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Abstract: Sensor fusion is a technique that combines information from multiple sensors in order
to improve the accuracy and reliability of the data being collected. In the context of teleoperation
control of an anthropomorphic robotic arm, sensor fusion technology can be used to enhance the
precise control of anthropomorphic robotic arms by combining data from multiple sensors, such
as cameras, data gloves, force sensors, etc. By fusing and processing this sensing information, it
can enable real-time control of anthropomorphic robotic arms and dexterous hands, replicating the
motion of human manipulators. In this paper, we present a sensor fusion-based teleoperation control
system for the anthropomorphic robotic arm and dexterous hand, which utilizes a filter to fuse data
from multiple sensors in real-time. As such, the real-time perceived human arms motion posture
information is analyzed and processed, and wireless communication is used to intelligently and
flexibly control the anthropomorphic robotic arm and dexterous hand. Finally, the user is able to
manage the anthropomorphic operation function in a stable and reliable manner. We also discussed
the implementation and experimental evaluation of the system, showing that it is able to achieve
improved performance and stability compared to traditional teleoperation control methods.

Keywords: sensor fusion; anthropomorphic robotic arm; teleoperation control

1. Introduction

The development of anthropomorphic robotic arms has received more and more
attention in the robot industry in recent years [1]. By analyzing the human arm skeleton,
joint movements and muscle forces in depth, the anthropomorphic robotic arm aims to
develop a human-like mechanical structure, motion planning and control theory [2,3]. The
practice has proved that anthropomorphic robotic arms can assist or even replace humans
to complete auxiliary and heavy tasks in multiple fields, such as industry and biomedical
and social services [4,5]. In particular, the anthropomorphic robotic arms with humanized
control, such as Yumi robotic arm, Robonaut2 robotic arm and Justin robotic arm, can be
more flexible and coordinated.

Traditional control of anthropomorphic robotic arms suffers from various limitations.
Direct use of control instructions to control robot action is a complex and mechanized
operation, easily causing operator fatigue and low efficiency [6], and requires prior training
of the operator. Although the human–computer interaction mode of the graphical interface
improves the quality of interaction, it still cannot remove the command input of the mouse
and keyboard [7,8], and the efficiency improvement is not obvious. Additionally, the
manual controller provides more limited space for the operator.
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Teleoperation control based on body sensors has the characteristics of stability and
flexibility, which can better simulate human movement and meet the needs of contactless
service under epidemic conditions [9–12]. Among the many signal sources available, the
motion of the arm is an accurate and stable signal source for hand tracking and arm
movement [13]. Currently, arm-based teleoperated devices can be divided into wearable
and non-wearable types [14]. Wearable sensors, for example, Myo arm rings and body
gloves [15], take the sensor (inertial sensor, bending sensor) signal as the input signal to
detect the EMG signal of the external surface of the hand [16,17], which can quickly and
accurately receive the arm movement information and is not affected by light, occlusion
and other factors. However, wearing the sensor for a long time can cause discomfort and
cumbersome operations that require calibration before use [18]. Non-wearable sensors are
mainly depth cameras, such as Kinect, Leap Motion and other binocular cameras, which
use arm images as input signals to identify the joints of the hand and thus calculate the
posture information of the human arm without the need for wearable devices [19], which
is more flexible and convenient, but susceptible to the effects of occlusion and lighting
conditions, and requires computationally heavy and complex algorithms [20].

Because of the limited single-mode equipment, the arm tracking is not complete [21],
making the complex control application impossible. Only within 60° of palm rotation can
the leap motion sensor (horizontal field of view angle 140°, vertical field of view angle
120°, interaction depth 10–60 cm) fully recognize the hand. When the palm rotation is at
90 degrees or even at a rotation of 180 degrees, there is finger occlusion, and it is unable to
identify the correct movement of the fingers [22,23]. Vision-based robot control, especially
visual servo-control algorithm research results [24] are numerous [25]. Andrzej Milecki
calibrated the vision system, and then recognized the position of three markers assembled
on the operator’s hand and arm, and used it for the control system of an electro-hydraulic
servo-driven two-axis manipulator to track the human hand [26]. Y. Benezeth proposed a
vision-based static camera indoor human detection and tracking system, which improves
the performance of the entire system and reduces the complexity of the task [27].

