subsequent to it (for PL). In order to minimize the effects
of differences due to sensor placement on different subjects, the angles for each subject
were recalculated and introduced to the network as differences with respect to the mean
value of that angle in all the experiments with the same subject.

The effect on the predictive ability of the neural network of the anticipation between
the input data and the PK and PL moments was studied. For this purpose, the prediction
of angles for PK was estimated by taking the input data with a time anticipation of 0.5 s or
0.75 s with respect to the PK instant and, in the same way, for the PL instant. Furthermore,
the effect of introducing the task (PK or PL) as an input to the FFNN was analyzed.

A shallow network with a single hidden layer was used as architecture for the FFNN
in order to keep it simple. Figure 4 shows the schematic representation of the network for a
case with 20 neurons in the hidden layer, 5 input scalar parameters corresponding to the
F/E and A/A angles in the elbow and the thee angles in the shoulder, and 3 output scalar
parameters corresponding to the F/E and A/A angles in the wrist and the P/S angle in
the forearm.

W

b

W

b

Hidden layer Output layer

20 neurons

5 input
angles

Input Output

3 output
angles3 neurons

Figure 4. FFNN model used (example with 20 neurons in hidden layer, 5 input elbow and shoulder
angles and 3 output wrist angles).

2.3.2. Time-Delay Neural Network (TDNN)

Time-delay networks allow dynamic estimations based on a set of data collected at
several instants prior to the prediction and are common in time-series prediction. Figure 5
shows the schematic representation of the neural network for a case with 10 neurons in
the hidden layer. The five input time series corresponded to the F/E and A/A angles at
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the elbow and the three shoulder angles and the output time series corresponded to one
of the angles at the wrist. Figure 5 shows that the input included data corresponding to
the previous 10 instants of the time series (1:10) amounting to an interval of approximately
0.5 s amplitude. The effect of varying the delay was studied through different alternative
options: 15 instants earlier (1:15) than the target instant, equivalent to about 0.75 s; 2
instants earlier (1:2), equivalent to 0.1 s; and 2 instants anticipated 0.5 s earlier than the
target instant (11:12). Fifteen percent of the cases were randomly selected for testing, half
corresponding to the cylinder transport and half to the sphere, and the remaining cases
were used for training.

W

b

W

b

Hidden layer Output layer

10 neurons

5 input
time series

x(t) y(t)

1 output
time series1 neuron

1:10

Figure 5. Model of TDNN used (example with 10 neurons in hidden layer, 1 time series for one
output angle at the wrist, and 5 time series for input angles at the elbow and shoulder). In this case,
the network used the previous 10 data points from the time series (1:10).

Due to limitations of the Matlab function used, the time series of the inputs and
outputs of the network corresponding to the different experiments of each group (training
and testing) were concatenated as a single time series. In order to eliminate abrupt jumps
in this concatenation, a Tukey-type window was applied to the data for each included
series using the tukeywin function of Matlab’s “Signal Processing Toolbox”. This function
multiplies the first and last data points of a series by a cosine function to bring it to zero at
the start and end points, preserving the central data of the series unaltered. The modified
data included the first five and last five instants from the series of 101 data points from
each experiment corresponding to the moments of transition of the arm from and to the
anatomical resting position, thus having a minimal effect on the results of interest.

2.4. Linear Regression Models

As an alternative to the neural networks, the use of linear regression models to predict
the wrist angles from the other joint angles was tested. For this purpose, the fitlm function
of Matlab’s “Statistics and Machine Learning Toolbox” was used. A linear model was
fitted to each of the target angles (F/E and A/A angles in the wrist and the P/S in the
forearm) from the remaining two angles at the elbow joint (F/E and A/A) and the three
at the shoulder. The fitting was based on the whole set of data. For this, a single matrix
of angles was vertically stacked with the information from all the experiments so that
each row corresponded to the target and predictor angles for an instant in a particular
experiment. The correlation coefficient between the target angles and the model prediction
and the mean absolute errors were taken as indicators for the goodness of fit.

