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Abstract: Image reconstruction is an interesting yet challenging optimization problem that has
several potential applications. The task is to reconstruct an image using a fixed number of trans-
parent polygons. Traditional gradient-based algorithms cannot be applied to the problem since
the optimization objective has no explicit expression and cannot be represented by computational
graphs. Metaheuristic search algorithms are powerful optimization techniques for solving complex
optimization problems, especially in the context of incomplete information or limited computational
capability. In this paper, we developed a novel metaheuristic search algorithm named progressive
learning hill climbing (ProHC) for image reconstruction. Instead of placing all the polygons on a
blank canvas at once, ProHC starts from one polygon and gradually adds new polygons to the canvas
until reaching the number limit. Furthermore, an energy-map-based initialization operator was
designed to facilitate the generation of new solutions. To assess the performance of the proposed
algorithm, we constructed a benchmark problem set containing four different types of images. The
experimental results demonstrated that ProHC was able to produce visually pleasing reconstructions
of the benchmark images. Moreover, the time consumed by ProHC was much shorter than that of the
existing approach.

Keywords: energy map; hill climbing; image reconstruction; metaheuristic; progressive learning strategy

1. Introduction

Image reconstruction refers to the task of reconstructing an image with the restrictions
of using specific geometric shapes, e.g., polygons or eclipses. It can be viewed as an
optimization problem that minimizes the difference between the reconstructed image and
the original image. Finding algorithms that can efficiently solve this problem may give
rise to several important applications. One potential application is image compression.
Instead of recording the pixel values, one can represent images with a relatively small
number of polygons. Given the end points of the polygons and their corresponding colors
and transparencies, one can repaint the image. Another potential application would be
generating computational art works. Elaborate pictures can be created by using simple
geometric shapes to approximate real-world figures.

The image reconstruction problem is very challenging since it comprises many decision
variables, which are highly correlated. Moreover, there is no explicit expression for the
objective function, making it infeasible to use gradient-based algorithms. To evaluate
the fitness of a candidate solution, one needs to draw the polygons on a blank canvas
and then calculate the element-wise differences between the reconstructed image and the
source image. This evaluation process is very time-consuming. It is impractical for general
computing devices to perform a large number of fitness evaluations. From this viewpoint,
image reconstruction is a sort of expensive optimization problem [1–5].

Metaheuristic search algorithms are powerful optimization techniques that make no
assumption about the nature of the problem and do not require any gradient information.
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Therefore, they can be applied to a variety of complex optimization problems, especially in
the cases of imperfect information or a limited computational capability. According to the
number of candidate solutions maintained in the search process, metaheuristic algorithms
can be divided into two categories, i.e., single-solution and population-based algorithms.
Single-solution-based algorithms iteratively update a single candidate solution so as to push
the solution toward a local or global optimum. Some prominent single-solution algorithms
include hill climbing [6–8], tabu search [9,10], and simulated annealing [11,12]. In contrast
to single-solution algorithms, population-based algorithms maintain a population of can-
didate solutions in the running process. New solutions are generated by extracting and
combing the information of several parental solutions. This type of algorithm can be further
divided into two subgroups, i.e., evolutionary algorithms (EAs) and swarm intelligence
(SI) algorithms. The design of these algorithms was inspired by the theory of evolution
(e.g., genetic algorithms (GAs) [13–16], genetic programming (GP) [17–21], differential evo-
lution (DE) [22–26], and evolutionary strategies (ESs) [27–30]) or the collective behavior of
social animals (e.g., particle swarm optimization (PSO) [31–35] and ant colony optimization
(ACO) [36–41]).

Since no gradient information is available, metaheuristic search algorithms have
become one of the major tools for image reconstruction. In addition, due to the fact that
evaluating the fitness of candidate solutions requires a large amount of computation, the
running time may be unaffordable if population-based search algorithms are adopted.
Therefore, single-solution-based algorithms have been widely used in the literature.

Hill climbing [8] is a popular single-solution-based algorithm. It starts with a random
candidate solution and tries to improve the solution by making incremental changes. If
a change improves the solution quality, then the change is kept and another incremental
change is made to the solution. This process is repeated until no better solutions can be
found or the algorithm reaches the predefined limit of fitness evaluations. Each incremental
change is defined by random modifications to one or several elements of the candidate
solution. This strategy can produce decent results for image reconstruction. However,
it does not fully resolve the challenges that arise in the optimization process. Note that
each candidate solution is composed of multiple geometric shapes, and all the geometric
shapes together form the reconstructed image. The decision variables that determine the
position, color, and transparency of the geometric shapes highly correlate with each other.
A small change in one geometric shape may influence the appearance of other shapes that
overlap with it. On the other hand, the total number of decision variables is several times
the number of geometric shapes used to approximate the source image. As the number of
shapes increases, the number of decision variables increases rapidly. This causes the rapid
growth of the search space, which significantly lowers the search efficiency of hill climbing.

To overcome the challenges posed by the image reconstruction problem, researchers
have drawn inspiration from approaches in mathematical optimization and deep learning.
In mathematical optimization, it is an effective strategy to divide a complex optimization
problem into a sequence of simple problems. Optimizing a sequence of problems one
after another provides an approximate solution to the original complex problem [41].
This strategy also applies to many tasks in deep learning. Karras et al. [42] developed a
new training methodology for generative adversarial networks (GANs) to produce high-
resolution images. The key idea is to grow both generator and discriminator networks
progressively. Starting from low-resolution images, the methodology adds new layers that
introduced higher-resolution details as the training progresses. The detailed architecture of
this methodology can be found in [42]. Its incremental learning nature allows GANs to first
discover the large-scale structure of image distribution and then shift attention to finer-scale
structures, instead of learning all the structures simultaneously. The experimental results
showed that the new methodology was able to speed up and stabilize the training process.
Tatarchenko et al. [43] developed a deep convolution decoder architecture called the octree
generating network (OGN) that is able to generate volumetric 3D outputs. OGN represents
its output as an octree. It gradually refines the initial low-resolution structure to higher
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resolutions as the network goes deeper. Only a sparse set of spatial locations is predicted at
each level. More detailed information about the structure of the OGN can be found in [43].
The experimental results proved that OGN had the ability to produce high-resolution
outputs in a computation- and memory-efficient manner.

