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Abstract: This paper presents a new evolutionary-based approach called a Subtraction-Average-Based
Optimizer (SABO) for solving optimization problems. The fundamental inspiration of the proposed
SABO is to use the subtraction average of searcher agents to update the position of population
members in the search space. The different steps of the SABO’s implementation are described
and then mathematically modeled for optimization tasks. The performance of the proposed SABO
approach is tested for the optimization of fifty-two standard benchmark functions, consisting of
unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC
2017 test suite. The optimization results show that the proposed SABO approach effectively solves
the optimization problems by balancing the exploration and exploitation in the search process of
the problem-solving space. The results of the SABO are compared with the performance of twelve
well-known metaheuristic algorithms. The analysis of the simulation results shows that the proposed
SABO approach provides superior results for most of the benchmark functions. Furthermore, it
provides a much more competitive and outstanding performance than its competitor algorithms.
Additionally, the proposed approach is implemented for four engineering design problems to evaluate
the SABO in handling optimization tasks for real-world applications. The optimization results show
that the proposed SABO approach can solve for real-world applications and provides more optimal
designs than its competitor algorithms.

Keywords: optimization; swarm-inspired; metaheuristic; subtraction average; exploration; exploitation

1. Introduction

Optimization is a comprehensive concept in various fields of science. An optimiza-
tion problem is a type of problem that has more than one feasible solution. Therefore,
the goal of optimization is to find the best solution among all these feasible solutions.
From a mathematical point of view, an optimization problem is explained using three
parts: decision variables, constraints, and objective function [1]. The problem solving
techniques in optimization studies are placed into two groups: deterministic and stochastic
approaches [2].

Deterministic approaches, which are placed into two classes, gradient-based and
non-gradient-based, are effective in solving linear, convex, simple, low-dimensional, con-
tinuous, and differentiable optimization problems [3]. However, increasing the complexity
of these optimization problems leads to disruption in the performance of the deterministic
approaches, and these methods get stuck in inappropriate local optima. On the other hand,
many optimization problems within science and real-world applications have character-
istics such as a high dimensionality, a high complexity, a non-convex, non-continuous,
non-linear, and non-differentiable objective function, and a non-linear and unknown search
space [4]. These optimization task characteristics and the difficulties of deterministic
approaches have led researchers to introduce new techniques called stochastic approaches.
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Metaheuristic algorithms are one of the most widely used stochastic approaches that
effectively solve complex optimization problems. They have efficiency in solving non-linear,
non-convex, non-differentiable, high-dimensional, and NP-hard optimization problems. An
efficiency in addressing discrete, non-linear, and unknown search spaces, the simplicity of
their concepts, their easy implementation, and their non-dependence on the type of problem
are among the advantages that have led to the popularity of metaheuristic algorithms [5].
Metaheuristic algorithms are employed in various optimization applications within science,
such as index tracking [6], energy [7–10], protection [11], energy carriers [12,13], and
electrical engineering [14–19].

The optimization process of these metaheuristic algorithms is based on random search
in the problem solving space and the use of random operators. Initially, candidate solutions
are randomly generated. Then, during a repetition-based process and based on the steps of
the algorithm, to improve the quality of these initial solutions, the position of the candidate
solutions in the problem solving space is updated. In the end, the best candidate solution
is available to solve the problem. Using random search in the optimization process does
not guarantee the achievement of the global optimal by a metaheuristic algorithm. For this
reason, the solutions that are obtained from metaheuristic algorithms are called pseudo-
optimal [20]. To organize an effective search in the problem solving space, metaheuristic
algorithms should be able to provide and manage search operations well, at both global
and local levels. Global search, with the concept of exploration, leads to a comprehensive
search in the problem solving space and an escape from optimal local areas. Local search,
with the concept of exploitation, leads to a detailed search around the promising solutions
for a convergence towards possible better solutions. Considering that exploration and
exploitation pursue opposite goals, the key to the success of metaheuristic algorithms is to
create a balance between this exploration and exploitation during the search process [21].

On the one hand, the concepts of the random search process and quasi-optimal
solutions, and, on the other hand, the desire to achieve better quasi-optimal solutions for
these optimization problems, have led to the development of numerous metaheuristic
algorithms by researchers.