3. Results

Figure 6 shows an example of the angles at the wrist for subject one in the movement
from UL to DL for both objects (cylinder and sphere). The three repetitions and the mean
value are shown, indicating the good repeatability of the measurements. The results showed
different movements at the wrist for each object, with more pronounced differences in the
F/E pattern and in the amplitude of the P/S movements. The movement with the largest
range was the P/S movement and the smallest range was the A/A movement. The mean
range of amplitude for these angles averaged across subjects during all the experiments
was 29.2◦ for F/E, 20.7◦ for A/A, and 92.9◦ for P/S.
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Figure 6. Angles of interest in the wrist for the movement of the cylinder and sphere from the UL
to the DL position for subject one. The three repetitions (in gray) and the mean value (in color)
are shown.

Figure 7 shows the angles for F/E and A/A at the elbow and the three shoulder angles
for the same movements and the same subject as in Figure 6. The good repeatability of the
results and different patterns depending on the manipulated object can also be seen. For
other starting and target points and for other subjects, different movement patterns were
obtained but with similar repeatability.
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3.1. Feed-Forward Neural Network (FFNN)

Table 1 shows the mean errors as absolute values for each of the wrist angles obtained
from the difference between the actual data recorded at the wrist and those predicted
by the FFNN with the training function trainbr, using as input data for the network the
angles for F/E and A/A at the elbow and the three shoulder angles with 0.5 s and 0.75 s of
anticipation with respect to the PK and PL instants and different numbers of neurons in the
hidden layer. The correlation coefficient (CC) between the actual angles and the prediction
is also shown. The results correspond to the averages from five repetitions of the training
and testing of the network with the whole set of data corresponding to the five subjects.
The average standard deviation between the different repetitions was close to 7.5% for each
data point, so the result was considered to be sufficiently representative. The highest error
in prediction was observed in the P/S angle, with lower values in the F/E and A/A angles,
indicating a certain correlation between the error in prediction and the range of variation
in the corresponding angle in the trials.

Table 1. Mean error and correlation coefficient (CC) in the prediction of wrist angles as a function of
the anticipation between data and prediction and the number of neurons in the hidden layer of the
FFNN trained with the trainbr algorithm.

Anticipation
(s) # of Neurons F/E Error

(deg)
A/A Error

(deg)
P/S Error

(deg) CC

0.50 5 5.74 4.25 11.23 0.829
0.50 10 5.73 4.23 10.2 0.853
0.50 15 5.29 3.91 8.75 0.879
0.50 20 4.88 3.80 8.85 0.883

0.75 5 6.47 4.63 10.30 0.833
0.75 10 5.83 4.33 9.67 0.855
0.75 15 5.38 3.76 9.52 0.869
0.75 20 4.91 3.55 8.98 0.879

Figure 8 shows the correlation coefficient between the actual angle values and those
estimated by the network as a function of the number of neurons in the hidden layer and
the anticipation in time between the data and the prediction. The effect of including the
information about the manipulated object or subject in the input data for the network for
an anticipation of 0.5 s is also shown. An improvement in correlation was observed with an
increase in the number of neurons, stabilizing for values between 15 and 20 neurons. The
differences between data anticipation of 0.5 s and 0.75 s with respect to the prediction were
small. Including subject information as input for the network improved the prediction,
even more so with the inclusion of the object, resulting in correlation coefficients close
to 0.95.

When the task information (PK or PL) was added to the network as an input, the
changes in the CC were negligible. For example, for anticipation of 0.5 s and 20 neurons,
the CC changed from 0.883 to 0.887 and the corresponding changes in the mean error for
the angles were also small.

Figure 9 shows an example of the comparison between the actual angles and the wrist
angles predicted by the network for anticipation of 0.5 s and 20 neurons with and without
inclusion of object information as input for the network.