From the above review, it can be noticed that progressively increasing the complexity
of learning tasks is an effective strategy for various applications. In addition, this strategy is
able to increase the learning speed. Motivated by this finding, we developed a progressive
learning strategy for the hill climbing algorithm so that it could progressively find a way of
combining basic geometric shapes to approximate different types of images. The basic idea
was to reconstruct images from a single geometric shape. After optimizing the variables
of the first shape, we stacked a new shape on top of the existing ones. The process was
repeated until we reached the number limit. This process amounted to transforming the
original complex high-dimensional problem into a sequence of simple lower-dimensional
problems. In the problem sequence, the optimization outcome of the former problem
served as the starting point of the latter problem. In this way, the challenges created by a
high-dimensional search space and variable correlation could be addressed. In addition, an
energy-map-based mutation operator was incorporated into our algorithm to facilitate the
generation of promising new solutions, which further enhanced the search efficiency.

To evaluate the performance of the proposed algorithm, we constructed a benchmark
problem set that contained four different types of images. Experiments were conducted
on the benchmark problem set to check the efficacy of the proposed progressive learn-
ing strategy, as well as the energy-map-based initialization operator. The experimental
results demonstrated that the new strategies were able to enhance the optimization per-
formance and generate images of a higher quality. In addition, the running time was
significantly reduced.

The remainder of this paper is organized as follows. Section 2 provides a formal
description of the image reconstruction problem. Then, the existing hill climbing algorithm
is introduced in detail. Section 3 introduces related studies in the literature. The proposed
progressive learning strategy and energy-map-based initialization operator are described in
Section 4, where we present the underlying principle of the new strategies. In Section 5, we
describe experiments conducted on a set of benchmark images to evaluate the effectiveness
of the proposed strategies, with a detailed analysis of the numerical results. Finally,
conclusions are drawn in Section 6. Some promising future research directions are pointed
out as well.

2. Background

In this section, a formal description of image reconstruction is first presented. Then,
we review the classical single-solution algorithm to lay the groundwork for the proposed
progressive learning strategy presented in Section 4. We also discuss some recent studies
closely related to the topic of image reconstruction.

2.1. Image Reconstruction Problem

It is interesting to note that the image reconstruction problem was first posed in a blog
published by Roger Johansson [44]. Johansson presented the idea of reconstructing one
of the most famous paintings in the world, the Mona Lisa, using a number of transparent
polygons. One would need to adjust the shape and position of the polygons, as well as
their colors and transparency, so as to make the reconstructed image as close to the original
image as possible. This task can be formulated as an optimization problem, in which
the decision variables correspond to the parameters of the polygons. Suppose that the
i-th polygon Pi has ni vertices; then, Pi can be represented by a list of parameters, i.e.,
[x1, y1, x2, y2, . . . , xni, yni, r, g, b, a]. The tuple (xj, yj) denotes the coordinate of the j-th
vertex. The last four elements encode the color and transparency of Pi. Suppose there
are, overall, m polygons; a candidate solution is represented by a sequence of polygons,
i.e., [P1, P2, . . . , Pm]. If all the polygons have the same number of vertices, i.e., n, then
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the total number of decision variables would be (2n + 4) × m. Therefore, the number of
decision variables grows linearly as the number of polygons increases. Figure 1 illustrates
the solution encoding. In the figure, each polygon has three vertices. The parameters of the
polygons are concatenated to form a long vector.
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Figure 1. Encoding of a candidate solution to the image reconstruction problem. (a) Candidate so-
lution consisting of a single polygon (triangle), (b) candidate solution consisting of m polygons (tri-
angles). 
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Figure 1. Encoding of a candidate solution to the image reconstruction problem. (a) Candidate solution
consisting of a single polygon (triangle), (b) candidate solution consisting of m polygons (triangles).

Given a candidate solution containing m polygons, the reconstructed image Y can be
expressed as:

Y = f ([P1, P2, . . . , Pm]), (1)

where f is the reconstruction function. This is generally implemented using off-the-shelf
graphics interfaces. One thing worth noting is that the reconstruction function f has no
explicit expression. It is also very difficult to build a computational graph for this function.

The sum of the element-wise absolute difference between the source image X and the
reconstructed image Y is used as the objective function, as illustrated in Figure 2. Suppose
that the size of source image X is W × H × C; the objective can be formulated as follows:

Loss(X, Y) =
W

∑
i=1

H

∑
j=1

C

∑
k=1

∣∣∣Xi,j,k − Yi,j,k

∣∣∣, (2)

where W, H, and C denote the width, height, and number of channels of the image. A
channel is the grayscale image of a colored image, which is made up of only one of the
primary colors that form the colored image. Primary colors are basic colors that can be
mixed together to produce other colors. For RGB images, the primary colors are red,
green, and blue. Each pixel of an RGB image is made up of three channels, with each
channel representing a primary color. The goal is to minimize the objective function. A
zero-function value indicates that the polygons completely restore the source image X.

The image reconstruction problem has several potential applications. The most direct
application is image compression. One can store an image as the parameters of the polygons
instead of the pixel values. Less memory is required, since the number of parameters is
much smaller than the number of pixel values. The second application is generating artistic
images. Any complex figure can be represented by simple geometric shapes. The level of
abstraction can be adjusted by controlling the number of polygons used.
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Algorithm 1 Hill climbing for image reconstruction

Input: Source image X, number of polygons m, number of vertices in each polygon n.
Output: A sequence of polygons [P1, P2, . . . , Pm] with specified parameter values.
1: Generate an initialized solution S0 by randomly sampling the parameter values from the search
range.
2: Calculate the objective function value L0 of the initial solution S0.
3: t = 0
4: while t < MaxFEs:
5: St+1←St, I← rand_int(m)
6: r1 = rand(0, 3)
7: if r1 < 1 then:
8: Mutate_color(St+1.Pi)
9: else if r1 < 2 then:
10: Mutate_vertex(St+1.Pi)
11: else: // Mutate the polygon sequence.
12: Mutate_sequence(St+1, i)
13: end if
14: Calculate the objective function value Lt+1 of the new solution St+1.
15: if Lt+1 < Lt then:
16: St+1 ← St;
17: end if
18: t++;
19: end while