The main research question is that now that many metaheuristic algorithms have been
designed, is there still a need to introduce a newer algorithm to deal with optimization
problems or not? In response to this question, the No Free Lunch (NFL) [22] theorem
explains that the high success of a particular algorithm in solving a set of optimization
problems will not guarantee the same performance of that algorithm for other optimization
problems. There is no assumption that implementing an algorithm on an optimization
problem will be successful. According to the NFL theorem, no particular metaheuristic
algorithm is the best optimizer for solving all optimization problems. The NFL theorem
motivates researchers to search for better solutions for these optimization problems by
designing newer metaheuristic algorithms. The NFL theorem has also inspired the authors
of this paper to provide more effective solutions for dealing with optimization problems by
creating a new metaheuristic algorithm.

The innovation and novelty of this paper are in the introduction a new metaheuris-
tic algorithm called the Subtraction Average of Searcher Agents (SABO) for solving the
optimization problems in different sciences. The main contributions of this study are
as follows:

• The basic idea behind the design of the SABO is the mathematical concepts and
information subtraction average of the algorithm’s search agents.

• The steps of the SABO’s implementation are described and its mathematical model
is presented.

• The efficiency of the proposed SABO approach has been evaluated for fifty-two stan-
dard benchmark functions.

• The quality of the SABO’s results has been compared with the performance of twelve
well-known algorithms.
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• To evaluate the capability of the SABO in handling real-world applications, the pro-
posed approach is implemented for four engineering design problems.

The continuation of this paper is organized as follows: the literature review is pre-
sented in Section 2. The proposed SABO approach is introduced and designed in Section 3.
Its simulation studies are presented in Section 4. The performance of the SABO in solving
real-world applications is evaluated in Section 5. The conclusions and several research
suggestions are provided in Section 6.

2. Literature Review

Metaheuristic algorithms have been developed with inspiration from various natural
phenomena, the behaviors of living organisms in nature, concepts of biology, physical
sciences, rules of games, and human interactions, etc. In a general classification based on
the idea that is employed in their design, metaheuristic algorithms are placed into five
groups: swarm-based, evolutionary-based, physics-based, human-based, and game-based
approaches.

Swarm-based metaheuristic algorithms are approaches that are inspired by various
natural swarming phenomena, such as the natural behaviors of animals, birds, aquatic
animals, insects, and other living organisms. Among the most famous swarm-based ap-
proaches are particle swarm optimization (PSO) [23], ant colony optimization (ACO) [24],
and artificial bee colony (ABC) [25]. PSO is a swarming method that is inspired by the
movement strategy of flocks of fish or birds searching for food in nature. ACO is inspired
by ant colonies’ ability to choose the shortest path between the food source and the colony
site. ABC is derived from the hierarchical strategy of honey bee colonies and their ac-
tivities in finding food sources. The strategies of providing food through hunting and
foraging, migration, and the process of chasing between living organisms are some of
the most natural, characteristic swarming ways of behavior, which have been a source of
inspiration in the design of numerous swarm-based algorithms, such as the Reptile Search
Algorithm (RSA) [26], Orca Predation Algorithm (OPA) [27], Marine Predator Algorithm
(MPA) [28], African Vultures Optimization Algorithm (AVOA) [29], Honey Badger Algo-
rithm (HBA) [30], White Shark Optimizer (WSO) [31], Whale Optimization Algorithm
(WOA) [32], Tunicate Swarm Algorithm (TSA) [33], Grey Wolf Optimizer (GWO) [34], and
Golden Jackal Optimization (GJO) [35].

Evolutionary-based metaheuristic algorithms are approaches that are developed based
on simulating the concepts of the biological and genetic sciences. The bases of these
methods are evolution strategies (ES) [36], genetic algorithms (GA) [37], and differential
evolution (DE) [36]. These methods and all their generalizations are inspired by the
concepts of biology, natural selection, Darwin’s theory of evolution, reproduction, and
stochastic operators such as selection, crossover, and mutation.