Figure 10 shows examples of the variation in the loss function (mean squared error)
during the training process for the FFNN with anticipation of 0.5 s and 20 or 10 neurons in
the hidden layer. The loss stabilized to a nearly constant value after less than 100 epochs. A
greater difference between test and train values for 20 neurons than for 10 neurons can be
observed, which may indicate some degree of overfitting for 20 neurons.
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The training function used to train the FFNN had an effect on its predictive capacity.
Among the various functions available in Matlab, the function that gave the best results
was trainbr. It is a function with Bayesian regularization backpropagation that updates
weight and bias values through Levenberg–Marquardt optimization and selects an optimal
combination in the minimization of weights and mean squared errors to achieve a well-
generalized network. Table 2 shows the results obtained for the correlation coefficient and
mean prediction errors with different training functions in the case of 0.5 s anticipation,
20 neurons in the hidden layer, and no inclusion of object information.

Table 2. Error in the prediction of angles and correlation coefficients (CCs) between actual values
and those estimated by the FFNN (anticipation 0.5 s, 20 neurons in hidden layer) with different
training functions.

Function F/E Error (deg) A/A Error (deg) P/S Error (deg) CC

trainbr 4.88 3.80 8.85 0.883
trainlm 5.19 3.76 9.40 0.868
trainscg 6.27 4.38 12.60 0.803
trasinbfg 5.89 4.44 12.05 0.807

3.2. Time-Delay Neural Network (TDNN)

Figure 11 shows a randomly selected example of the results for the transport of each
object predicted with the TDNN with the training function trainbr using as input data the
angles for F/E and A/A at the elbow and the three angles of the shoulder and comparing
the actual value (target) with the prediction of the network (output). In this example, the
networks used, which differed for each output angle, included 15 neurons and predicted
the wrist angle for each instant from the input data recorded in the previous 15 instants
(equivalent to a time delay of approximately 0.75 s). The results show that the predictions
exhibited, in general, a larger oscillation than the actual curve, but they approximated the
evolution of the actual curves well.

Table 3 compares the results in terms of the error in the prediction of each angle by the
TDNN (root-mean-square error) and the mean correlation coefficient for different numbers
of neurons and amplitudes of temporal anticipation with the training function trainbr. As
for the FFNN, the amplitude of the error was greater for the P/S angle, which was also the
one with the greatest range of variation during the trials.

Table 3. Prediction error of the TDNN (trained with the trainbr algorithm) and the average correlation
coefficient between the actual values and the predictions with different numbers of neurons and
amplitudes of anticipation in the input data.

Anticipation
(s) # of Neurons F/E Error

(deg)
A/A Error

(deg)
P/S Error

(deg) CC

0.50 5 8.99 5.89 15.54 0.876
0.50 10 7.59 5.38 13.03 0.908
0.50 15 6.51 4.53 12.46 0.922
0.50 20 6.20 4.09 12.81 0.938

0.75 5 8.77 5.21 15.50 0.881
0.75 10 7.41 4.88 14.28 0.915
0.75 15 7.06 4.57 16.30 0.929
0.75 20 6.30 4.13 12.51 0.940

Figure 12 shows the change in the correlation coefficient between the actual and
network-predicted results for all time series from the test group cases as a function of the
number of neurons in the hidden layer and the time delay amplitude used (0.1 s, 0.5 s, or
0.75 s). There was a tendency for the correlation to stabilize around 15–20 neurons. Similarly,
increasing the amplitude of the time delay also improved the prediction, although the
improvement between 0.5 s and 0.75 s was very limited. If the input data had an amplitude
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of 0.1 s but were 0.5 s ahead of the prediction instant, the prediction deteriorated, lowering
the correlation coefficient by about 0.1 (not shown in the figure). The figure also shows, for
the time delay amplitude of 0.5 s, the effect of restricting the dataset to data corresponding
to each object separately (the average of both objects is shown with differences between
them being less than 0.02 in terms of the correlation coefficient) or to data corresponding
to a single subject (the result for subject one is shown). In both cases, the restriction of the
dataset used allowed the improvement of the correlation coefficient.
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Figure 11. Wrist F/E (a) and A/A (b) and forearm P/S (c) angles estimated by the TDNN (outputs)
and real values (targets) during the transportation of a cylinder (left) and sphere (right). The network
included 15 neurons and a temporal anticipation amplitude of 15 instants (0.75 s) in the input data.
The training of the network was performed using the trainbr algorithm. The cases shown are a
random selection of the test set.