2.2. Hill Climbing with Mutation Operators

The objective function calculates the difference between the source image X and the
reconstructed image Y. However, to reconstruct images from the parameters of polygons,
one needs to use the reconstruction function f, which has no explicit expression. Con-
sequently, the objective function cannot be expressed as a function of the parameters of
polygons. This property limits the application of gradient-based methods [45]. In com-
parison, hill climbing [8] is an iterative optimization technique that does not require any
gradient information. It can be used for solving any black-box optimization problem in
which the objective function or the system being optimized is treated as a black box. The
simplicity of hill climbing makes it popular among researchers. Hill climbing has been
adopted to handle the image reconstruction problem. The pseudo code is presented in
Algorithm 1 [44].
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Algorithm 2 Mutate_color

Input: A polygon Pi.
Output: Mutated Pi.
1: r1 = rand(0, 1)
2: r2 = rand(0, 1)
3: if r1 < 1/4 then:
4: if r2 < 0.5 then:
5: Pi.a← St+1.Pi.a + rand(0.1)
6: else:
7: Pi.a← rand(0, 1)
8: end if
9: else if r1 < 2/4 then:
10: if r2 < 0.5 then:
11: Pi.r← St+1.Pi.r + rand()
12: else:
13: Pi.r← rand(0, 1)
14: end if
15: else if r1 < 3/4 then:
16: if r2 < 0.5 then:
17: Pi.g← St+1.Pi.g + rand()
18: else:
19: Pi.g← rand(0, 1)
20: end if
21: else:
22: if r2 < 0.5 then:
23: Pi.b← St+1.Pi.b + rand()
24: else:
25 Pi.b← rand(0, 1)
26: end if
27: end if

Hill climbing starts with a random candidate solution S0, in which all the parameters
of the polygons are randomly sampled from their feasible regions. Then, it enters a loop
that tries to iteratively improve the candidate solution. Suppose that the current candidate
solution is St; a mutation operator that makes random changes to St is designed to produce
new solutions. Specifically, a polygon from the candidate solution is randomly chosen, and
one of its parameters is changed. Suppose that the i-th polygon Pi is chosen to be modified.
A random real number r1 within [0.0, 3.0] is first generated. If r1 is less than one, then
the color or transparency of the polygon is changed (Algorithm 2). The parameters a, r, g,
and b have an equal chance of being modified. If r1 is in the range [1.0, 2.0], the position
of a vertex is modified (Algorithm 3). The value of the x-coordinate or the y-coordinate
is changed. In the above two cases, the selected parameter value is either increased by
a small value or set to a random value within its feasible range. The decision is made
by sampling another random value r2 within [0.0, 1.0]. If r1 is larger than two, another
polygon Pj is randomly selected, and the stacking sequence of Pi and Pj is exchanged
(Algorithm 4). A new solution St+1 is generated in this manner. Subsequently, the objective
function value Lt+1 of the new solution is calculated. If its objective function value Lt+1 is
less than that of St, then St+1 is replaced with St. Otherwise, the new solution St+1 enters
the next iteration. The above process is repeated until the maximum number of iterations is
reached. Figure 3 illustrates the mutation operator. For a randomly selected polygon Pi,
the mutation operator makes changes to one of three components, namely, the position of
the vertices, the color/transparency, and the position in the stacking sequence.
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Algorithm 3 Mutate_vertex

Input: A polygon Pi.
Output: Mutated Pi.
1: j← rand_int(n)
2: r1 = rand(0, 1), r2 = rand(0, 1)
3: if r1 < 0.5 then:
4: if r2 < 0.5 then:
5: Pi.xj = St+1.Pi.xj + rand(0, 0.1 W)
6: else:
7: Pi.xj = rand(0, W)
8: end if
9: else:
10: if r2 < 0.5 then:
11: Pi.yj = St+1.Pi.yj + rand(0, 0.1 H)
12: else:
13: Pi.yj = rand(0, H)
14: end if
15: end if

Algorithm 4 Mutate sequence

Input: A sequence of polygons St+1, selected index i.
Output: Mutated sequence.
1: j← rand_int(m)
2: tmp← St+1.Pi
3: St+1.Pi← St+1.Pj
4: St+1.Pj ← tmp

Biomimetics 2023, 8, 174 7 of 22 
 

 

Algorithm 3 Mutate_vertex 
Input: A polygon Pi. 
Output: Mutated Pi.  
1:  j ← rand_int(n) 
2:  r1 = rand(0, 1), r2 = rand(0, 1) 
3:  if r1 < 0.5 then: 
4:       if r2 < 0.5 then: 
5:              Pi.xj = St+1.Pi.xj + rand(0, 0.1 W) 
6:       else: 
7:              Pi.xj = rand(0, W) 
8:       end if 
9:  else: 
10:       if r2 < 0.5 then: 
11:              Pi.yj = St+1.Pi.yj + rand(0, 0.1 H) 
12:       else: 
13:              Pi.yj = rand(0, H) 
14:       end if 
15:  end if 

 
Algorithm 4 Mutate sequence 
Input: A sequence of polygons St+1, selected index i. 
Output: Mutated sequence. 
1:  j ← rand_int(m) 
2:  tmp ← St+1.Pi 
3:  St+1.Pi← St+1.Pj 

4:  St+1.Pj ← tmp 

Because a mutation operator is used in the algorithm to generate new solutions, its 
developer called the algorithm GP instead of hill climbing. However, since only one can-
didate solution is maintained in the search process, and there are no interactions between 
the generated solutions, it would be more appropriate to name it hill climbing. 

x1
(i), y1

(i), x2
(i), y2

(i), x3
(i), y3

(i), r(i), g(i), b(i), a(i) 
+
-

+
-

+
-

+
-

0 ≤  r1 < 1 1 ≤ r1 < 2
Randomly choose one point Randomly choose one color parameter

2 ≤ r1 < 3

Randomly choose another polygon Pj 
and exchange Pi and Pj

 
Figure 3. Illustration of the mutation operator used in the hill climbing algorithm. 

3. Related Studies 
Before Johansson posed the image reconstruction problem, researchers had exam-

ined similar problems. Castro et al. [46] proposed a clone selection algorithm (CLONALG) 

Figure 3. Illustration of the mutation operator used in the hill climbing algorithm.