Some researchers combine different teleoperation device [28] modes to improve arm
tracking accuracy and stability. The experimental results of multimodal fusion, for example,
Myo Armband and Leap Motion camera fusion [23,29], Kinect and EMG Fusion [30], Leap
motion and data glove fusion [31,32], Vision and EEG [33], etc., have effectively verified
the complementary advantages of multi-modal information.

Conventional robots are mainly controlled based on single-modal signals, and their
control robustness is poor and vulnerable to the external environment. However, dual-
arm robot control based on multi-modal signal sensing has not only greatly improved
the flexibility and accuracy of the dual-arm robot control under unknown environmental
conditions, but also ensured that the dual-arm robots work more reliably in the process
of cooperative operation. In this paper, we designed a dual-arm tracking control system
based on multimodal signal perception, fusing the signals from the Kinect vision sensor,
data glove and force sensor by using the algorithm, used it to control the anthropomorphic
robotic arm and dexterous hand in real-time, and then verified the effectiveness and stability
of multimodal signal perception and control of data:

• Multimodal sensor fusion control overcomes the inherent defect of single mode and is
more flexible and applicable to the operator.

• Multimodal sensor fusion control conforms to the characteristics of bionics in humanoid
motion to improve the coordination and naturalness of dual-arm robot control.

• Multimodal sensor fusion teleoperation control has higher efficiency and can be carried
out much more smoothly.

In general, one arm of the human body has a scapula, a clavicle, a humerus, a radius,
an ulna, 8 wrist bones, 5 metacarpals and 14 phalanges. The shoulder joint corresponds to
a spherical sub (rotation about X, Y and Z axes) with three degrees of freedom; the elbow
joint corresponds to a rotational sub (rotation about X axis) with one degree of freedom; the
wrist joint has two directions of rotation (rotation about X and Z axes) with two degrees of
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freedom; the ulna and flexor bones, which connect the wrist joint to the elbow joint, have a
cross-rotational motion between them (rotation about Y axis) with one degree of freedom.

2. Methodology
2.1. Mechanical Structure

As new materials, new structures and advanced control methods are rapidly develop-
ing, bionic robots are gradually moving from the stage of imitating the shape and behavioral
gait of creatures to a biomimetic system based on electromechanical systems and biological
characteristics. Bionic arm robots are mainly designed to imitate the human arm system
and realize the characteristics and functions of human assignments. When compared with
traditional mechanical arms, bionic arm robots are able to perform their assigned tasks
efficiently under various complex task conditions in terms of high efficiency, low energy
consumption and high environmental adaptability.

Bionic arm robots are mainly divided into bionic single-arm robots and bionic double-
arm robots. It is not only possible for bionic two-armed robots to work together with both
arms compared to anthropomorphic single-armed robots, but also are highly fault tolerant.
This greatly improves the operational performance of bionic two-armed robots and their
application ranges when they are confronted with complex tasks. Therefore, bionic dual-
armed robots are urgently needed for the industrial, the medical, the educational and other
fields [34].

The structural design of the anthropomorphic dual-arm robot is shown in Figure 1.

Figure 1. Mechanical structural design of anthropomorphic dual-arm robot.

The anthropomorphic robotic arm is mainly divided into the performing parts and the
functional parts, in which the performing part is equipped with five degrees of freedom.
It is mainly realized with the functional part to move and rotate in a certain space. It is
composed of two rotation degrees of freedom in the shoulder joint, two rotation degrees of
freedom in the elbow joint and one rotation degree of freedom in the wrist. The functional
part is mainly to realize the imitation of human hand movements. It is designed to grasp
and release the objects. In this way, the anthropomorphic robotic arm will be able to
accomplish grasping and releasing objects in a certain space through the cooperative
operation between the executive part and the functional part. Therefore, anthropomorphic
robotic arms are widely accepted in industrial and medical fields [35]. Other detailed
parameters are shown in Table 1.
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Table 1. Mechanical structure parameters.

