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Abstract: In this paper, we introduce a new hybrid optimization method for the inverse design of
metasurfaces, which combines the original Harris hawks optimizer (HHO) with a gradient-based
optimization method. The HHO is a population-based algorithm that mimics the hunting process of
hawks tracking prey. The hunting strategy is divided into two phases: exploration and exploitation.
However, the original HHO algorithm performs poorly in the exploitation phase and may get
trapped and stagnate in a basin of local optima. To improve the algorithm, we propose pre-selecting
better initial candidates obtained from a gradient-based-like (GBL) optimization method. The main
drawback of the GBL optimization method is its strong dependence on initial conditions. However,
like any gradient-based method, GBL has the advantage of broadly and efficiently spanning the
design space at the cost of computation time. By leveraging the strengths of both methods, namely
GBL optimization and HHO, we show that the proposed hybrid approach, denoted as GBL–HHO,
is an optimal scenario for efficiently targeting a class of unseen good global optimal solutions. We
apply the proposed method to design all-dielectric meta-gratings that deflect incident waves into
a given transmission angle. The numerical results demonstrate that our scenario outperforms the
original HHO.

Keywords: optimization; inverse design; metasurfaces

1. Introduction

Harris hawks optimization (HHO) [1] is a metaheuristic optimization algorithm that
provides a more intelligent and dynamic approach to search for optimal solutions compared
to traditional optimization methods, such as gradient-based methods [2]. HHO is inspired
by the cooperative hunting behaviour of Harris’s hawks and uses a population of hawks to
search the solution space, with each hawk location with respect to the prey representing
a potential solution. Compared to other metaheuristic optimization algorithms, such as
genetic algorithm (GA) [3], particle swarm optimization (PSO) [4], ant colony optimization
(ACO) [5], differential evolution (DE) [6], grey wolves optimizer (GWO), and whales op-
timizer (WO) [7,8], HHO offers a more cooperative approach for searching the solution
space. The HHO hunting process uses two categories of hawks: exploratory hawks and ex-
ploitative hawks. Exploratory hawks are responsible for exploring the search space to find
new areas with promising solutions, while exploitative hawks focus on exploiting the best
solutions found so far. This division of labour allows HHO to balance exploration and ex-
ploitation, which can lead to better solutions compared to other metaheuristic optimization
algorithms. HHO has shown promising results compared to other optimization methods
in various studies. For instance, Senthilnath et al. [9] compared HHO to PSO, GA, and DE
in solving multi-objective optimization problems in power system engineering. The results
showed that HHO outperforms the other three algorithms in terms of its ability to find the
Pareto-optimal front. Similarly, Baskar and Krishnakumar [10] compared HHO to three
other optimization algorithms in solving an optimization problem in image processing.
The results showed that HHO outperforms the other algorithms in terms of the accuracy of
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the solution obtained and the time taken to converge to the optimal solution. Moreover,
HHO has been successfully applied to various other optimization problems. For example,
Zhang and Cao [11] used HHO for multimodal optimization and its application in image
segmentation. Sharma and Singh [12] proposed a hybrid approach for optimal power flow
using HHO and an improved multi-verse optimizer. Mohajeri and Beheshti [13] presented
a novel approach for feature selection using HHO. Lim and Lee [14] employed HHO for
the optimal design of a shell-and-tube heat exchanger, while Qin and Yang [15] used HHO
for joint base station placement and user association in heterogeneous networks. These
studies demonstrate the versatility of HHO in solving various optimization problems in
different fields, indicating its potential as an efficient optimization algorithm. Despite its
advantages, HHO has some drawbacks. It is known to perform poorly in searching for opti-
mal solutions and can have a deficiency in global search capability. Lately, the development
of technology has led to further research in the field of intelligent algorithms, and various
improvements have been proposed for the HHO algorithm to address these drawbacks.
For instance, Kaveh et al. [16] proposed an efficient hybrid method based on the HHO
and the imperialist competitive algorithm, compensating for HHO’s poor performance in
searching for optimal solutions. Song et al. [17] identified HHO’s deficiency in global search
capability and proposed the persistent-trigonometric-differences mechanism to improve
its global search capability, while also enhancing the energy factor to better balance the
algorithm’s exploration and exploitation.

