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Abstract: Reservoir computing systems are promising for application in bio-inspired neuromorphic
networks as they allow the considerable reduction of training energy and time costs as well as an
overall system complexity. Conductive three-dimensional structures with the ability of reversible
resistive switching are intensively developed to be applied in such systems. Nonwoven conductive
materials, due to their stochasticity, flexibility and possibility of large-scale production, seem promis-
ing for this task. In this work, fabrication of a conductive 3D material by polyaniline synthesis on a
polyamide-6 nonwoven matrix was shown. An organic stochastic device with a prospective to be
used in reservoir computing systems with multiple inputs was created based on this material. The
device demonstrates different responses (output current) when different combinations of voltage
pulses are applied to the inputs. The approach is tested in handwritten digit image classification task
in simulation with the overall accuracy exceeding 96%. This approach is beneficial for processing
multiple data flows within a single reservoir device.

Keywords: nonwoven material; organic memristive device; reservoir computing; stochastic device;
multi-terminal memristive device

1. Introduction

Recently, neuromorphic systems are widely considered as a paradigm for brain-like
information processing. It is expected that such systems will allow to reach several ad-
vantages, such as parallel information processing, low energy consumption, capability of
unsupervised learning, etc. According to [1], the system must have at least five important
properties to be considered as a neuromorphic one. We do not repeat them here because
at the present state-of-the-art level, it is considered that mimicking at least one (or, better,
more) essential requirements would provide an important step towards the realization of
a system capable of neuromorphic information processing. Probably, the main feature of
biological information processing systems (nervous system in general and brain in particu-
lar) is the fact that memorizing and processing the information is performed by the same
elements (neurons, where synapses (connections of neurons) play a very important role,
varying the connection weights of neuronal cells according to special rules, as a Hebbian
one). It is to note that this consideration is also used for the realization of artificial neural
networks: elements connections (synapse analogs) of threshold nodes (neurons) can vary
their weight function according to the performed training procedure. However, even in
the case of a rather simple network, containing more than two neuron layers, the training
procedure is rather complicated: it is necessary to know not only the current state of values
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of weight matrices of each layer of synapse mimicking elements but also their temporal
derivatives during iterations. Of course, it is not the case in brain-mimicking systems.
The brain is a very complicated system, composed of 1011 neurons and 1015 synapses [2].
Learning the system at the level of single pairs of neurons is rather well explained using
the current modification of Hebbian Rule [3], known as Spike-Timing-Dependent Plasticity
(STDP) [4]. Currently, STDP is considered as a main algorithm of unsupervised learning,
establishing a causal relationship of two events (spiking of pre- and post-synaptic neu-
rons) according to the time delay and consequence of them. It is to note that the main
element of the presented study (polyaniline-based memristive device) was successfully
used both for the realization of artificial systems, allowing STDP-like learning [5], and for
the connection of two live neurons from rat cortex [6]. In the last work, when the synaptic
connection was established, the delay of the pre- and post-synaptic spikes of neurons was
about 3 ms, corresponding well to the situation in brains. This work can be considered as a
direct demonstration that a polyaniline memristive device can be really considered as an
electronic analog of biological synapses.

However, in the case of the system as a whole (brain), it is not possible to apply these
rules. In reality, we deal with a system with stochastic organization of elements even
with distant connections which, however, can be structured during learning. Learning
occurs through feedback, adjusting all possible weight function values of the intermediate
medium elements for the realization of appropriate outputs (e.g., motor neurons) corre-
sponding to vectors of inputs (signals from sensor systems). Thus, it is not necessary to
know weight function values of all intermediate synapses. It is only necessary that the
intermediate medium has nonlinear properties and its elements have short-term volatile
memory properties. Learning in this case is performed just by the correction of the weight
function values of synapse-like elements, connecting the nonlinear medium with sensory
elements, on the one hand, and executive elements, on the other hand. This requirement
corresponds well to the concept of reservoir computing approach.

A reservoir computing system is a machine learning framework for dynamical pro-
cessing of spatial and temporal series of data [7]. Such systems usually consist of two
main parts. The first part is a reservoir itself, which takes a sequence of time pulses as
an input and changes its state depending on the temporal and shape distribution of the
pulses due to short-term memory effects. The output values of the reservoir, which are
current amplitudes transformed from input voltage reading pulses applied to the system
just after the main sequence, are passed to the second part of the system–readout layers.
The training procedure consists in proper selection of readout layer weights that provide
the best correlation between the target output and input transformed by the reservoir state.
The main advantage of such systems over traditional neural networks is reduced time and
energy costs, because the learning process occurs only in readout layers, while the reservoir
part is not trainable.