Technical Requirements Parameters

Degree of freedom for anthropomorphic arms Five degrees of freedom
(single arm)

The drive form of anthropomorphic robotic arm Servo direct drive

Mechanical arm load capacity (number) 20 kg (3), 60 kg (2)

Geometric dimensions

Shoulder position-
ing

115 mm

Upper Arms 205 mm

Forearm 130 mm

Anthropomorphic
hand

200 mm

Maximum range

Shoulder 1 Servo 0–360°

Shoulder 2 Servo 0–180°

Elbow 3 Servo 0–180°

Elbow 4 Servo 0–90°

Wrist 5 Servo 0–180°

Degree of freedom for the dexterous hand Six degrees of freedom
(single-handed)

Fingertip force feedback sensor Multi-array flexible tactile
sensors

Basic parameters of force sensors

Area 15 mm ∗ 15 mm

Array Points 16(4 ∗ 4)

Force measure-
ment accuracy

±0.2 N

2.2. Acquisition System Components

The bionic dual-arm robots are mainly composed of multiple sensors to collect signals,
such as Kinect and data gloves, and these signals are fused and processed for accurate
control of the robots, in which the Kinect is used to collect the posture data of human
arms and the data gloves are used to receive the signals of human hand movements. Their
detailed functions and parameters are as follows.

The Kinect’s core technology is skeleton tracking technology, which is not only able
to accurately identify the relative position relationships between human skeletal points in
space, but also is capable of obtaining the 3D coordinate information about each joint of
the human body through the depth image data processing algorithm. The Kinect-based
skeleton tracking technology is able to convert the identified human skeletal data into
human joint angle data, and intelligent algorithms can be used to map the collected joint
data to each servo of the bi-arm robots, through the mutual cooperation of the servos, so as
to achieve the precision control and fast response of the bi-arm robots.

The Kinect sensor is used to capture the operator’s arm joint position and angle
information. The effective range of Kinect detection is 0.5 m–4.5 m, with a visual range
of 70 degrees horizontally and 60 degrees vertically. It can track up to 6 users’ position
information and support up to 25 skeletal nodes. As shown in Figure 2, the Kinect has
two cameras: an RGB camera on the left to acquire 1920 × 1080 color images at up to
30 frames per second, a depth sensor in the middle to detect the relative position of
the operator and an infrared emitter on the right to actively project modulated near-
infrared light.
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Figure 2. The primary functional components of Kinect.

The data glove collects information about the operator’s finger joint angle and palm
rotation. Figure 3 shows the structure of the data glove. It has embedded Bluetooth HC-08
4.0BLE, and the master mode automatically connects to the BLE slave. It contains five
potentiometers to detect the bending angle of each of the five fingers. It is equipped
with a gyroscopic acceleration sensor to detect the angular velocity, acceleration and tilt
information of the palm.

The control board type is Arduino UNO and the processor core is ATmega328. The
control board has 14 digital inputs/outputs (6 of which can be used as PWM outputs),
6 analog inputs, a 16 MHz crystal oscillator, a USB port, a power socket, an ICSP header
and a reset button in Figure 3.

The operator needs to initialize before using the glove: extend the arm and clench
the fist, move the fist vertically down and turn on the power. The middle LED will flash
rapidly several times, then the user extends the hand as far as possible. The LED flashes
again, indicating that initialization is complete.

Figure 3. Data glove and its principal functional components.

2.3. Data Preprocessing

Kalman filtering is a mathematical technique used for estimating the state of a system,
given noisy and uncertain measurements. It is often used in robotics and control systems
to improve the estimation and prediction of system states. The algorithm provides a
way to optimally combine prior knowledge, current measurements and a model of the
system’s dynamics to estimate the current state. In the context of a robotic arm following
an experimenter’s arm motion, the Kalman filter can be used to estimate the position,
velocity and acceleration of the experimenter’s arm using sensor measurements, such as
data from cameras, inertial measurement units (IMUs) or other tracking devices. The
measurements may be noisy, and there could be latency or delays in the processing pipeline.
The Kalman filter helps in dealing with these uncertainties, providing a more accurate
and timely estimate of the experimenter’s arm motion. By improving the estimation of
the experimenter’s arm motion, the Kalman filter can help the robotic arm to react more
quickly and accurately, reducing the delay time difference between them.
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Based on the discrete-time linear stochastic difference equation, the state space model
of the arm is

xk = Axk−1 + Buk−1 + wk−1 (1)

zk = Hxk + vk, (2)

where xk−1 is the arm state at the previous moment, xk is the estimated value of the arm
state at the current moment and zk is the measured value of the arm state at the current
moment. A, B and H are the state transition model, the control input model and the
observation model, respectively. wk−1 and vk are the process noise at the previous moment
and the measurement noise, respectively, assuming that they are independent and obey a
normal distribution N.