Figure 13 shows the variation in the loss function (mean squared error) during the
training process for the TDNN with anticipation of 0.5 s and 20 or 10 neurons in the
hidden layer. The loss stabilized to a nearly constant value after fewer than 100 epochs.
The difference between 20 or 10 neurons was small, but some degree of overfitting for
20 neurons could be inferred from the lower loss value for the train set than for the test set.
A very good fit was observed for 10 neurons.

Table 4 shows the results obtained for the error in the angles and the mean correlation
coefficient for the different training functions available for the TDNN in the case of a 0.5 s
delay amplitude and 20 neurons in the hidden layer. The best result was obtained with the
trainbr function, as was the case for the FFNN.
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Table 4. Error in the prediction of angles and mean correlation coefficients (CCs) for the TDNN (delay
amplitude of 0.5 s and 20 neurons in hidden layer) with different training functions.

Function F/E Error (deg) A/A Error (deg) P/S Error (deg) CC

trainbr 6.20 4.09 12.81 0.938
trainlm 7.38 4.86 14.81 0.924
trainscg 7.89 4.83 15.95 0.891

3.3. Linear Regression Models

Table 5 shows the performance of the linear regression models fitted considering the
data from all the experiments. The mean absolute errors in the angles were greater and the
CCs lower than those obtained with the FFNN and TDNN. A higher CC was obtained for
the P/S angle compared to the F/E and A/A angles.

Table 5. Mean absolute errors between actual angles (for F/E, A/A, and P/S) and those predicted by
the linear regression models and the corresponding correlation coefficients.

Target Angle Error (deg) CC

F/E 11.70 0.35
A/A 7.75 0.43
P/S 21.97 0.74



Biomimetics 2023, 8, 219 14 of 17

4. Discussion

This work analyzed the feasibility of using neural networks for predicting necessary
wrist movements in object transport tasks based on kinematic information from the rest
of the arm. Wrist movement is important in upper limb prosthetic devices to reduce
compensatory arm movements. Estimating or predicting necessary wrist movement from
other parameters would facilitate automatic or semi-automatic operation of upper limb
prostheses, reducing users’ mental fatigue. Other researchers have attempted to predict
wrist movement from signals associated with muscle activity in the forearm, such as EMG
signals or ultrasound images of the forearm area, using techniques such as neural networks
and other classification and regression techniques, including SDA, PCA, KNN, and SVM.
However, EMG and ultrasound-based systems are complex, difficult to train, and subject
to sensor movement failure.

The results of this study indicate that it is feasible to train neural networks to predict,
with acceptable errors, required rotation angles in the human wrist during object transport
tasks based on rotations in more proximal joints (shoulder, elbow). The prediction errors
achieved were around 10–15% of the wrist movement range for both the FFNN and TDNN.
The CCs between actual and estimated values reached levels greater than 0.85 for the
FFNN and greater than 0.94 for the TDNN. Predictive capacity improved when training
was customized for the subject or when the network also had information about the
manipulated object. These values were comparable to or better than results obtained in
the literature using EMG signals. In ref. [10], classifications of wrist flexion positions were
achieved with 77% accuracy using neural networks and 53% accuracy using SVM. In ref. [5],
correlation coefficients between 0.87 and 0.95 were achieved, depending on the subject,
when predicting simple F/E and P/S wrist movements and hand-opening/closing using
deep CNNs more complex than those used in this work. In studies using ultrasound
signals, such as in ref. [8], R2 determination coefficients of 0.92 were obtained for simple
wrist movements using LASSO and SVR regression techniques. In this study, we also tested
the use of linear regression models to relate the wrist angles to the angles of the other arm
joints, but the results indicated low CCs for those models. These results suggest that neural
networks are much better than linear regression models for this purpose.