Originally, reservoir computing was implemented in software, but recently hardware
realizations based on different physical phenomena have become very common [8]. One
of the most investigated approaches is electronic reservoir based on volatile memristive
devices. The latter change their resistance in response to applied voltage and gradually
return to the initial state under zero bias in a short period of time [9]. Due to the extremely
wide range of dynamical characteristics provided by different memristive devices, these
systems have found applications in various tasks from image classification [10,11] to
processing of biological signals, behaving as an internal part of biosensors [12].

Different approaches can be used to implement a hardware memristive reservoir,
but the most straightforward one is to use a strictly deterministic architecture: 1 input–
1 memristor–1 output [13,14]. However, recent works have demonstrated stochastic reser-
voirs based on organic materials with a large number of parallel inputs and outputs [15,16].
This approach allows to significantly decrease the number of devices used and, thus, the
dimension of the input data, which leads to a reduction in the complexity and power
consumption of the entire network. Three-dimensional memristive devices based on non-
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woven materials, which provide native stochasticity, flexibility and possibility of large-scale
production [17], seem promising for organic-based reservoir systems. Moreover, such
self-organized and naturally highly interconnected architecture could be considered as a
cheap but effective alternative for passive crossbar architectures [18].

Organic memristive devices can be produced with the use of different materials such
as polyaniline (PANI) [5], oligo- [19] and polythiophenes [20,21] and small molecules [22].
However, due to the simplicity of synthesis, stability and higher conductivity, PANI proved
to be the most suitable for production of nonwoven conductive materials. In fact, the possi-
bility of realizing stochastic structures by vacuum treatment of polyethylene oxide with
successive PANI deposition has been shown [23], self-assembling of specially synthesized
block-copolymers, containing insulating and solid electrolyte parts [24], and by electrospin-
ning [25]. The latter structures could be fabricated in three different ways: by simultaneous
electroforming of PANI and a fiber-forming polymer in a mixture [26–28], coaxial formation
of fibers [29], and PANI synthesis on electrospun non-conductive polymer matrix [30–33].
The third method brings the most flexibility in choosing matrix polymer according to the
desired properties of the final structure.

In this work, we demonstrate nonwoven hybrid materials based on conductive polyani-
line synthesized on a non-conductive polyamide-6 fibrillar matrix. We also present a con-
cept of using a nonwoven stochastic memristive device with multiple inputs and single
output, which has a potential for application in reservoir computing systems. The approach
is validated by a simulation of reservoir-like computing system using experimental current
values distributions for eight states of the presented device. The system demonstrates
more than 96% accuracy rate, while reducing the number of reservoir units, as well as
readout network complexity as much as triple, yet providing the separation of different
input combinations of time sequences. These results are promising and suggest that the
presented device can perform image classification tasks with high accuracy and efficiency.

2. Materials and Methods

For fabrication of nonwoven materials we used polyamide-6 (PA) (Volgamid 27,
Kuibyshevazot, Togliatti, Russia) with a relative viscosity of 2.7, aniline hydrochloride
(99%, Across Organics, Geel, Belgium), ammonium peroxodisulfate (98+%, Across Or-
ganics), 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) (99%, PiM-Invest, Moscow, Russia), hy-
drochloric acid (Sigma Tech, Moscow, Russia). All reagents were used without any
additional purification.

To prepare a spinning solution with a concentration of 6%, the required PA and HFIP
amounts were mixed with a magnetic stirrer for 24 h. A custom laboratory device was
used for electrospinning. The solution was poured into a plastic syringe with a volume of
20 mL, which was placed in a syringe pump (DSH-08, “Visma-Planar”, Minsk, Belarus).
The polymer flow rate was set to 3 mL h−1. A rotating cylinder collector with a diameter of
15 cm was placed at a distance of 30 cm from the syringe. The applied voltage (25 kV) was
created by a high-voltage source Spellman SL130PN30. At the end of the electrospinning
process, the nonwoven fabricated system was removed from the collector and kept under
vacuum to remove the residual solvent.

To obtain a polyaniline layer, nonwoven material fragments of size 3 × 1.5 cm were
formed, fixed in glass clips, after which the synthesis of PANI was carried out according
to the IUPAC method [34] with a 0.1 M concentration of reagents and a synthesis time of
2 h. Then, the excess PANI were washed off from the samples, and the latter were dried
for 24 h.