wk ∼ N(0, Q) (3)

vk ∼ N(0, R) (4)

where Q is the covariance of the process noise and R is the covariance of the measurement
noise. For the case of hand motion analysis, the control input uk emitted in the muscle
system is considered to be unknown. The motion model of the simplified arm is

xk = Axk−1 + wk−1. (5)

The state of the arm position including the shoulder, elbow and wrist is

xpos,k = Pk (6)

xshoulder,k = xshoulder,k (7)

xelbows,k = xelbows,k (8)

xwrist,k = xwrist,k. (9)

In Equation (6), Pk is the position Pk =
(

Px,k, Py,k, Pz,k

)
. The state transfer model and

observation model of the simplified arm are, respectively,

A = diag(1, 1, 1) (10)

H = diag(1, 1, 1). (11)

The Kalman filter eliminates the regularity error due to jitter and abrupt changes to
estimate the arm (shoulder, elbow and wrist) position. The Kalman filter algorithm, a
recursive predictive filtering algorithm, is used to estimate the state of the process and
to minimize the estimation mean square error. The covariance matrix of the prior state
estimate and the prior error in each cycle are

x̂k = Ak x̂k−1 (12)

Pk = AkPk−1 AT
k + Q, (13)

where x̂k is the covariance matrix of the prior state estimate. The prior estimate of x is
obtained from the posterior estimate of the previous moment and the input information,
and Pk is the prior mean squared error. Kalman gain is updated in each loop to correct the
state estimate of the posterior.

Kk = Pk HT
k /
(

HkPk HT
k + R

)
(14)

x̂k = x̂k + Kk
(
zk − Hk x̂k

)
(15)



Biomimetics 2023, 8, 169 7 of 18

where Kk is Kalman gain and x̂k is the posterior state estimate. The covariance matrix of
the errors is updated.

Pk = (I − Kk Hk)Pk (16)

Q =

σ2
x 0 0

0 σ2
y 0

0 0 σ2
z

 (17)

where Pk is the posterior mean squared error and Q is the system noise covariance matrix.

2.4. Implementation

The proposed sensor fusion teleoperation control system is described as shown in
Figure 4, which consists of three parts: the signal acquisition terminal, the control terminal
and the communication protocol.

Figure 4. Bionic dual-arm robot system.

The acquisition terminal consists of an operator, Kinect devices and data gloves. The
Kinect camera is used to collect the operator’s posture data of bilateral arms and data
gloves are used to collect the operator’s posture data of bilateral hands.

The signal control terminal is a miniature control processor, which can communicate
wirelessly through Bluetooth and TCP/IP. The control terminal is mainly composed of
two parts: anthropomorphic robotic arm and bionic dexterous hand. The anthropomorphic
robotic arm is used primarily as a mobile carrier. Each arm is servo-driven by 5 servos.
There are 2 servos of 60 kg torque in the shoulder joint, 2 servos of 20 kg torque in the
elbow joint and 1 servo of 20 kg torque in the wrist joint. Five servos are cooperated
with each other to achieve the function of humanoid arm movement. Therefore, the
anthropomorphic robotic arm is primarily used to reach the designated space location by
carrying a dexterous hand.
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The dexterous hand is consisted mainly of the hand mechanical structure, 6 driving
servos and 5 finger force feedback sensors, as well as soft and hard connection interfaces,
etc. Figure 5 is the display and installation of the dexterous hand. We can realize the
pressure signal collection at the finger tips of the dexterous hand by setting the force
feedback sensors, and further process the signal through our intelligent algorithm, so that
the dexterous hand will be more accurate in perceiving the pressure changes of the external
environment. Therefore, we are controlling the grip strength of the dexterous hand by
using force feedback, which makes the dexterous hand have improved human–computer
interaction performance. At the same time, the dexterous hand is not only able to achieve
adaptive grasping according to the shape of the object, but also to implement some basic
functions that imitate human hands, such as opening doors and carrying boxes.

In the teleoperation communication protocol, the acquisition terminal collects the
operator’s bi-arm and bi-hand posture information. Through the MATLAB filtering pro-
cessing and data fusion, the control algorithm is transmitted to the micro control processor
of the dual-arm robots by means of Wi-Fi connection, so as to be driven by each servo for
effective and precise control. Similarly, it is possible to give feedback on the positions to
MATLAB through the microcontroller. Therefore, the calibration of the actual trajectory
data of the multi-arm robots with the theoretical control data will be completed, and then
the intelligent algorithm will be used to realize the control stability and reliability from
the multi-arm robots. The communication connection between the MATLAB PC and the
micro control processor is established in the same Wi-Fi environment, and the data are
transmitted through the TCP/IP protocol.