We propose in this paper to improve the potential of the original HHO algorithm using
useful feedback provided by a gradient-based-like method (GBL) [18]. The GBL optimizer
employs the variations (“gradient”) of the figure of merit to iteratively update the potential
solutions in the search space. In this method, a finite number of key design parameters
are generated and iteratively updated during the process. In the case of meta-gratings
made of nanorods, presented in this paper, the design parameters are associated with the
widths of the nanorods and air gaps. These sequences of widths must simultaneously
satisfy constraint equations. Due to these constraints, the design parameters are no longer
linearly independent, and the notion of gradient becomes ambiguous. Therefore, unlike
traditional gradient-based methods using adjoint method [19–27], that update all design
parameters simultaneously, in the GBL approach, each variable is updated one by one
accounting for the constraints involved in the design problem. In the strategy proposed in
this paper, the GBL optimizer is used to target an initial population set through a minimal
number of iterations in a short computational time. This pre-selected set of profiles is then
used to initialize the Harris hawks optimizer. This hybrid strategy, denoted as GBL–HHO,
is an optimal scenario allowing for efficient targeting of a class of previously unseen global
optimal solutions. The proposed method is applied to design meta-gratings that deflect
an incident wave into a given transmission angle. The polynomial modal method (PMM)
[28–32] is used as an electromagnetic solver since it is more efficient, in the case of lamellar
gratings, comparing to the Fourier modal method (FMM or RCWA) [33–37].

This paper is organized as follows: In Section 2, we briefly present the main prin-
ciple of the GBL optimizer. In Section 3, we recall the key points of the classical Harris
hawks optimizer (HHO). Section 4 is devoted to numerical results, where we compare the
results obtained with the proposed hybrid GBL–HHO method to those of both the GBL
method and the classical HHO. Additionally, to highlight the novelty of our approach, we
successfully compare our results with other numerical optimization methods, such as the
adjoint-based topology optimization (TO) method and global topology optimization net-
works (GLOnets) [38,39]. Through these comparisons, we demonstrate that the GBL–HHO
algorithm significantly improves the potential of the original HHO by efficiently targeting
a class of good global optimal solutions.

2. The Gradient-Based-Like (GBL) Optimization Method

The first step in an optimization process is to define the objective that needs to be
optimized and any constraints that must be satisfied. In our case, we aim to optimize a
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meta-gratings, composed of a finite number of nanorods Figure 1a, in order to improve
the power deflected (transmitted) into a given diffracted order. The optimization process
involves fine-tuning a sequence of key geometric parameters, including the size and relative
positions of a given number of randomly distributed nanorods with random sizes. We may
also impose minimum size constraints to achieve a high-performance meta-gratings design.
Since both the nanorods widths and arrangement should be optimized simultaneously,
both the nanorods and air-gaps widths, denoted by ek, will be considered as the design
parameters. See Figure 1b. The second step is to define the solution space, which involves
specifying the range of values that the design variables ek in the objective function can take.
The GBL optimization method can be viewed as a concatenation of three phases that are
performed gradually and iteratively: Initialization, Evaluation of the fitness of the design
parameters and Best current pattern update.

(a) Device to be designed. (b) Sketch of the design parameters.

Figure 1. (a) Device to be designed. The device is made of dielectric nanorods of height h1, backed on
an infinite dielectric substrate. We consider a one-dimensional meta-grating consisting of Si nanorods
with a refraction index of 3.6082, deposited on an SiO2 substrate (refractive index: 1.45). (b) Example
of border-location variables xk update. Both widths and spacings of structures are optimized in order
to increase the deflected efficiency into the desired diffracted order.