FTIR spectra of the samples were obtained using a Nicolet iS5 (Thermo Fisher Scientific,
Waltham, MA, USA) spectrometer with an iD5 ATR accessory. The spectra were recorded in
the region of 4000–550 cm−1. SEM imaging was performed using a Phenom XL instrument
(Thermo Fisher Scientific, USA) equipped with backscattered electron detector. Pressure
was set to 10 Pa, and the accelerating voltage was 5 kV. Image processing and evaluation
of fiber diameters were carried out by the ImageJ 1.49v program. The study of surface
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properties was carried out by determining the water drop contact angles using the KRUSS
DSA30E system with the 5 µL water test droplets.

A glass plate with copper tape electrodes was used as a supporting substrate for the
memristive device. A silver wire with a diameter of 125 µm was mounted on a plate in the
center between electrodes and covered with a layer of gel-electrolyte—an essential part
of the device, providing a medium for redox reactions and responsible for the resistance
switching. To prepare the latter, we made an aqueous solution of polyethylene oxide (Sigma-
Aldrich, Burlington, MA, USA, Mw = 5,000,000 g/mol) with a concentration of 30 g L−1

in water with the addition of lithium perchlorate (Sigma-Aldrich, concentration 0.19 M)
and hydrochloric acid (concentration 0.1 M). Then, a fragment of nonwoven material,
which was formed according to a special template, was put on the electrolyte drop and
fixed on the substrate by one more layer of copper tape. Another layer of electrolyte was
deposited on the top of the structure in order to provide a contact of the silver wire and
bulk of the nonwoven material. After all the operations, the device was dried at room
temperature for 24 h. The switching kinetics was measured using a Keysight B2902A
Precision Source/Measure Unit (SMU). The reservoir experiment was carried out using an
NI PXIe 4140 SMU.

A formal neural network was used to recognize digits from the multi-terminal stochas-
tic device response. The network was composed of 252 inputs, 100 neurons in the hidden
layer and 10 outputs. ReLU and Softmax were used as activation functions for neurons
in the hidden and output layers, respectively. The Adam optimizer, which is based on
adaptive estimation of first-order and second-order moments, was used. This setup is
suitable for datasets with thousands of training samples or more in terms of both train-
ing time and validation score. The learning rate was constant at 10−3, and cross-entropy
was used as a loss function. Inputs of the network were generated randomly based on
the experimental distributions for the multi-terminal stochastic memristive device. The
simulation was performed with scikit-learn framework.

3. Results
3.1. Material Characterization

The first preparation stage was connected to the formation of fibrillar network, using
a well-known material suitable for the application of electrospinning. The obtained nonwo-
ven structure made of polyamide-6 (Figure 1a) is characterized by cylinder-shaped fibers
and smooth surface morphology with an average diameter of ~700 nm, which is typical for
electrospinning of this polymer from a solution [35–37]. After the synthesis of PANI on this
template (Figure 1b), the average diameter of the fibers was increased by about 10%, i.e.,
the thickness of the conductive layer of PANI on polyamide fibers does not exceed 50 nm.
It is also worthy of mention that the color of the matrix, composed from the source material
(pure polyamide) was white, while at the end of synthesis of PANI, it acquired a dark green
color, characteristic for the presence of PANI. It is also noteworthy that the polymerization
took place in the entire volume of the material, which is visible on its cross sections.

In the IR spectra (Figure 2) of the initial fibers from pure PA, there are characteristic
bands of 3295 cm−1 (stretching vibrations of N–H bonds), 1640 cm−1 (amide I, stretching
vibration C=O), 1547 cm−1 and its overtone at 3084 cm−1 (amide II, bending vibrations
N–H and stretching C–N), 1205–1279 cm−1 (amide III, bending vibrations N–H + bending
C=O + stretching C–C) [37,38]. New absorption bands appear on the spectra of materials
after the synthesis of PANI (including partially overlapping with PA bands) in the region
of 800–830 cm−1 (bending vibrations of 1,4-disubstituted benzene derivatives), 1304 cm−1

(C–N aromatic amines), 1612 and 1490 cm−1 (vibrations of C–C in benzenoid and quinoid
rings), 3050–3100 cm−1 (stretching vibrations of C-H in aromatic rings) and 3244 cm−1