Figure 5. The display and installation of the dexterous hand.

3. Kinematic Modeling

Although bionic single-arm robots are widely used in industrial, medical and service
fields, there are many limitations in the practical operation and functional realization of
bionic single-arm robots, which greatly limit the collaborative operation of bionic single-arm
robots in conditions such as equipment assembly or heavy lifting. In contrast, bionic two-
armed robots are capable of accomplishing complex tasks that bionic single-armed robots
are not able to achieve through the collaborative cooperation of both arms. Therefore, bionic
two-armed robots have become the focus of research in the field of intelligent robotics.

3.1. D(Denavit)–H(Hartenberg) Modeling

Firstly, we are required to number the connecting rods of the arm, we usually are
defining the fixed base as connecting rod 0, the first movable connecting rod as connecting
rod 1, and so on, and the end connecting rod of the arm is defined as connecting rod i. The
modified DH method is to establish the transformation coordinate system i on connecting
rod i, and it is a common rule to define the coordinate system of the connecting rod. The
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coordinate system of the 10-degree-of-freedom dual-arm system is established according to
the modified DH method in Table 2, as shown in Figure 6.

Figure 6. The double-arm anthropomorphic robot is constructed based on the improved DH method.

Table 2. Modified DH Parameters of the anthropomorphic bi-arm robot.

Link (i) θ (rad) d (mm) a (mm) α (rad) Offset (rad)

Left Shoulder Roll link θL
1 Ł1(265 mm) 0 pi/2 pi/2

Left Shoulder Pitch link θL
2 0 0 −pi/2 −pi/2

Left Elbow Roll link θL
3 Ł2(205 mm) 0 pi/2 0

Left Elbow Pitch link θL
4 0 0 −pi/2 0

Left Wrist Roll Link θL
5 Ł3(130 mm) 0 pi/2 0

Left Hand 0 Ł4(150 mm) 0 0 0

Right Shoulder Roll link θR
1 Ł1(265 mm) 0 −pi/2 pi/2

Right Shoulder Pitch link θR
2 0 0 pi/2 −pi/2

Right Elbow Roll Link θR
3 Ł2(205 mm) 0 −pi/2 0

Right Elbow Pitch Link θR
4 0 0 pi/2 0

Right Wrist Roll Link θR
5 Ł3(130 mm) 0 −pi/2 0

Right Hand 0 Ł4(150 mm) 0 0 0

The modified DH method is the XZ transformation process. The joint angle θ repre-
sents the rotation angle between coordinates with Zi axis as the rotation axis; the linkage
offset d represents the distance along the Zi axis direction; the linkage twist angle α repre-
sents the rotation angle with Xi−1 axis as the rotation axis; the linkage length a represents
the distance along the Xi−1 axis direction. The modified DH kinematic modeling is used
and is formulated as follows.

i
i−1T = RotXi (αi−1)TransXi(ai−1)RotZi−1(θi)TransZi−1(di)

=

1 0 0 0
0 cos αi−1 −sin αi−1 0
0 sin αi−1 cos αi−1 0
0 0 0 1

 ·
1 0 0 ai−1

0 1 0 0
0 0 1 0
0 0 0 1

 ·
cos θi −sin θi 0 0

sin θi cos θi 0 0
0 0 1 0
0 0 0 1

 ·
1 0 0 0

0 1 0 0
0 0 1 di
0 0 0 1

 (18)
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i
i−1T =


cos θi −sin θi 0 ai−1

sin θicos αi−1 cos θicos αi−1 −sin αi−1 −disin αi−1
sin θisin αi−1 cos θisin αi−1 cos αi−1 dicos αi−1

0 0 0 1

 (19)

In this formula, i is the link, when i = 0 it indicates the base and i = 1 is the first link.
i
i−1T is the homogeneous transfer matrix of the i link relative to the i− 1 link. The equation
is obtained after superposition as follows:

T = T0
1 T1

2 T2
3 . . . T

i−1
i (20)