2.1. Initialization

The GBL algorithm starts by generating a finite number of key design parameters
inside a given range. In the case of meta-gratings made of nanorods, these random variables
are associated with both the nanorods and the air-gaps widths. The widths of the nanorods
and air gaps are denoted by the design parameters ek which are calculated as follows:

ek = (emax − emin)rk + emin (1)

Here, rk are a sequence of random variables in the range [0, 1]Np , where Np is the
number of design parameters, i.e., nanorod and air gap widths in the meta-gratings. These
design parameters must satisfy simultaneous constraint equations, which are as follows:{

∑
Np
k=1 ek = d

ek ≥ min(if a minimum size feature is applied)
(2)

Here, d is the size of the structure or its period in the case of meta-gratings. Since both
the widths of the nanorods and air gaps must be updated while satisfying (2), it is suited
to introduce a new sequence of variables called border-location variables, denoted by xk.
These variables are defined from ek as follows:

xk = xk−1 + ek, x0 = 0, k ∈ [1, Np − 1] (3)

The border-location variables, as shown in Figure 1b, enable easier fine-tuning of both
the widths and locations of the rods within the optimization process.
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2.2. Evaluation of the Fitness of the Design Parameters

At the tth iteration, a local variation g(t)(xi) related to the objective function is com-
puted at all nodes xi of the design area. The computation of these local variations involves
induced fictitious currents when the system transitions from an old state to a new state, due
to changes in its geometrical and/or physical parameters. Readers can refer to [40] for more
details. In the design domain I , the discontinuous permittivity function ε(x) is described
by a piece-wise constant function. The design domain I is divided into sub-intervals Ik,
where each sub-interval is associated with a fitness g(t)k defined as follows:

g(t)k =

∫
I (t)k

xg(t)(x)dx∫
I (t)k

xdx
(4)

where the fitness values g(t)k are sorted in descending order at each iteration, and the
location of each variable xk is searched to achieve an improvement in the objective. Due to
the constraint Equation (2), the design variables ek are linearly dependent, meaning that
they cannot be updated simultaneously, as is commonly performed in some gradient-based
optimization algorithms that use adjoint methods [19–27]. As a result, the search for the
optimal values of the design variables is performed iteratively. This approach ensures
that the constraint Equation (2) is satisfied at each iteration while optimizing the objective
function.

2.3. Best Current Pattern Update

In this phase, the fitness value g(t)k is used to perturb the value of the variable xk, taking
into account the minimum size constraints. The perturbation can be either an ascending or
descending increment, and only the increment direction leading to the best result is kept as
the new optimal location of xk. This new optimal location of xk is calculated as follows:

xnew
k = best

{
x(t)k − δx(t)k , x(t)k , x(t)k + δx(t)k

}
(5)

Here, δx(t)k = α(t)g(t)k where α(t) = a0atanh(1− t/tmax) = a0β(t) is a parameter that
decreases to zero with respect to the number of iterations. The constant a0 is the rate at the
first iteration, and tmax denotes the maximum number of iterations. Once the best current
sequence of variables xnew

k is identified, a new sequence of the nanorod widths is computed
using (6):

enew
k = xnew

k − xnew
k−1, k ∈ [1, Np], x0 = 0, xNp = d (6)

At this point, random oscillations are applied to the best current result, i.e., the vector
[enew

k ], via a random contraction or dilatation mechanism. The mathematical formalization
of this random oscillatory behaviour is given by Equation (7):

enew
k + β0β(t)rk (7)

Here, [rk] = 2rand(Np, 1)− 1 is a vector of random variables in the interval [−1, 1]Np ,
simulating an uncertainty of the oscillation mode of the current vector [enew

k ]. A param-
eter β0 is added for fine-tuning the widths of the nanorods and air gaps, so that the
induced perturbations do not change their values too much. In this paper, β0 is set to
β0 = mink([enew

k ])/η. The parameter η is set to 5. Finally, Equation (8) is used to update the
previous (old) geometry:

eold
k = enew

k + β0β(t)rk (8)

The whole process then restarts iteratively, gradually improving the figure of merit
until it converges to a final structure. A flowchart of the proposed algorithm is shown in
Figure 2.
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Figure 2. Flowchart of the proposed gradient-based-algorithm.

3. Harris Hawks Optimizer

As reported in [1], the hunting process consists of two phases: exploration and ex-
ploitation. In the exploration phase, which is common in most hunting processes in nature,
the hunter must wait until a prey is detected. Within the HHO framework, during this
phase, Harris’s hawks search for prey by randomly perching at various locations. At itera-
tion t + 1, the location X(t+1) of a Harris hawk is updated according to the prey’s position
in the previous iteration t, denoted as X(t)

rabbit, or with respect to a randomly selected hawk’s

location X(t)
rand in the whole population and the average location X(t)

m of the pack. This is
the exploration phase. During the hunting process, while escaping the prey’s energy is
assumed to decrease following the linear rule:

E(t) = 2E0

(
1− t

T

)
(9)

where T denotes the maximum number of iterations and E0, a random number belonging
to [−1, 1], represents the initial energy of the prey. Based on the escape energy value,
hawks can decide to remain in the exploration phase by searching different landscapes,
or to transit from exploration (if |E| ∈ [1, 2]) to exploitation (if |E| < 1) by searching for a
local solution.