Physics-based metaheuristic algorithms are designed based on modeling phenomena,
processes, concepts, and the different forces in physics. Simulated annealing (SA) [38] is one
of the most widely used physics-based methods, whose design is inspired by the annealing
process of metals. In the annealing process, the metal is first melted under heat, then
gradually cooled to achieve the ideal crystal. The modeling of physical forces and the laws
of motion is the design origin of physics-based algorithms such as the gravitational search
algorithm (GSA) [39] and momentum search algorithm (MSA) [40]. SA is developed based
on the modeling of the tensile force and Hooke’s law between bodies that are connected by
springs. Gravitational force inspires the GSA, which masses at the different distances that
exert on each other. The MSA is designed based on the modeling of the force that results
from the momentum of balls that hit each other. The phenomenon of the transformations
of different physical states in the natural water cycle is employed in the water cycle
algorithm’s (WCA) [41] design. The concepts of cosmology and black holes have been the
primary sources for the design of algorithms such as the Black Hole Algorithm (BHA) [42]
and Multi-Verse Optimizer (MVO) [43]. Some of the other physics-based algorithms are:
the Equilibrium Optimizer (EO) [44], Thermal Exchange Optimization (TEO) [45], the
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Archimedes optimization algorithm (AOA) [46], the Lichtenberg Algorithm (LA) [47],
Henry Gas Optimization (HGO) [48], Electro-Magnetism Optimization (EMO) [49], and
nuclear reaction optimization (NRO) [50].

Human-based metaheuristic algorithms are approaches with designs that are inspired
by the interactions, relationships, and thoughts of humans in social and individual life.
Teaching–learning-based optimization (TLBO) [51] is one of the most familiar and widely
used human-based approaches, whose design is inspired by the scientific interactions be-
tween teachers and students in the educational system. The effort of two social classes, the
poor and rich, to improve their economic situations was the main idea behind introducing
poor and rich optimization (PRO) [45]. The cooperation and interactions between team-
mates within a team to achieve their set goal has been the main idea behind the introduction
of the Teamwork Optimization Algorithm (TOA) [52]. Collective decision optimization
(CDO) [45] is inspired by the decision making behavior of humans, the queuing search algo-
rithm (QSA) [45] mimics human actions when performing a queuing process, the political
optimizer (PO) [50] imitates a human political formwork, and the Election-Based Optimiza-
tion Algorithm (EBOA) [45] is based on mimicking the voting process for leader selections.
Some of the other human-based algorithms are, e.g., the gaining–sharing knowledge-based
algorithm (GSK) [53], Ali Baba and the Forty Thieves (AFT) [54], Driving Training-Based
Optimization (DTBO) [4], the Coronavirus herd immunity optimizer (CHIO) [55], and War
Strategy Optimization (WSO) [56].

Game-based metaheuristic algorithms are approaches that are introduced based on
modeling the rules of different individual and group games and the strategies of their
players, coaches, referees, and the other people influencing the games. Football and
volleyball are popular group games whose simulations have been employed in the design
of the League Championship Algorithm (LCA) [57], Volleyball Premier League (VPL) [57],
and Football-Game-Based Optimization (FGBO) [58], respectively.

Mathematics-based metaheuristic algorithms are designed based on mathematical
concepts, foundations, and operations. The Sine Cosine Algorithm (SCA) [51] is one of the
most familiar mathematics-based approaches, whose design is inspired by the transcen-
dental functions sin and cos. The Arithmetic Optimization Algorithm (AOA) [51] uses the
distribution behavior of mathematics’ four basic arithmetic operators (multiplication, divi-
sion, subtraction, and addition). Runge Kutta (RUN) [51] uses the logic of slope variations
that are computed by the RK method as a promising and logical searching mechanism for
global optimization. The Average and Subtraction-Based Optimizer (ASBO) [51] has the
main construction idea of computing the averages and subtractions of the best and worst
population members for guiding the algorithm population in the problem search space.

Based on the best knowledge from the literature review, no metaheuristic algorithm
has been developed based on the mathematical concept of “an average of subtraction
of search agents”. Therefore, the primary idea of the proposed algorithm was to use
an extraordinary average of all the search agents to update the algorithm’s population,
which can prevent the algorithm’s dependence on specific population members. Moreover,
by improving the exploration of the algorithm, this can avoid it getting stuck in local
optima. Therefore, to address this research gap in optimization studies, in this paper, a
new metaheuristic algorithm is designed based on the mathematical concept of a special
subtraction arithmetic average, which is discussed in the next section.

3. Subtraction-Average-Based Optimizer

In this section, the theory of the proposed Subtraction-Average-Based Optimizer
(SABO) approach is explained, then its mathematical modeling is presented for its employ-
ment in optimization tasks.