3.2. Based on MATLAB Modeling

The mathematical model of the five-degrees-of-freedom humanoid robot arm is ob-
tained by using the MATLAB toolbox. As shown in Figure 7, the maximum working range
of the anthropomorphic double-arm robots was reached in the three-dimensional space.
Firstly, the kinematic model of the anthropomorphic double-armed robots was established
in the MATLAB toolbox through the modified DH parameters, while the point cloud map
of the maximum range reached by the anthropomorphic two-armed robot in the three-
dimensional working space was established by using the Monte Carlo method. The Monte
Carlo method, also known as the statistical simulation method, is a numerical computation
method guided by probabilistic statistical theory. The advantage of using the Monte Carlo
method to calculate the workspace is the short time taken compared to numerical.

The steps of Monte Carlo method workspace solving are as follows:
(1) Random variables are generated for each joint, and a set of joint space vectors for

the robotic arm are generated at random.
(2) The calculation of the kinematic positive solution, and the mapping from the joint

space to the end workspace (Cartesian coordinate system) is performed.
(3) The workspace distribution is plotted.

Figure 7. The maximum working range of the anthropomorphic double-arm robots. (a) YZ plane
view; (b) XY plane view.

3.3. Control Model

The recognized human joint angles are converted into servo control commands accord-
ing to the algorithm for bi-arm robot motion control. The shoulder of the bimanual robots
was controlled individually by two servos to drive two degrees of rotation freedom in the
shoulder. Similarly, the elbow joint was equipped with two degrees of rotational freedom,
and the wrist joint was provided with only one degree of rotation freedom along the axis
direction. Therefore, the Kinect is acquiring the angle information of the human back arm
movement in 3D space, and the intelligent algorithm is completing the conversion process
between the angle information and the servo commands. Its principle is as follows:
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(1) Shoulder joint: The number 1 degree of freedom of the robot arm is controlled in
real-time by the value of the angle variable between the projection line of the upper arm
in the side plane from the human body and the front plane, and the number 2 degree of
freedom of the robot arm is coordinated in real-time by the angle variable between the
projection line of the upper arm in the front plane from the human body and the lateral
plane. Then, the two-angle information is mapped to the two servos in the shoulder joint
of the bimanual robot, and therefore the rotation angle that the two servos of the shoulder
joint need to achieve is determined. Meanwhile, the angle-command conversion algorithm
is used to obtain the precise command of the servos. Thus the accurate control of the
shoulder joint is completed.

As shown below, Equation (21) is expressed as the projection of the line on the plane,
and Equation (22) is expressed as the angle between the line and the plane, so that the
angle of the spatial position of the 2 degrees of freedom of the shoulder can be accurately
calculated to accurately control the two-armed robot.

−→ap =~a−
−→
a′ =~a− ~a ·~n

‖~n‖2~n (21)

φ = arcsin

(
|~n · ~d|
|~n||~d|

)
, φ ∈ [0◦, 90◦] (22)

(2) Elbow joint: As shown in Figure 8, the number 3 degree of freedom of the elbow
joint is controlled in real time by the dynamic change of the angle between the plane formed
by the three points of shoulder–elbow–wrist and the ZOX plane; the number 4 degree of
freedom of the elbow joint is controlled in real time by the dynamic change of the angle
between the two vectors of elbow–wrist and elbow–shoulder.

Figure 8. Schematic diagram of mathematical model of human elbow joint. (a) The angle control
model analysis of the number 3 degree of freedom; (b) The angle control model analysis of the
number 4 degree of freedom.

(3) Wrist joint: the number 5 degree of freedom of the wrist joint is precisely controlled
by the inertial sensor of the glove.

In this way, it is used by image acquisition technology, finger motion sensing tech-
nology and the intelligent control algorithm. Thus it accomplishes real-time control of the
bionic dual-arm robots and achieves complex collaborative operations.

There is an absolute coordinate system established on the Kinect and a relative coordi-
nate system was determined on the operator’s shoulder. The absolute coordinate system
was defined as a spatial coordinate system with the Kinect’s depth camera as the origin.
The human skeletal points were recognized by Kinect, as shown in Figure 9.
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Figure 9. The area of the Kinect camera for capturing images (left); The skeleton points of the human
body are recognized by the Kinect system (right).