Because a mutation operator is used in the algorithm to generate new solutions,
its developer called the algorithm GP instead of hill climbing. However, since only one
candidate solution is maintained in the search process, and there are no interactions between
the generated solutions, it would be more appropriate to name it hill climbing.

3. Related Studies

Before Johansson posed the image reconstruction problem, researchers had examined
similar problems. Castro et al. [46] proposed a clone selection algorithm (CLONALG) that
minimized the affinity maturation of the immune response. The principle was that only
cells that recognized the antigens were selected to proliferate. The selected cells underwent
a maturation process that improved their affinity to the antigens. The authors applied the
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algorithm to perform machine learning and pattern-recognition tasks. One of the tasks
they tested was to restore grey number images from random pixel values. As the search
progressed, the candidate solutions in the memory cell gradually approached the original
images. For a demonstration of the optimization process, interested readers can refer to [46].
This problem can be regarded as a special case of the image reconstruction problem, where
the polygons are replaced by pixels. Since the goal is to approximate small-scale grey
images, the number of parameters to be optimized is much smaller than that of the image
reconstruction problem.

Tian and Ha [47] revisited the use of EAs for computational creativity and developed
an evolution strategy (ES) for generating art images. The ES was used to fit both concrete
images and abstract concepts. The task of fitting concrete images is the same as image
reconstruction, in which the objective function is defined as L2, i.e., the loss between the
generated image and the source image. Fitting abstract concepts is less straightforward
than fitting concrete images. An abstract concept was given in the form of a text prompt.
The match degree of the generated image and the given text prompt was measured using a
transferable visual model called CLIP. CLIP jointly trained a text encoder and an image
encoder to predict the correct pairing of texts and images. The text prompt and the
generated image were fed into the text encoder and the image encoder, respectively. The
objective function was defined as the cosine distance between the output of the text encoder
and the output of the image encoder. The ES was used to adjust the parameters of the
polygons with the aim of minimizing the cosine distance. As the evolution progressed, the
generated image gradually matched the abstract concept indicated by the given text prompt.
Interested readers can refer to [47] for some interesting examples of abstract concept fitting.

4. Progressive Learning Hill Climbing Algorithm with an Energy-Map-Based
Initialization Operator

In this section, we first illustrate the idea behind the progressive learning strategy and
explain how the strategy can be used to circumvent the challenges posed by the image
reconstruction problem. We developed a new algorithm named ProHC by combining the
progressive learning strategy with the hill climbing algorithm. Furthermore, to improve
the search efficiency, an energy-map-based initialization operator was designed to better
adjust the parameters of the polygons.

4.1. Progressive Learning Strategy

The image reconstruction problem is very challenging since it involves a large number
of decision variables. In addition, the variables are highly correlated. Slight changes in
the parameters of one polygon affect the appearance of other polygons stacked in the
same position. Although hill climbing is able to generate quite appealing results for this
problem, there is still large room for improvement. The search efficiency can be further
enhanced if the challenges can be overcome. Motivated by the successful application of the
progressive learning concept in mathematical optimization and deep learning areas [41–43],
we developed a progressive learning strategy for solving the image reconstruction problem.

The basic idea of the progressive learning strategy is very simple. Instead of simulta-
neously optimizing the parameters of all the polygons, we adjusted the color, transparency,
and vertices of the polygons sequentially. A newly generated polygon was stacked on top
of the previous polygons after the parameters of the polygons were sufficiently optimized.
This process amounted to transforming the original complex problem into a sequence of
simpler problems. Starting from a single polygon, we gradually increased the number of
decision variables by adding new polygons on top of the existing ones. The last problem
in the problem sequence was the same as the original problem. This guaranteed that
solutions to any problem in the problem sequence were partial solutions to the original
problem. The progressive learning strategy is illustrated in Figure 4 from both genotype
and phenotype viewpoints.
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The pseudo-code of the hill climbing algorithm with the progressive learning strategy
is presented in Algorithm 5. In contrast to traditional hill climbing, ProHC stacks the
polygons layer by layer until the number of polygons reaches the predefined limit. The
polygons in different layers have different probabilities of mutation. Polygons in newer
layers have higher probabilities. Specifically, the selection probabilities are assigned as
follows. In the initial phase, there is only one polygon. All the attention is focused on
the optimization of the first polygon. When the objective function value has not been
improved for a number of successive trials, one should check whether the inclusion of the
previously added polygon contributed to a reduction in the objective function value. If the
condition is false, then the previously added polygon should be reinitialized. Otherwise,
a new polygon is added to the canvas. In subsequent iterations, half of the mutation
probability is assigned to the new polygon. The remaining probability is assigned to the
preceding polygons according to a geometric sequence. Every time a new polygon is
added, ProHC reassigns the probabilities in the same manner. Finally, after the number
of polygons reaches the predefined number limit, all the polygons are assigned equal
probabilities of mutation. In this phase, the problem becomes the same as the original
problem. Through the progressive learning process, a high-quality initial solution is
obtained. The remaining computational resources (objective function evaluations) are used
to fine-tune the parameters of the polygons.
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Algorithm 5 Progressive learning hill climbing for image reconstruction

Input: Source image X, number of polygons m, number of vertices in each polygon n.
Output: A sequence of polygons [P1, P2, . . . , Pm] with specified parameter values.
1: Generate an initialized solution S0 with a single polygon by randomly sample the parameter
values from the search range
2: Calculate the objective function value L0 of the initial solution S0
3: Compute the energy map E0
4: t = 0; k← 1, Vk ← L0; Cnt← 0 // stagnation counter
5: [pr1]← [1]
6: while t < MaxFEs:
7: St+1←St
8: i← rand_int(k, [prk,, . . . , pr1])
9: r1 = rand(0, 3)
10: if r1 < 1 then:
11: Mutate_color(St+1.Pi)
12: else if r1 < 2 then:
13: Mutate_vertex(St+1.Pi)
14: end if
15: Calculate the objective function value Lt+1 of the new solution St+1
16: if Lt+1 < Lt then:
17: St+1 ← St, Cnt← 0
18: else:
19: Cnt← Cnt + 1;
20: end if
21: t← t + 1;
22: if Cnt > limit and k < m then:
23: if Lt+1 < Vk then:
24: Update the energy map E
25: Generate a random polygon Pk+1
26: Energy_map_based_initialization(Pk+1)
27: St+1 ← [St+1, Pk+1]
28: [prk+1, prk, . . . , pr1]← normalize([2−1, 2−2, . . . , 2−k, 2−(k+1)])
29: Vk ← Lt+1; k = k+1, Cnt← 0
30: else:
31: Energy_map_based_initialization(St+1.Pk)
32: Cnt← Cnt + 1
33: end if
34: end if
35: if Cnt > limit and k = m then:
36: [prm, prm−1, . . . , pr1]← [1/m, 1/m, . . . , 1/m]
37: end if
38: end while