In this study, two different strategies were tested to address the problem of wrist
posture prediction from arm kinematics through neural networks with different levels of
complexity and network sizes.

The first strategy consisted of the use of a feed-forward neural network (FFNN), which
was used to predict the wrist posture only at the instants of object picking (PK) or object
placement (PL) from the elbow and shoulder angles recorded some time in advance of
those instants. The practical implementation of this strategy would require recording the
input data for the network for the anticipated instant and using them to rotate the wrist at
the mentioned instants (PK, PL). These instants could be detected with an approach to a
static posture of the arm characteristic of the grasping moment. However, if the movement
of the artificial wrist were to be initiated at such target instants, this strategy would involve
somewhat slow manipulation, since once close to the grasping point, one would have
to wait for the wrist to position properly. Furthermore, it could only be used to orient
the wrist in static postures. The advantage of this strategy would be the simplicity of the
network and the limited amount of data to be recorded. The results obtained with the FFNN
indicate that it is possible to achieve correlation coefficients of around 0.85 by training
with data from several subjects and manipulating two different objects between varying
locations. Correlations can be improved by introducing object information to up to about
0.95, although this would require computer vision systems for practical implementation.
The results also indicate that, if the network is trained in a subject-specific manner, it is
possible to improve the correlation.

The second strategy involved the use of a time-delay neural network (TDNN), which
used data from a set of previous instants to predict the wrist turns at each instant. Unlike
the FFNN, this network used input data recorded from a sequence of previous instants,
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so it had a higher predictive capability and also allowed dynamic prediction such that the
prosthetic wrist could move at each instant depending on the past recorded input data.
In this work, networks with time delay amplitudes of 0.1 s, 0.5 s, or 0.75 s were tested,
showing a significant improvement from 0.1 s to 0.5 s and little appreciable improvement
when increasing from 0.5 s to 0.75 s. Correlation coefficients of up to 0.94 were achieved
with the TDNN, taking into account that, in this case, the correlation was performed for
the angular data from all the instants and not only for the PK and PL instants. Figure 11
shows the ability of these networks to predict dynamic wrist rotation as a function of elbow
and shoulder angles in the tested transport tasks. The prediction presented similar levels
of approximation for the cylindrical object and for the spherical object. The drawbacks
of the TDNN compared to the FFNN in applications in prosthetic wrists are its higher
complexity and the need to process more data, with consequent effects on the memory and
computational capacity of the processors required for its implementation. However, as
shown in Figure 12, reducing the delay time from 0.75 s to 0.1 s with a 20-neuron network
would allow a considerable reduction in the number of network parameters at the cost of a
not very significant loss in performance.

The results indicate that the mean angular errors in the predictions of both the FFNN
and TDNN were approximately proportional to the range of motion of each degree of
freedom, being approximately between 10% and 20% of the range of mobility. The errors
for the FFNN trained with all data were less than 5◦ for F/E motion, 4◦ for A/A motion,
and 9◦ for P/S motion. In the case of the TDNN, the error was close to 6◦ for F/E, 4◦ for
A/A, and 12◦ for P/S.

As a limitation of this paper, it should be considered that the networks obtained would
be valid only for transport tasks similar to those in the experiment. It is expected that,
for other tasks, the relationships between arm movements and wrist movements would
change, so a network trained for a particular task would probably not work correctly for
other tasks. In this sense, the use of kinematic information from the arm is more limited
than the use of other signals, such as EMG or ultrasound, since in these cases, the data are
based on physiological information directly related to the activity of the muscles involved
in the movement of the wrist. The use of networks similar to those trained in this work in
a prosthesis would therefore be limited to the type of activity for which the network was
trained. However, for a practical implementation, it would be feasible to have a series of
selectable programs for common tasks that the user could choose depending on the task to
be performed at any given time.