4. Experiments
4.1. Human–Computer Interaction Experiments
4.1.1. Experiment with Single-Handed Control

The single-arm controlled experiment process is shown in Figure 10. Firstly, the
experimental equipment was energized, and running data acquisition was performed
by the control software platform. The experimenter was standing in front of the Kinect
body tracker at a distance of about 2 m. On this computer screen real-time displayed
the experimenter’s arm posture and the coordinates of the skeletal points. Meanwhile,
the data collected were transferred to the data processing system to accomplish the data
collection. Then, the experimenter completed, at a certain speed (Figure 10a–d), the
four posture states. Furthermore, the experimenter was asked to gradually increase the
motion speed to complete these four poses. The three groups of experimental data are
collected and analyzed. Finally, the design called for different experimenters to conduct the
same experiment as above, and it was concluded that, as the experimenter’s arm motion
speed increased, the interactive motion of the bionic arm with the delay time difference
gradually increased, and the delay time difference is basically the same regardless of which
experimenter’s laboratory was used.

We applied a combination of jitter-cancellation filtering algorithm and Kalman filtering
algorithm while conducting three sets of experiments with different motion speeds for
each experimenter again, and we analyzed the experimental data and found that the
combination of jitter-cancellation filtering algorithm and Kalman filtering algorithm greatly
improved the delay time difference between the bionic arm robot and the experimenter’s
arm motion. This is because the use of the Kalman filter algorithm can reduce the delay
time difference by predicting and correcting the measured data. The algorithm estimates
the actual state of the human motion and predicts the next state based on the previous state
and measurements. When transmitting the data, the algorithm corrects for the predicted
values, thus reducing the delay time difference and improving the real-time and accuracy
of motion control. Thus, the application of the jitter cancellation filter and Kalman filter
algorithm significantly improves the delay time difference between the robot and the
experimenter’s arm motion.

4.1.2. Experiment with Double Hand Control

Based on the anthropomorphic dual-arm manipulator control system, it was tested
for six experimenters in the same indoor environment. The results show that the dual-
arm robot control system can accurately perceive the posture data of the operators’ arm
and hand motions and imitate the movements of human arms in real-time to achieve
anthropomorphic functions. Therefore, the anthropomorphic robot arm teleoperation
control based on sensor fusion is broadly applicable and more flexible and convenient to
be used. The integration and control of multimodal signals are more bionic in nature and
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more in compliance with the characteristics of bionics, and they are able to improve the
coordination and naturalness of the dual-arm robot control. As shown in Figure 11, the
anthropomorphic robotic arm is mainly supplied with data through the Kinect collection of
human arm movement data and the data glove sensing human hand motion information.
At the same time, combined with force feedback control data, multi-sensor information
fusion and control are achieved. Sensor-fused teleoperated control is more efficient and
stable than unimodal control strategies, as shown in Figure 10.

Figure 10. Experiment with Single Handed Control. (a) Single-arm shoulder joint swing action;
(b) Single-arm shoulder joint horizontal extension; (c) Turned arm, palm up; (d) Single-arm horizontal
forward flexion.

Figure 11. Experiment with double hand control. (a) Left arm raised, right arm swings sideways;
(b) Left arm extended horizontally, right arm raised; (c) Left arm extended horizontally, right arm
swings sideways; (d) Left forearm flexed down, right arm raised.

4.1.3. Experiments in Dexterous Hand Control

The anthropomorphic robot arm is equipped with the dexterous hand in order to
perform functions such as object transfer and humanoid hand movements, so it is crucial
for the dexterous hand to be used. The data glove is equipped to control the dexterous hand
by using five potentiometers to sense changes in finger movement in real-time, therefore
outputting the corresponding voltage value signal. Thus, we take advantage of the data
glove to sense the motion posture of the human hand, so that the signals of these hand
joints are processed by data fusion and Kalman filtering, and the motion signals of each
human finger joint are mapped to the driving servos of the dexterous hand in a stable
manner. As shown in Figure 12, the data glove controls the dexterous hand in real time.
At the same time, the feedback signal of the fingertip force is felt during the movement
of the dexterous hand. We fuse and analyze the perceived data through an intelligent
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algorithm, so as to realize the control mode of combining human hand motion control and
force feedback control. The data of multiple sensors can achieve the constant force control
and adaptive control mode of the dexterous hand through the intelligent algorithm. This
greatly expands the adaptability of the dexterous hand to the environment and application
scenarios compared to the dexterous hand without force feedback.