Figure 5 illustrates the probability assignment process using an example with five
stages. When solving the i-th problem, the parameters of the previous i − 1 polygons are
inherited from the solution of the (i− 1)th problem. These parameters have been optimized
for a relatively large amount of time. In comparison, the parameters of the i-th polygon are
new to the algorithm. Therefore, a larger amount of effort is spent on the new parameters
by assigning a higher mutation probability to the i-th polygon. For the parameters of the
previous i − 1 polygons, it can be inferred that the smaller the polygon number, the longer
the time spent on its parameters. In order to make sure that all the parameters have similar
chances of mutation, the probability assigned to each polygon is determined based on a
geometric sequence. The probabilities in each stage are normalized so that they sum to one.
In this way, the total mutation probability of each polygon across multiple stages is roughly
the same.
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The progressive learning strategy has two advantages. First, it can circumvent the
challenges posed by the image reconstruction problem. In the problem sequence, solutions
to the former problem can serve as partial solutions to later problems. Therefore, relatively
good starting points can be obtained for the later problems by first optimizing the former
problems. The former problems involve only a small number of polygons and have less
control parameters. They are much easier to solve. Solving the problems one after another
provides a high-quality initial solution for the original complex problem and makes the
optimization process much easier. The second advantage is that the progressive learning
strategy can reduce the evaluation time of the objective function. To calculate the objective
function value of a candidate solution, one needs to draw the polygons on a blank canvas
and then compute the element-wise differences between the generated image and the
source image. Since the problems in the problem sequence encode less polygons than the
original problem, it is less time-consuming to compute the reconstruction function f, and
therefore the total running time of ProHC can be significantly reduced.

One thing worth noting is that ProHC does not incorporate an exclusion operator. The
purpose of the exclusion operation is to remove redundant polygons. ProHC-EM has a
similar mechanism that plays the role of the exclusion operator. Suppose that the final
solution to the (i − 1)th problem is Si−1, and its objective function value is fi−1. One moves
forward to the i-th problem by stacking the i-th polygon on top of the existing ones. After a
period of optimization, one finds a solution Si to the i-th problem. If the objective function
value of Si is worse than fi−1, the i-th polygon is reinitialized, and the optimization process
is repeated. In this way, one can ensure that each newly added polygon is not redundant
and contributes to the improvement of the objective function value.

4.2. Initialization Assisted by an Energy Map

In the progressive learning strategy, each time a new polygon is appended to the
canvas, the parameters of the polygon are randomly sampled from their feasible regions.
However, there exist more efficient ways to initialize the parameters. Since the goal of
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image reconstruction is to generate an image that matches the source image, it is reasonable
to place new polygons on regions where the differences between the generated image and
the source image are significant. When determining the vertices of the newly generated
polygons, higher probabilities can be directed to positions with large biases.

To this end, we needed to construct a matrix that recorded the sum of element-wise
absolute differences across the channel dimension between the generated image and the
source image. The matrix is referred to as an energy map. High energies correspond to
high differences. The energy map provides useful information about which part of the
generated image is dissimilar to the source image. One can use this information to guide
the initialization of the newly added polygons. Motivated by this finding, we developed
an energy-map-based initialization operator. Every time a new polygon is added to the
canvas, the operator is adopted to initialize the vertices of the polygon.

Algorithm 6 Energy-map-based initialization

Input: A polygon Pi, energy map E.
Output: Initialized Pi.
1: j← rand_int(n)
2: Pi.r← rand(), Pi.g← rand(), Pi.b← rand(), Pi.a← rand()
3: Compute the probability matrix Pr
4: Compute the supplemental matrix MX
5: for k = 1, . . . , n:
6: r1 = rand(0, 1)
7: Find the first element (I, j) in matrix MX that has a larger value than r1
8: Pi.(xk, yk)← (i, j)
9: end for

The pseudo-code of the energy-map-assisted initialization operator is presented in
Algorithm 6. Instead of randomly initializing the positions of the vertices, probabilities are
assigned to pixels with respect to their corresponding energies. Specifically, the probability
of selecting position (i, j) as a vertex of the polygon is calculated as follows:

Pri,j =
Ei,j

∑W
i=1 ∑H

j=1 Ei,j
, (3)

where Ei,j denotes the energy associated with pixel (i, j), which is defined as follows:

Ei,j =
C

∑
k=1

∣∣∣Xi,j,k −Yi,j,k

∣∣∣. (4)

To sample the vertices of the new polygon, a supplemental matrix MX is first com-
puted. The elements of MX are the cumulated probabilities of matrix Pr. Specifically, the
element mxi,j in position (i, j) is computed as follows:

mxi,j =
i−1

∑
k=1

H

∑
l=1

Prk,l +
j

∑
l=1

Pri,l . (5)

When sampling a new vertex, a random real value r whin [0, 1] is generated. Then, one
retrieves the first element mxi,j in matrix MX whose value is larger than r. The coordinate
(i, j) is selected as the position of the new vertex. All vertices of the new polygon are
determined in the same manner. In this way, there is a higher probability that the new
polygon is placed on the most critical regions. With the energy-map-based operator,
ProHC-EM (ProHC with an energy map) can avoid wasting effort on low-energy regions
and further increase the search efficiency. The proposed approach relates to bionics in
two ways:
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• HC is a useful tool in bionics for optimizing the performance of artificial systems
inspired by biological systems. The proposed progressive learning strategy can be
embedded into HC to further improve its effectiveness. By mimicking the problem-
solving procedures of human beings, ProHC can generate effective solutions to com-
plex design problems, allowing researchers to create artificial systems that are more
similar to biological systems in their structure, function, and behavior.