(stretching vibrations of N–H bonds) [25,39].
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The initial PA nonwoven material is hydrophobic; however, during the synthesis of
PANI in an aqueous medium, the material loses its hydrophobicity [34], which allows
the synthesis of PANI on fibers throughout the whole thickness of the material. Hybrid
electrically conductive material PA-PANI demonstrates rapid absorption of applied water
droplets, which makes it suitable for the assembly of memristive devices (because impreg-
nation is required throughout the thickness of the sample with a water-based electrolyte,
which cannot be achieved for a hydrophobic material).
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3.2. Multi-Terminal Device

To test the possibility of using of the realized system, based on PA-PANI nonwoven
material for reservoir computing tasks, the stochastic memristive device structure with
three inputs and a single output terminal was fabricated according to the scheme shown in
Figure 3a. A fragment of nonwoven material was mounted on a glass plate with copper
tape electrodes and with attached silver wire, serving as working and reference electrode.
The image of the assembled device is shown in Figure 3b, while the connection diagram
and operation scheme in the reservoir regime mode are shown in Figure 3c. Every pixel
of the image row is supposed to be fed to a separate input of the device in the form of a
voltage pulse of a certain amplitude. The value of the current from the common output
of the device, which is measured during the reading phase right after the coding pulse
sequence, is supposed to be used as a response signal.
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Switching of PANI memristive devices is caused by oxidation and reduction processes
of PANI film, which leads to an increase and decrease of its conductivity, respectively.
Oxidation and reduction processes occur under different voltage bias values (>0.5 V and
<0.2 V, respectively), and the device is quite stable within the range between these values,
which makes it possible to read its current resistance without influencing it.

Figure 4a shows change in conductivity of the device by application of alternating
voltage pulses with an amplitude of 0.8 V (potentiation) and −0.3 V (depression) to each of
the inputs (only one at a time) with a duration of 60 s. At the same time, reading voltage
with an amplitude of 0.4 V was applied to the other two inputs. The chart shows the
response current value measured at the common output terminal. Although the device
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demonstrates slow response and relatively weak voltage-induced change in conductivity,
the final values of the current response for different combinations of input voltages can be
clearly distinguished. Therefore, such devices could be potentially used in reservoir com-
puting tasks for classification of different patterns in multi-terminal mode. The observed
timescale limits the number of possible classification tasks. However, the switching speed
of the devices can be reduced by miniaturization of the active switching region like it was
previously shown for the deterministic PANI-based memristive devices [40].
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the device (dash-line represents the voltage pulses). (b) The results of the reservoir experiment
of applying different input voltages combinations to the inputs of the device with 3 experimental
semitransparent curves and highlighted average for each pattern.

The results of the single stochastic memristive device operation in a multi-terminal
mode are shown in Figure 4b. All eight possible patterns consisting of different combina-
tions of three bits were mixed in a random order, and the resulting set was applied to the
system for three times in a row. Pixel “0” was represented by 0.4 V voltage, while pixel “1”
was represented by 0.8 V. The response output current was measured during the entire 60 s
period of voltage application with 0.5 s resolution. We repeated the experiment three times
to exclude the random factors. One can see from the figure that the current values almost
reach stationary states after 30 s of voltage exposure, while being well separable from each
other. Despite the fact that significant overlapping could be noted for some states (“110”,
“001” and “100”), the impact of this fact on the overall system error in recognition tasks
can be significantly reduced by processing in the readout layers of the system following
the reservoir.

3.3. Neural Network Simulation

The potential of the memristive device presented in this study for real-world applica-
tions is immense. In order to demonstrate its capabilities, we performed a simulation of
image classification of handwritten digits from the binarized MNIST (Modified National
Institute of Standards and Technology) database. As depicted in Figure 3c, every pixel of
the image is converted to a voltage pulse that is then applied to the memristive device. Our
approach enables the device to process three pixels at a time, thereby reducing the number
of network inputs by three times. To achieve this, the images were reduced to the size of
28 × 27 pixels, which were then divided into sections consisting of 3 pixels each, as the
device has 3 input terminals. In future hardware implementations, each group of pixels is
to be applied to an individual stochastic memristive device.

For the simulation, we selected 3 different distributions of states of the single device
from Figure 4b, which were taken after 10, 30 and 60 s of continuous potentiation. After 10 s,
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the device did not reach the saturation current values, and some states were significantly
overlapped. However, after 30 s, the current almost finished increasing, and there was
complete saturation with good separation after 60 s. This demonstrates that the memristive
device has the potential to achieve high accuracy in image classification tasks, and its
processing speed can be optimized by adjusting the time of potentiation.