Figure 12. Data gloves control dexterous hands in real time. (a) Five fingers open; (b) Thumb
movement; (c) Controlled contact between index finger and thumb; (d) Clenching of the fist.

Figure 13 displays pressure feedback from the 16 contacts of the tactile sensor on the
tip of the index finger when grasping the bottle. At the beginning of grasping the bottle,
the contact pressure is 0. When the maximum pressure among the 16 contacts reaches 1 N,
the manipulator cannot be controlled and the grasp is successful. When the maximum
pressure is less than 0.5 N, the manipulator can be controlled and released successfully.

Figure 13. Pressure feedback from the 16 contacts of the tactile sensor on the tip of the index finger
when grasping the bottle.

4.2. Information Collection and Processing

Since the placement of the Kinect sensor is affected by the shape of the subject, the
placement of the Kinect will influence the generated image. For example, when the target
(e.g., a person) is standing straight in the range of the Kinect sensor, but the Kinect sensor
itself is tilted, the resulting image will be skewed. The experimental process was performed
with the subject standing about 2 m in front of the Kinect and facing the Kinect camera
sensor, and then it was kept in a static motion on the right arm extension. Utilizing the
Kinect camera to perceive the skeletal point data of the human body in 3D space in real-
time, the data of real-time perceived human motion will produce a jitter phenomenon
over time, which will in turn cause the accumulation of control errors. Therefore, the
3D-coordinate information is collected from the shoulder joint, elbow joint and wrist joint
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of the human arm, and the changing conditions of the date are calculated respectively in the
three directions of x, y and z. Meanwhile, we collected the information of the human arm
movement and performed Kalman filtering. The intelligent filtering algorithm is mainly
used to eliminate the regular errors generated in the experimental process.

The experimental data in this paper are significantly spiked, and the jitter elimination
filtering algorithm is used to suppress the spikes in the input by limiting the allowed
changes in the output of each frame. Therefore, the Kalman filtering algorithm is used to
improve the data jitter. The data of 800 frames are taken for analysis and filtered here, as
shown in Figure 14.

Figure 14. Data acquisition and filtering processing of joint position in x, y and z directions respec-
tively. (a) Shoulder joint S; (b) Elbow joint E; (c) Wrist joint W.

Firstly, we collected the motion jitter information of human arm in 3D space and
Kalman filtered the collected data in order to eliminate the larger jitter errors. Then, we
calculated the movement angles of the shoulder and elbow joints with the filtered data and
the above calculation method, while the angle changes of the shoulder and elbow joints
were Kalman filtered again to obtain the data as shown in Figure 15, namely, real-time
acquisition and Kalman filtering of shoulder and elbow joint angles. This is achieved by
the fusion of two Kalman filters, which makes the process of controlling the motion of the
anthropomorphic robotic arm more stable and smooth.
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Figure 15. Real-time acquisition and Kalman filtering of shoulder and elbow joint angles.
(a) Acquisition and filtering of the shoulder joint 1 angle data; (b) Acquisition and filtering of the
shoulder joint 2 angle data; (c) Acquisition and filtering of the elbow joint 1 angle data; (d) Acquisition
and filtering of the elbow joint 2 angle data.

5. Conclusions

The humanoid dual-arm robots are designed and controlled from the perspective of
bionics in this paper, and the Kinect depth camera and data glove are used to collect the op-
erator’s dual-arm posture data. This solves the shortcomings of single modal signal control
robots. Meanwhile, the fused data are analyzed and processed by fusing the body-sensing
glove data, and the intelligent control algorithm is added to achieve a more stable and
accurate anthropomorphic dual-arm robot tracking and control. This not only implements
remote operation control of the humanoid robot but also effectively strengthens the natural-
ness and flexibility of the control. Therefore, anthropomorphic dual-arm robots are capable
of collaborative operation and environmental adaptation under complex environmental
conditions and will be widely used in industrial, medical and educational fields because of
their high operational efficiency and low energy consumption, and high flexibility.

Although we achieved promising control performance using the sensor fusion tech-
nology, the time delay is still not fully addressed and discussed in this study, which is
of vital importance for teleoperation control. It is believed that in future work, we will
fuse multiple vision sensors and myoelectric sensors and we intend to use multi-sensor
fusion algorithms and intelligent control algorithms, which further improve the control
accuracy and coordination. At the same time, the control performance of time delay will be
discussed and addressed to improve transparency.
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