• ProHC-EM incorporates a mutation operator that mimics the process of evolution
that occurs in biological systems. An incremental change is made to the candidate
solution by mutating position-related or color-related parameters of a selected polygon.
Moreover, an energy-map-based initialization operator was designed to help the
algorithm target the most critical regions of the canvas and place new polygons on
these regions. The effect of the energy map is similar to the heat-sensing pits of snakes
in biology. The heat-sensing pits allow snakes to target prey by detecting the infrared
radiation of warm-blooded animals.

4.3. Complexity Analysis

The proposed algorithm (shown in Algorithm 5) contains six major steps, namely,
initialization, mutation, replacement, energy map update, and polygon increment. The
initialization procedure (lines 1–5) runs in O(mn + HW) time. It is only executed once at
the beginning of the algorithm. The other procedures are in the main loop of ProHC-EM
and are executed repeatedly. Both mutation (lines 8–14) and replacement (lines 15–20)
procedures consume a constant time. The time spent on the energy map update (line 24)
is O(HW). The procedure used to determine whether to add a new polygon (lines 21–34)
requires O(HW) time. The energy-map-based initialization is the most time-consuming step
that dominates the other terms. According to the pseudo-code provided in Algorithm 6,
the running time of the procedure is O(nHW). Therefore, the overall time complexity of
ProHC-EM is O(nHW) per iteration. In cases where n is set to small integers, the integration
of the proposed progressive learning strategy and the energy-map-based initialization do
not impose a serious burden on the complexity.

5. Experimental Study

In this section, we present experiments carried out to study the performance of the
hill climbing algorithm developed based on the progressive learning strategy. We first
constructed a set of benchmark test cases that contained different types of images. Then,
the performance of ProHC-EM was evaluated in terms of the final objective function
value and running time. The effect of the progressive learning strategy, as well as the
energy-map-based initialization operator, are investigated in this section.

5.1. Experimental Setup
5.1.1. Test Cases

A set of test cases with different characteristics were collected to examine the algo-
rithm’s ability to reconstruct images. The benchmark set contained eight 200 × 200 images.
They were divided into four categories. The first category contained two famous portrait
paintings, i.e., the ‘Mona Lisa’ and the ‘Girl with a Pearl Earring’. The second category
consisted of the logos of two popular web browsers (Chrome and Firefox). The images in
the third category were photos of animals (i.e., a cat and a dog). The last category consisted
of two famous artworks from impressionist artists, namely, ‘The Starry Night’ and ‘The
Scream’. Figure 6 depicts the test cases. It can be observed that the second category was
the easiest among the four categories, since the images involved a small number of solid
colors, and the subjects were composed of simple geometric shapes. The last category was
more difficult to reconstruct due to the features of impressionist paintings. In impressionist
paintings, the essence of subjects is captured by short, thick strokes of paint. The artists
produce greys and dark tones by mixing complementary colors.
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5.1.2. Performance Metric

To evaluate the quality of the reconstructed image, a performance metric that revealed
the similarity between the reconstructed image and the source image needed to be specified.
In the experiment, the complete percentage (CP) [44] was used as the performance metric.
Specifically, this metric is defined as follows:

CP =
MaxL− Lbest

MaxL
× 100, (6)

where Lbest is the loss of the current best solution found, and MaxL is the difference between
the source image and the blank canvas. This is computed as follows:

MaxL = Loss(X, B), (7)

where X is the source image, and B is the blank canvas whose pixel values equal zero. The
larger the complete percentage, the better the performance of the reconstruction algorithm.
Note that it was feasible to directly use the sum of element-wise absolute differences
(i.e., Lbest) to evaluate the algorithm performance. However, the loss functions had different
ranges for different test cases. Therefore, it was difficult to interpret the loss function
value. In comparison, the complete percentage indicated how well the reconstructed image
matched the source image. A 100% CP value would indicate that the reconstructed image
was exactly the same as the source image, while 0% would indicate that the reconstructed
image was a blank canvas.

5.2. Overall Performance

To show the overall effect of the proposed progressive learning strategy and the energy-
map-based initialization operator, we compared ProHC-EM with the mutation-based hill
climbing algorithm (denoted as HC) [44]. The termination criterion of the two algorithms
was defined by the maximum number of fitness evaluations (MaxFEs). Specifically, MaxFEs
was set to 5 × 105 for all eight test cases. For each test case, 50 polygons were used to
approximate the source image, and each polygon had three vertices, namely, m = 50 and
n = 3. In the progressive learning strategy, the threshold value used to determine whether
to add a new polygon was empirically set to 1000. To obtain statistically reliable results,
both algorithms ran 25 times for each test case. The hyperparameters of ProHC-EM were
set based on the following considerations:
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• The hyperparameter n determined the number of end points of each polygon. Con-
sidering that triangles are the simplest type of polygon and can be used as building
blocks for more complex polygons, n was set to 3.

• The hyperparameter m controlled the number of polygons used to reconstruct an
image. Generally speaking, the larger the m value, the higher the precision of the
reconstructed image. However, setting m to a large number would significantly
increase the optimization time. The goal of the experimental study was to examine the
effectiveness and robustness of the new strategies. Therefore, we made a compromise
by setting m to 50.

• The hyperparameter MaxFEs was used to determine the termination criterion of
the optimization algorithms. When m was set to 50 and n was set to 3, there were
500 decision variables in total. The hyperparameter MaxFEs was set to 1000 times the
number of decision variables.

The experimental results of the algorithms for all eight test cases are listed in Table 1,
with better results marked in bold. Table 1 provides the average CP values over 25 inde-
pendent runs as well as the standard deviations. Moreover, we conducted a Wilcoxon sign
rank test to examine the differences between the numerical results of the two algorithms.
The p-values of the statistical tests are also included in Table 1. From the table, it can be
observed that ProHC-EM consistently outperformed HC in all the test cases. For each
test case, ProHC-EM surpassed HC by approximately one percent. It is worth noting that
increasing the CP value in the late optimization stage was much harder than in the early
optimization stage. This was because the high-energy region was gradually divided into
many small parts as the optimization progressed. To reduce the energy in these small
parts, we needed to fine-tune the parameters of the deployed polygons. This required a
large number of fitness evaluations. From this point of view, the improvements brought
by the progressive learning strategy and energy-map-based initialization were significant.
Another observation was that ProHC-EM had lower standard deviations, indicating that
ProHC-EM had more stable performance than HC. According to the p-values listed in
Table 1, the CP values obtained by ProHC-EM were statistically different from those of
HC at a significance level of α = 0.05. It is worth pointing out that the average CP values
obtained by ProHC-EM for the second category were the highest among the four categories,
while the numerical results for the fourth category were the lowest. This matched our
intuition that the second category of images would be the simplest to reconstruct and the
fourth category contained the most difficult test cases.