3.1. Exploration Phase

In this phase the prey has a high chance to escape since its energy E is high: |E| ≥ 1.
This phase is modelled by the following equation:

X(t+1) =


X(t)

rand − r1|X
(t)
rand − 2r2X(t)| if q ≥ 0.5(

X(t)
rabbit − X(t)

m

)
− r3(LB + r4(UB − LB)) if q < 0.5

(10)

where ri, (i = 1, 2, 3, 4) and q are random numbers belonging to [0, 1] and

X(t)
m =

1
N

N

∑
i=1

X(t)
i (11)

with N being the total number of hawks.
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3.2. Exploitation Phase (|E| < 1)

When exploiting the neighbourhood, hawks can apply different strategies to capture
the prey, depending on its remaining energy:

1. When |E| ≥ 0.5, hawks consider the prey to still have enough energy to escape,
and thus, a soft besiege strategy is applied. In this case, locations are updated as
follows:

X(t+1) = ∆X(t) − E|JX(t)
rabbit − X(t)| (12)

with ∆X(t) = X(t)
rabbit − X(t), r5, a random number in [0, 1] and the parameter J =

2(1− r5) simulates the random jump strength of the prey during the escape procedure
in each iteration. X(t+1) represents the updated location of the hawk at iteration t + 1,
X(t)

rabbit denotes the position of the prey at iteration t.
2. When |E| < 0.5, hawks apply a more aggressive strategy, a hard besiege, to capture the

prey, as they believe the prey to be too tired to escape. The location update equation
for this phase can be written as:

X(t+1) = X(t)
rabbit − E∆X(t) (13)

with ∆X(t) always being the difference between the positions of the prey and the
hawk.

3. In the exploitation phase, hawks can also perform some progressive rapid dives based
on the Levy flight (LF) function. The LF function is defined as:

LF(x) = 0.01
uσ

|v|1/β
(14)

where u, v are random values within [0, 1], and β is a default constant set to 1.5 in this
paper. The σ term is calculated as:

σ =

 Γ(1 + β)× sin
(

πβ

2

)
Γ
(

1 + β

2

)
× β× 2(β−1)/2


1/β

(15)

where Γ denotes the gamma function. Rapid dives can be performed with either soft
or hard besieges. The hawks’ location at iteration (t + 1) is evaluated based on the
following equation:

X(t+1) =

{
Y if if F(Y) < F(X(t))

Z if if F(Z) < F(X(t))
(16)

• In the case of a soft besiege with progressive rapid dives

Y = X(t)
rabbit − E|JX(t)

rabbit − X(t)| (17)

• In the case of a hard besiege with progressive rapid dives

Y = X(t)
rabbit − E|JX(t)

rabbit − X(t)
m | (18)

in both cases Z = Y + S× LF(D), where D denotes the dimension of the problem
and S is a random vector with size 1× D.

The different phases of the HHO are summarized in Figure 3.
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Figure 3. Sketch of the different phases of HHO.

4. Results and Discussion

The efficiency of the concept proposed in this paper is demonstrated now through
several numerical examples. We analyse the performance of the method in designing meta-
gratings earlier studied in [38,39] that deflect a normally incident (incident angle θinc = 0◦)
TM-polarized plane wave with a wavelength λ onto a given transmitted angle θd with the
highest intensity. The calculation of the deflection efficiency for a given diffracted order of
an incident plane wave is performed by dividing the electromagnetic field power travelling
in the direction θd, denoted as P(θd), by the total incident power, denoted as Pinc. In other
words, the deflection efficiency is equal to P(θd)/Pinc. In all our studies, we consider a
one-dimensional all-dielectric meta-grating consisting of Si nanorods with a refraction
index of 3.6082, deposited on a SiO2 substrate (refractive index: 1.45). The grating’s height
h1 is set to 325 nm. The subtract is the incident medium, and the transmission region is the
vacuum. To comply with standard fabrication techniques, a minimum size of both rods and
air gap widths is set to emin = 50 nm within the optimization process. We investigate one
wavelength, λ = 0.9 µm, and three deflection angles: small θd = 40◦, medium θd = 60◦

and large θd = 80◦. The parameters emin and emax of (1) are set to 50 nm and 100 nm,
respectively.