The simulation results are presented in Figure 5 using confusion matrix, which clearly
show that the percentage of error is as low as 1% for the worst cases of individual digits.
The overall accuracy of the system after averaging over 10 runs for each case increases 96%
for all 3 distributions. These results are very promising and demonstrate the potential for
the presented device to perform image classification tasks with high accuracy and efficiency.
Additionally, it was observed that the approach remained robust even when there was
overlapping of some states, which was due to the efficient separation provided by the
subsequent readout layers.
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4. Discussion

In this paper, we have proposed an organic stochastic memristive device system based
on conductive nonwoven materials made of polyamide-6 and polyaniline with multiple
terminals, which can be used as inputs or outputs. We have also presented a concept of
using such a system for reservoir computing tasks to process temporal data from several
sources simultaneously within a single device. The presented approach helps to reduce the
number of network inputs, which results in faster processing times. Furthermore, it has the
potential to achieve high accuracy with reduced memory requirements. These advantages
mark the memristive device as a promising candidate for a wide range of applications,
including image and speech recognition, data analytics and machine learning. Although
the device demonstrates good differentiation of states depending on the input combination,
slight change in conductivity is a constraint for using such devices for processing of time
sequences of data. However, the time required to process a single voltage pulse should be
significantly reduced to make it possible to process an entire sequence of pulses at each
of the inputs. This could be potentially achieved by miniaturization of the device, which
was previously proved on thin-film PANI memristive devices. From our point of view,
the active area of the device, which is the area between two planar electrodes, could be
scaled down to several hundreds of µm2 without any physical limitations. In one of the
previous works, the authors have demonstrated a working device based on a single fiber
only [11]. However, single fiber is not enough to maintain the stochastic nature of the
network since the diameter of the former is about 500 nm. Additionally, miniaturization
requires a more complex fabrication process, such as using a micromanipulator, since the
fragility of nonwoven materials complicates the process fabrication process and stability of
the whole system. It seems important that the stochastic system must allow multiple signal
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pathways. In this case, the network will be always in a dynamic equilibrium state, and
small damages to the structure as well as presence of external noise will not significantly
affect its capability of objects identification. These problems are priority for future studies.

5. Conclusions

The present study is a step towards using systems with stochastic structure for neu-
romorphic applications. In fact, previously reported works based on the stochastically
organized fibrillar systems [23,41], fabricated by vacuum treatment, have demonstrated
the possibility of rather simple training tasks (reinforcement and inhibition of conductivity
between selected pairs of attached electrodes). Moreover, the free-standing nature of the
formed systems resulted in the fast degradation of learning capabilities even when sup-
porting porous “skeletons” templates were used [41] (however, the stability in the latter
case was slightly improved). Thus, these works [23,41] have demonstrated a principial
possibility of the realization of PANI-based stochastic systems with learning capabilities.
However, the mentioned studies revealed an important problem: very low stability of
electrical properties in such systems.

As the next step, a 3D system, composed from PEO-PANI fiber and fabricated by elec-
trospinning method [17], was realized and studied. However, relatively low conductivity
of the realized structures (about 10−3 S/cm) was a key parameter, limiting the applica-
bility of such systems for neuromorphic applications. A significant result was obtained,
when the stochastic 3D system was realized using specially synthetized block copolymers,
allowing self-assembling due to the phase separation [24]. This work has demonstrated
very interesting results, including the possibility of short- or long-term potentiation or
inhibition of signal pathways according to the applied training algorithm. However, only
two conductivity states were considered within this work: low and high ones. This is a
serious limitation for exploiting this system both for neuromorphic and artificial neural
networks applications.

In the current work, we have described the system that eliminates all the drawbacks
of the previously described approaches. In fact, it is significantly more stable than fibrillar
systems fabricated by vacuum treatment [23,41]; its conductivity is much higher with
respect to 3D systems of PEO-PANI fibers, fabricated by electrospinning method [17]; it has
more distinct resistive states compared to samples fabricated by self-assembling of specially
synthetized block-copolymers [24]. Summarizing, it seems that the reported system is very
prospective for both neuromorphic and artificial neural networks applications, because it
has 3D stochastic organization with integrated information memorizing and processing
properties, allowing training with multiple distinct resistive states.
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