Figure 7 shows the final results of ProHC-EM and HC for the eight test cases. As can
be seen in Figure 7, although the outlines of the reconstructed images were similar to the
source images, they were still sketchy. This was because only a small number of polygons
(triangles) were used for reconstruction. It was very difficult to capture the details of the
source images. To examine the capability of ProHC-EM to fit the images at a fine-grain level,
we increased the number of polygons to 1000, and MaxFEs was set to 2 × 107. When m was
set to 1000, there were 10,000 decision variables in total. The hyperparameter MaxFEs was
set to 1000 times the number of decision variables, enlarged by an additional factor of
two. This was because the problem complexity increased dramatically as the number of
variables increased. The CP indexes achieved by ProHC-EM are reported in Table 2, and
the final outputs are displayed in Figure 8. From the figure, it can be seen that more details
could be encoded by the parameters of the polygons as the number limit increased.
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Table 1. CP indexes of HC and ProHC-EM for the eight test cases. The best CP value for each test
case is marked in bold.

Test Case HC ProHC-EM

T1

Avg. CP 90.216022 91.14915

Std. 0.291988 0.315745

p-value 6.57 × 10−9 NA

T2

Avg. CP 82.286052 83.368967

Std. 0.669923 0.664684

p-value 8.86 × 10−6 NA

T3

Avg. CP 94.812015 95.880083

Std. 0.5838 0.302158

p-value 3.02 × 10−7 NA

T4

Avg. CP 94.478735 95.258706

Std. 0.337458 0.268194

p-value 1.46 × 10−8 NA

T5

Avg. CP 90.902941 91.236053

Std. 0.251318 0.3872

p-value 8.46 × 10−4 NA

T6

Avg. CP 87.388913 88.161543

Std. 0.595359 0.710967

p-value 1.43 × 10−4 NA

T7

Avg. CP 82.625574 83.331248

Std. 0.293361 0.284199

p-value 5.55 × 10−8 NA

T8

Avg. CP 74.261942 74.601508

Std. 0.483394 0.389186

p-value 5.53 × 10−3 NA

Table 2. CP indexes of ProHC-EM for the eight test cases when m was set to 1000.

Test Case ProHC-EM

T1 96.137704

T2 94.523666

T3 99.518189

T4 97.861221

T5 97.038022

T6 96.554793

T7 91.590823

T8 85.322624
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Figure 8. Reconstructed images produced by ProHC-EM with 1000 triangles for the four categories
of test cases. (a) Reconstructed images of famous portrait paintings; (b) reconstructed images of
popular browser logos; (c) reconstructed images of animal pictures; (d) reconstructed images of
impressionist paintings.



Biomimetics 2023, 8, 174 18 of 23

5.3. Running Time Comparison

In this subsection, we compare the running time of ProHC-EM with that of HC. The
algorithms were implemented in C++ and compiled using the Microsoft compiler. To
calculate the objective function value of a candidate solution, a decoding process that
transformed the parameters of the polygons into a reconstructed image was required.
The decoding process was implemented using OpenCV functions. Both algorithms were
executed on a workstation running Windows 10. The workstation was powered by two
Intel Xeon Gold 5218R CPUs with 64 GB memory.

The experimental results of the algorithms are depicted in Figure 9. The results were
averaged over 25 independent runs. From the figure, it can be seen that the average
running time of ProHC-EM was much lower than that of HC. ProHC-EM reduced the
running time by approximately 60%. This was attributed to the working principle of the
progressive learning strategy. Starting from the blank canvas, ProHC-EM stacked the
polygons sequentially as the optimization progresses. Therefore, in the early optimization
stage, only a small number of polygons needed to be drawn when evaluating the objective
function value of candidate solutions. This feature reduced the number of OpenCV function
uses. Note that implementing the OpenCV function was the most time-consuming step in
the objective function evaluation, so a significant amount of time was saved.
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5.4. Effect of Mutation Range

In this subsection, we study the effect of the mutation range. The goal of the mutation
operator was to find moving directions that could reduce the objective function value by
making small changes to the candidate solution. A large mutation range would bring
large changes to the candidate solution and cause oscillations, which would be detrimental
to the convergence of the algorithm. In Algorithm 3, a random value within 10% of the
parameter domain was added to the positional parameters of the polygons. To investigate
the influence of the mutation range, nine different settings of the mutation range (i.e.,
0.1 to 0.9) were examined on the test cases. The experimental results of ProHC-EM with
different mutation ranges are listed in Table 3. It can be observed from the table that the
final CP indexes dropped as the mutation range increased, indicating that a large mutation
range was not suitable for fine-tuning the parameters of the polygons.
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Table 3. CP indexes of ProHC with different mutation ranges for the eight test cases. The best CP
value for each test case is marked in bold.