First, let us focus our analysis in detail considering the case of θd = 60◦. The GBL
method is used to design the deflector. To perform the GBL method, one hundred sequences
of Np-tuple random variables ([eold

k ], [enew
k ]) ∈ [50 nm, 100 nm]Np × [50 nm, 100 nm]Np are

initially generated, and for each pair of initial profiles, 100 iterations are performed in the
optimization process. Three values of the parameter Np are investigated: in Figure 4a,
Np = 7 (3 nanorods + 4 air gaps), in Figure 4b, Np = 9 (4 nanorods + 5 air gaps) and in
Figure 4c, Np = 11 (5 nanorods + 6 air gaps). These figures show the convergence of the
transmitted efficiency into θd = 60◦, P(60◦)/Pinc, with respect to the number of iterations
(t) (Y-axis) for all 100 initial randomly generated profiles (X-axis). Results converge with
respect to the number of iterations. However, the GBL method applied to initially randomly
distributed nanorods yields locally optimized devices with highly variable efficiencies.
This is consistent with the fact that the GLB optimization method is a local optimizer,
and therefore it is very sensitive to the initial conditions. Basins of local minima appear in
Figure 4a–c as red rays tearing the yellow background of high efficiencies.
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(a) GBL, Np = 7 (b) GBL, Np = 9 (c) GBL, Np = 11
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(d) HHO, Np = 7
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(e) HHO, Np = 9
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(f) HHO, Np = 11
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(g) GBL–HHO, Np = 7
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(h) GBL–HHO, Np = 9
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(i) GBL–HHO, Np = 11

Figure 4. Convergence of the transmission efficiency into θd = 60◦ with respect to the number of
iterations (t) (Y-axis) for different initial randomly generated profiles (X-axis), using the GBL, HHO,
and GBL–HHO algorithms. Three values of the parameter Np are investigated: Np = 7 (3 nanorods
+ 4 air gaps), Np = 9 (4 nanorods + 5 air gaps), Np = 11 (5 nanorods + 6 air gaps). Numerical
parameters: λ = 0.9 µm, deflection angle of 60◦, polarization TM.

Second, consider the classical HHO applied to our inverse design problem. In all the
following examples, the minimum feature of the 1D device is still set to 50 nm, and X is
the vector with components ek (X = (ek)k∈[1:Np ]) simultaneously satisfying the constraints

∑
Np
k=1 ek = d and ek ≥ 50 nm. To perform the classical HHO, first, a set of N initial

individuals, X-vectors, are generated. Second, HHO is performed within a given T number
of iterations. Here, T is set to 100 and N is set to 50. As with all global optimizers performed
on high-dimensional constrained problems, HHO could be sensitive to the initial conditions.
That is why the algorithm is restarted with different randomly generated initial conditions.
Here, HHO is restarted 25 times with different initial randomly generated sets of vectors
X. Results are displayed in Figure 4d for Np = 7, Figure 4e for Np = 9, and Figure 4f for
Np = 11. Let us analyse these results. From Figure 4d–f, one can observe, contrary to
results of Figure 4a–c, that the results are less contrasted, as should be expected from a
global optimizer. This indicates that the HHO is less sensitive to the initial conditions than
the previous GBL method. However, the HHO algorithm is known to perform poorly in
the exploitation phase, making the algorithm get prematurely trapped in a basin of local
minimum. The higher the number of design parameters, the more likely the HHO will
become trapped in local minimum pools. These phenomena are clearly illustrated in these
figures by red streaks corresponding to low values of transmitted efficiencies. These red
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streaks increase with the number Np of design parameters since a higher number of design
parameters results in a much larger search domain “dimension”. Therefore, the probability
for the algorithm to be trapped in a basin of local minimum is lower in the case of Np = 7
than in the case of Np = 9, while Np = 11 is the worst case among these three examples.