In this work, the prediction of wrist movements was approached using information for
the elbow and shoulder angles as input data. In the TDNN, since data from several previous
instants were included as input, the network also indirectly considered the angular velocity
and acceleration in the movements. Although the data recorded with the sensors used also
included position, this information was not used as training data. The reason was that
angle information would be easier to obtain using low-cost, commercial inertial sensors in
future implementations. On the other hand, linear kinematic variables, such as the relative
position between sensors or the linear relative velocity between them, are directly related to
joint rotations since they are open kinematic chains in which the segments can be considered
rigid for practical purposes. One of the major problems with inertial sensors is that they
are based on signal fusion and integration of several sensors (magnetometer, accelerometer,
gyroscope), and they are prone to producing drift errors due to noise accumulation in the
signals [15]. However, some recently proposed algorithms make it possible to considerably
ameliorate the problem in the case of obtaining human joint angles from inertial sensors
placed on both sides of the joint [16], enabling the reduction of the errors to values in the
order of 3◦–4◦ in activities of more than five minutes duration.

For future studies, we can consider the possibility of implementing the proposed
networks in a prosthetic hand with a motorized wrist and analyzing the improvement
achieved, comparing the task times and compensatory movements required. It would also
be interesting to extend this methodology to other specific tasks or to manipulation in the
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specific environments of daily living activities. In this study, we used simple shallow neural
networks; i.e., FFNN and TDNN. The use of deep networks, such as CNN or LSTM, could
be a line of future research to extend this methodology to a wider range of activities.

5. Conclusions

The results of this research allow us to conclude that it is possible to use neural
networks to predict with reasonable accuracy the F/E, A/A, and P/S movements of the
wrist from the angles rotated at the elbow and shoulder for a task of transporting two
objects between different positions on a vertical shelf.

With a simple FFNN with 20 neurons in a single hidden layer, the required wrist
postures at the instant of picking up the object and that of releasing it in a different
position could be predicted from the measured angles at the elbow and shoulder with
some anticipation (0.75 s), resulting in a correlation coefficient of 0.88. With a TDNN with
20 neurons in a single hidden layer, the wrist angles could be predicted dynamically for the
entire object transport motion from the angles measured at the elbow and shoulder during
the 0.75 s prior to each instant, with a correlation between the predictions and the actual
angles of 0.94. The prediction errors for the FFNN trained with all data were less than 5◦ for
the F/E movement, 4◦ for the A/A movement, and 9◦ for the P/S movement. In the case
of the TDNN, the error was close to 6◦ for F/E, 4◦ for A/A, and 12◦ for P/S. Among the
different training functions studied in this work, the function with Bayesian regularization
backpropagation (trainbr in Matlab) was the one that showed the best results. Regarding the
number of neurons used, a tendency towards the stabilization of the prediction at around
15–20 neurons was observed. The correlations obtained by the networks improved when
information for the manipulated object was added or the network was trained separately
with the specific cases for each object (0.94 for FFNN, 0.96 for TDNN). Likewise, the
correlation improved when training the network in a subject-specific way.
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Abbreviations
The following abbreviations are used in this manuscript:

A/A abduction/adduction
BPNN backpropagation neural network
CC correlation coefficient
EMG electromyography
F/E flexion/extension
FFNN feed-forward neural network
IMU inertial measurement unit
KNN k-nearest neighbor
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LASSO least absolute shrinkage and selection operator
LSTM long short-term memory
MLP multilayer perceptron
PCA principal component analysis
PK picking instant
PL placing instant
P/S pronation/supination
SDA subclass discriminant analysis
SVM support vector machine
SVR support vector regression
SHAP Southampton Hand Assessment Protocol
TDNN time-delay neural network
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