Test Case Mutation Range 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T1
Avg. CP 91.14915 90.87189 90.70037 90.59070 90.50501 90.34281 90.48234 90.33044 90.26642

Std. 0.31575 0.33278 0.35830 0.33569 0.38663 0.35651 0.31498 0.33974 0.41427

T2
Avg. CP 83.36897 82.47898 82.61518 82.50591 82.22858 81.93730 82.22872 81.25461 81.25461

Std. 0.66468 0.78430 0.80984 0.96699 0.74271 0.73894 0.88683 0.95879 0.95879

T3
Avg. CP 95.88008 95.52075 95.49631 95.46927 95.13949 95.06237 94.89285 95.10121 95.23188

Std. 0.30216 0.51806 0.45107 0.52618 0.65007 0.70568 0.58218 0.51750 0.76543

T4
Avg. CP 95.25871 92.17570 91.84952 91.73971 91.86117 91.65076 91.43410 91.78058 91.52568

Std. 0.26819 0.63846 0.56765 0.75720 0.63565 0.56570 0.71608 0.54735 0.52018

T5
Avg. CP 91.23605 89.41844 89.11147 88.81204 88.72750 88.76321 88.81424 88.66988 88.55271

Std. 0.38720 0.58290 0.56171 0.55275 0.57020 0.56621 0.56117 0.66138 0.54113

T6
Avg. CP 88.16154 83.04914 82.36449 82.21335 82.22623 82.46466 81.59485 81.74754 81.67813

Std. 0.71097 0.89787 1.09454 0.86865 0.89170 0.80457 0.81495 0.62258 0.67681

T7
Avg. CP 83.33125 83.29202 83.06892 82.87703 83.01335 83.00752 82.91494 82.87398 82.65907

Std. 0.28420 0.32702 0.41808 0.43390 0.46488 0.43877 0.31222 0.33542 0.51470

T8
Avg. CP 74.60151 74.41921 74.25212 74.14972 74.05667 74.25279 73.88122 73.86801 74.00551

Std. 0.38919 0.48475 0.55026 0.58210 0.51648 0.48708 0.59222 0.46899 0.50670

5.5. Effect of the Energy-Map-Based Initialization

In this subsection, we proceed to study the effect of the energy-map-based initialization
operator. To investigate the pure effect of the operator, we removed the operator from
ProHC-EM, and the resulting algorithm is denoted as ProHC. ProHC was compared
with ProHC-EM to show the influence of the initialization operator on the final solution
quality. The experimental results are tabulated in Table 4, with better results highlighted in
bold. A Wilcoxon signed rank test was conducted to check whether there were significant
differences between the results of ProHC and ProHC-EM. Table 4 also lists the p-values
output by the statistical tests.

From the table, it can be observed that ProHC was consistently beaten by ProHC-EM
in all eight test cases. The p-values for all the test cases were smaller than 0.05, indicating
that there were significant differences between the results of the two algorithms. With
the assistance of the energy-map-based initialization operator, the newly added polygons
could be placed on high-energy regions with a high probability. ProHC-EM was capable of
reducing the energy by focusing its attention on the most critical region. In this way, the
search efficiency was significantly increased. According to the standard deviations listed
in the table, the initialization operator could also make the performance of the algorithm
more stable.

One thing worth noting is that the energy map had the same size as the source image.
The elements in the energy map could be interpreted as pixel values. Therefore, we could
display the energy maps as if they were grey images. To demonstrate the changes in the
energy maps, Figure 10 depicts the energy maps at different stages of the optimization
process when solving the first test case. The brighter the pixel, the higher the energy. It can
be observed that at the initial optimization stage, the reconstructed image approximated
the source image very poorly. As the optimization progressed, the energy map became
darker and darker, indicating that the differences between the reconstructed image and
the source image were shrinking. At the end, only small parts of the image had not been
recovered by the polygons.
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Table 4. CP indexes of ProHC and ProHC-EM for the eight test cases. The best CP value for each test
case is marked in bold.

Test Case ProHC ProHC-EM

T1
Avg. CP 90.395986 91.14915

Std. 0.708987 0.315745

p-value 5.91 × 10−5 NA

T2
Avg. CP 81.990398 83.368967

Std. 1.197063 0.664684

p-value 4.24 × 10−5 NA

T3
Avg. CP 94.300562 95.880083

Std. 1.066847 0.302158

p-value 5.85 × 10−9 NA

T4
Avg. CP 94.407076 95.258706

Std. 0.668713 0.268194

p-value 3.53 × 10−6 NA

T5
Avg. CP 90.270867 91.236053

Std. 0.580166 0.3872

p-value 4.10 × 10−7 NA

T6
Avg. CP 87.462471 88.161543

Std. 0.947679 0.710967

p-value 5.21 × 10−3 NA

T7
Avg. CP 82.71647 83.331248

Std. 0.506035 0.284199

p-value 8.10 × 10−6 NA

T8
Avg. CP 73.668609 74.601508

Std. 0.746615 0.389186

p-value 2.92 × 10−6 NA
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For future research, it would be interesting to design more efficient algorithms to 
reconstruct high-resolution images. A promising approach is to divide high-resolution 
images into small parts and approximate these small parts separately. The benefit of this 
approach is that the reconstruction processes for all the small parts can be run in parallel. 
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6. Conclusions

In this paper, we proposed a progressive learning hill climbing algorithm with an
energy-map-based initialization operator to solve the image reconstruction problem. The
image reconstruction problem is an interesting yet challenging problem that involves the
reconstruction of images using simple geometric shapes. The problem comprises a large
number of decision variables that specify the position, color, and transparency of the
geometric shapes. The decision variables are highly correlated with each other. To tackle
the challenges imposed by this problem, we took inspiration from methods in mathematical
optimization and deep learning and developed a progressive learning strategy. The strategy
transforms the original complex problem into a sequence of simpler problems. The former
problems in the sequence contain fewer decision variables and are easier to solve. Solving
the sequence of problems one after another provides a good initial solution to the original
complex problem. Furthermore, to increase the search efficiency, an energy-map-based
initialization operator was devised to provide good initial positions for the newly added
geometric shapes in the progressive learning process.

Comprehensive experiments were conducted on a set of benchmark test cases to exam-
ine the effect of the progressive learning strategy and the energy-map-based initialization
operator. The experimental results revealed that these processes could enhance the final
solution quality and reduce the running time.

For future research, it would be interesting to design more efficient algorithms to
reconstruct high-resolution images. A promising approach is to divide high-resolution
images into small parts and approximate these small parts separately. The benefit of this
approach is that the reconstruction processes for all the small parts can be run in parallel.
Another research direction worth investigating is how to measure the differences between
the reconstructed image and the source image. In our experiment, the sum of the element-
wise absolute differences between the constructed image and the original image was used
as the objective function. If our goal is to generate visually similar images, some differences
that are imperceptible to humans can be omitted. In this scenario, delta-E [48] can probably
be adopted to represent the difference between two colors. We believe that in the future,
the emergence of an efficient image reconstruction algorithm will probably give rise to a
new sort of compression algorithm, i.e., search-based compression algorithms.
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