Now, how can we combine both algorithms to efficiently solve the inverse problem
under consideration? The proposed hybrid solution consists of two steps; in the first step,
the GBL optimization method is applied to a set of initial geometries with a very few
number of iterations (TGBL). This is a pre-optimization phase. Typically, in this phase,
(TGBL) is set to 20, and only 50 initial geometries are randomly generated. After this
TGBL small number of iterations, a new population of patterns is obtained. In terms of
the requested objective, these individuals are slightly more efficient than the initial ones.
In the second step, this new population is used for the initialization in the next HHO
algorithm. HHO is then performed with a given T number of iterations. Numerical
experience shows that T = 50 is enough to achieve a stable solution. As in the case of
the classical HHO, the whole process is restarted 25 times to check the sensitivity of the
method to the initial conditions. The convergence of the results with respect to the number
of iterations and for the 25 initial conditions is presented in Figure 4g–i. Images have low
contrast compared to the GBL optimization method and classical HHO, indicating that the
proposed hybrid method GBL–HHO is less sensitive to the initial conditions than the two
previous optimization methods, namely GBL and HHO.

Let us now compare the histograms of the transmission efficiencies and the highest
efficiencies of the optimized devices obtained from these three methods. First, consider the
histograms of efficiencies of the optimized devices shown in Figure 5 for the three methods
and for different values of Np. We still focus our investigation on the case of θd = 60◦.
The histograms of efficiencies are narrower in the case of the HHO than in the case of the
GBL optimization, regardless of the values of Np. This is consistent with the fact that the
GBL optimization method has the ability to reach an optimal solution with the cost of
multiple runs by broadly spanning the design space. HHO can efficiently target a basin of
good solutions but may be prematurely trapped in a local minimum pool in its exploitation
mode. The histograms obtained from the GBL–HHO are the narrowest among all three
methods. Even better, the GBL–HHO histograms are systematically narrow around high
deflected power values, indicating that although the hybrid method could also be trapped
in a pool of local optima, this pool is systematically a basin of the global optimum.

Let us confirm above observations by comparing the performance of highly opti-
mized devices obtained by these three methods. These higher efficiencies are reported in
Table 1 for the three methods, three values of Np ∈ {7, 9, 11}, and for three values of θd,
θd = 40◦, 60◦, 80◦. However, continue to focus on a 60◦-deflection angle. Regarding the
results obtained using the GBL optimizer, high-performance solutions are reached regard-
less of the values of Np. For Np = 7, the highest value of the transmitted power is 92.8%
while the best four-nanorod device exhibits a transmission efficiency of 98% and a value of
98.4% is reached by the best five-nanorod device. When Np increases, the obtained optimal
efficiency also increases, indicating that meta-gratings with a large number of nanorods,
i.e., with small-width main features (narrow widths), should perform better than large-
width ones. However, increasing Np also increases the design space, and the probability of
reaching the basin of favourable solutions decreases. In other words, a significant part of
the initial candidates could not yield these high transmission devices while increasing the
number of nanorods. This is why the efficiency histograms of Figure 5 do not systematically
narrow when Np increases, especially in the case of the GBL optimizer.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Comparison of performances of the GBL optimization (red), HHO (orange) and the
proposed hybrid GBL–HHO algorithm (blue), for λ = 0.9 µm and the deflection angle of 60◦. These
figures display the efficiency histograms of devices designed using these three methods. Three values
of the parameter Np are investigated: Np = 7 (3 nanorods + 4 air gaps), Np = 9 (4 nanorods + 5 air
gaps), Np = 11 (5 nanorods + 6 air gaps). In (a–c), the GBL optimization is used. (d–f) are devoted
to the HHO results. Results obtained from the proposed hybrid GBL–HHO are displayed in (g–i).
The minimum size is set to emin = 50 nm.

Contrary to the GBL method, the classical HHO is only efficient in targeting and
reaching an optimal solution when the number of design parameters is low. For a high
value of the number of design parameters Np, HHO fails to reach the optimal solution in its
exploitation phase. Using HHO, for Np = 7, the highest value of the transmitted power is
94%, which is higher than the GBL optimizer case (92.8%) but close to the case of the hybrid
GBL–HHO (93.8%) method. When Np is increased to 9, the HHO performs poorly: the
best four-nanorod device obtained by the HHO exhibits a transmission efficiency of 93.8%,
which is less than both GBL optimization and GBL–HHO results (around 98%). For a
higher value of Np, namely Np = 11, the HHO is completely and prematurely trapped in a
pool of local minimum: the maximum efficiency is no greater than 75.4% for the classical
HHO, while satisfactory results of 98.4% and 98% are obtained from GBL optimization and
GBL–HHO, respectively.

We performed a complementary analysis on devices operating with smaller and larger
deflection angles: θd = 40◦ and θd = 80◦.

First, let us analyse the results of the small deflection angle case, i.e., θd = 40◦.
Figure 6 shows the comparison between the efficiency histograms obtained with the GBL
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optimization, HHO, and GBL–HHO algorithms, for the three values of Np. The highest
transmission efficiencies obtained so far are also displayed in Table 1. The optimized
devices at this shorter angle still have high performance. However, the performance of
the optimized devices at θd = 40◦ tends to be lower than the θd = 60◦ grating. This lower
performance may be explained by the fact that the grating period at θd = 40◦ is larger
than the θd = 60◦-grating. We previously highlighted that meta-gratings perform better
when their main features are small compared to the wavelength. Therefore, for a given
wavelength, high-performance devices at smaller deflection angles may require a higher
number of design parameters Np.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Comparison of performances of GBL optimization (red), HHO (orange) and the proposed
hybrid GBL–HHO algorithm (blue), for λ = 0.9 µm and a deflection angle of 40◦. These figures
display the efficiency histograms of devices designed using these three methods. Three values of
the parameter Np are investigated: Np = 7 (3 nanorods + 4 air gaps), Np = 9 (4 nanorods + 5 air
gaps), Np = 11 (5 nanorods + 6 air gaps). In (a–c), the GBL optimization is used. (d–f) are devoted
to the HHO results. Results obtained from the proposed hybrid GBL–HHO are displayed in (g–i).
The minimum size is set to emin = 50 nm.

Let us consider the case of a large deflection angle. Generally, 1D meta-surfaces
designed to deflect an incident plane wave onto large deflection angles have worse per-
formance. In this case, it is difficult to exhibit high-performance structures from a set of
random initial conditions, since the design space is more complex with a multitude of
closely-spaced basins of local minima. Consequently, the GBL optimizer faces a multitude
of basins of local minima and the classical HHO could also be trapped in these multitude
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of basins. Figure 7 shows the comparison between the efficiency histograms obtained
with the GBL optimization, HHO, and GBL–HHO algorithms for optimized devices with
λ = 0.9 µm and θd = 80◦. The third line of Table 1 shows the highest transmission effi-
ciencies obtained for this deflected angle. Regarding the results of this table, GBL–HHO
still systematically provides better results than the classical HHO at larger angle. This fact
indicates that the algorithm definitively improves the possibility of the classical HHO to
avoid trapping in undesirable local optimal solutions.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Comparison of performances of GBL optimization (red), HHO (orange) and the proposed
hybrid GBL–HHO algorithm (blue), for λ = 0.9 µm and a deflection angle of 80◦. These figures
display the efficiency histograms of devices designed using these three methods and for three values
of the parameter Np: Np = 7 (3 nanorods + 4 air gaps), Np = 9 (4 nanorods + 5 air gaps), Np = 11
(5 nanorods + 6 air gaps). In (a–c), the GBL optimization is used. (d–f) are devoted to the HHO
results. Results obtained from the proposed hybrid GBL–HHO are displayed in (g–i). The minimum
size is set to emin = 50 nm. The highest deflected efficiency in each case is also displayed. For the
numerical parameter, the efficiency distributions obtained from the GBL–HHO are narrower than
those of GBL and classical HHO.
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Table 1. Panel of the efficiencies deflected onto diffracted orders of best devices using the three
methods (GBL, HHO, and GBL–HHO) and for three values of Np ∈ {7, 9, 11}. The best optimized
device obtained from both the GBL optimizer and GBL–HHO have higher maximum efficiency values
compared to those from the classical HHO. Numerical parameters: λ = 0.9 µm, h1 = 325 nm.

Method GBL HHO GBL–HHO

Np 7 7 11 7 7 11 7 7 11

40◦ 85.4% 95.4% 95.1% 85.2% 93.8% 92.1% 85.4% 95.2% 95.6%
60◦ 92.8% 98.0% 98.4% 94.0% 93.8% 75.4% 93.8% 98.0% 98.0%
80◦ 79.4% 93.5% 88.0% 85.1% 92.8% 82.6% 87.0% 93.6% 91.4%

Numerical optimization methods, such as the adjoint-based topology optimization
(TO) method and global topology optimization networks (GLOnets) [38,39], are increas-
ingly utilized in photonics to optimize meta-surfaces performance. GLOnets, in particular,
leverages machine learning techniques to efficiently solve complex optimization problems
and is less reliant on the initial conditions. It is crucial to select the most suitable opti-
mization method for a specific problem, and HHO algorithms and numerical optimization
methods like the adjoint-based TO methods and GLOnets are all valuable tools for solv-
ing diverse optimization problems in photonics and beyond. The examples presented in
the article, were previously introduced and studied in references [38,39]. Some results
of these studies, reported on Table 2, demonstrate that GLOnets [38] outperforms other
gradient-based TO methods for the selected example and in the current state-of-the-art
techniques. Hence, the results obtained in this article can be compared with those obtained
by GLOnets, as depicted in Figure 3 of reference [38], for the selected parameters, which
include a wavelength of λ = 0.9 µm and diffracted angles of θd = 40◦, 60◦, 80◦. Comparing
results of both tables, the proposed method, GBL–HHO, outperforms GLOnets in terms of
the obtained highest diffracted efficiencies. Furthermore, the efficiency histograms obtained
by GBL–HHO are narrower than those obtained by GLOnets, indicating that GBL–HHO is
less dependent on the initial conditions than GLOnets.

Table 2. Panel of the deflected efficiencies of best devices: comparison of adjoint-based TO and
conditional GLOnet optimization. The results are obtained from Figure 3 of [38].

Method Adjoint-Based TO GLOnets Optimization

40◦ 88% 87%
60◦ 81% 94%
80◦ 72% 89%

The field patterns across the final highest-transmission devices are plotted in Figure 8.
These figures display the phase and amplitude of the x-component of the electric field with
respect to x and z for the previous three values of θd: 40◦ (Figure 8a,b), 60◦ (Figure 8c,d),
and 80◦ (Figure 8e,f). With regard to the phases and real parts of the electric field, one can
clearly distinguish the quality of the wavefront deflection phenomenon.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. GBL–HHO applied to design a 1D high-transmission deflection meta-grating. Real part
and phase of the electric field. Illustration of the quality of the deflection phenomenon supported by
highest-transmission devices for three values of the θd: 40◦ (a,b), 60◦ (c,d) and 80◦ (e,f). Numerical
parameters: λ = 0.9 µm , TM polarization.

5. Conclusions and Outlook

In conclusion, the hybrid GBL–HHO optimization method leverages the strengths of
both GBL and HHO techniques, providing a more efficient and effective solution for the
inverse design of all-dielectric meta-gratings. This hybrid approach outperforms individual
GBL and HHO methods, as well as other state-of-the-art methods, such as adjoint-based
TO and GLOnets [38,39]. The GBL–HHO method successfully overcomes the limitations
of the GBL optimizer, which is time-consuming and necessitates a large number of ini-
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tial geometries to effectively cover the design space. Additionally, it addresses HHO’s
propensity to become trapped in local optima, a situation that occurs when the algorithm
prematurely transitions from the exploration to the exploitation phase. While reducing the
number of iterations required for optimization, the hybrid GBL–HHO method increases the
probability of finding a global optimum and streamlines the design process. It has demon-
strated promising results in the inverse design of meta-gratings, laying the foundation
for the development of innovative nanoscale devices with enhanced performance. Future
research may concentrate on refining and extending the method, as well as investigating its
potential application to other optimization problems across various domains. As the HHO
algorithm has undergone numerous improvements, incorporating these advancements into
the proposed hybrid method will also be a key focus in future work.
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