3.1. Algorithm Initialization

Each optimization problem has a solution space, which is called the search space. The
search space is a subset of the space of the dimension, which is equal to the number of the
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decision variables of the given problem. According to their position in the search space,
algorithm searcher agents (i.e., population members) determine the values for the decision
variables. Therefore, each search agent contains the information of the decision variables
and is mathematically modeled using a vector. The set of search agents together forms
the population of the algorithm. From a mathematical point of view, the population of the
algorithm can be represented using a matrix, according to Equation (1). The primary positions
of the search agents in the search space are randomly initialized using Equation (2).

X =



X1
...

Xi
...

XN


N×m

=



x1,1 · · · x1,d · · · x1,m
...

. . .
... ...

...
xi,1 · · · xi,d · · · xi,m

... ...
...

. . .
...

xN,1 · · · xN,d · · · xN,m


N×m

, (1)

xi,d = lbd + ri,d·(ubd − lbd), i = 1, . . . , N, d = 1, . . . , m, (2)

where X is the SABO population matrix, Xi is the ith search agent (population member),
xi,d is its dth dimension in the search space (decision variable), N is the number of search
agents, m is the number of decision variables, ri,d is a random number in the interval [0, 1],
and lbd and ubd are the lower and upper bounds of the dth decision variable, respectively.

Each search agent is a candidate solution to the problem that suggests values for the
decision variables. Therefore, the objective function of the problem can be evaluated based
on each search agent. The evaluated values for the objective function of the problem can be

represented by using a vector called
→
F , according to Equation (3). Based on the placement

of the specified values by each population member for the decision variables of the problem,

the objective function is evaluated and stored in the vector
→
F . Therefore, the number of

elements of the vector
→
F is equal to the number of the population members N.

→
F =



F1
...
Fi
...

FN


N×1

=



F(X1)
...

F(Xi)
...

F(XN)


N×1

, (3)

where
→
F is the vector of the values of the objective function, and Fi is the evaluated values

for the objective function based on the ith search agent.
The evaluated values for the objective function are a suitable criterion for analyzing

the quality of the solutions that are proposed by the search agents. Therefore, the best value
that is calculated for the objective function corresponds to the best search agent. Similarly,
the worst value that is calculated for the objective function corresponds to the worst search
agent. Considering that the position of the search agents in the search space is updated in
each iteration, the process of identifying and saving the best search agent continues until
the last iteration of the algorithm.

3.2. Mathematical Modelling of SABO

The basic inspiration for the design of the SABO is mathematical concepts such as
averages, the differences in the positions of the search agents, and the sign of difference of
the two values of the objective function. The idea of using the arithmetic mean location of
all the search agents (i.e., the population members of the tth iteration), instead of just using,
e.g., the location of the best or worst search agent to update the position of all the search
agents (i.e., the construction of all the population members of the (t + 1)th iteration), is not
new, but the SABO’s concept of the computation of the arithmetic mean is wholly unique,
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as it is based on a special operation “−v”, called the v−subtraction of the search agents B
from the search agent A, which is defined as follows:

A −v B = sign (F(A)− F(B))(A−→v ∗ B), (4)

where
→
v is a vector of the dimension m, in which components are random numbers that

are generated from the set {1, 2}, the operation “∗” represents the Hadamard product of
the two vectors (i.e., all the components of the resulting vectors are formed by multiplying
the corresponding components of the given two vectors), F(A) and F(B) are the values of
the objective function of the search agents A and B, respectively, and sign is the signum
function. It is worth noting that, due to the use of a random vector

→
v with components

from the set {1, 2} in the definition of the v−subtraction, the result of this operation is any
of the points of a subset of the search space that has a cardinality of 2m+1.

In the proposed SABO, the displacement of any search agent Xi in the search space is
calculated by the arithmetic mean of the v−subtraction of each search agent
Xj, j = 1, 2, . . . , N, from the search agent Xi. Thus, the new position for each search
agent is calculated using (5).

Xnew
i = Xi +

→
r i ∗

1
N

N

∑
j=1

(
Xi −v Xj

)
, i = 1, 2, . . . , N, (5)

where Xnew
i is the new proposed position for the ith search agent Xi, N is the total number

of the search agents, and
→
r i is a vector of the dimension m, in which components have a

normal distribution with the values from the interval [0, 1].
Then, if this proposed new position leads to an improvement in the value of the

objective function, it is acceptable as the new position of the corresponding agent, according
to (6).

Xi =

{
Xnew

i , Fnew
i < Fi;

Xi, else,
(6)

where Fi and Fnew
i are the objective function values of the search agents Xi and Xnew

i ,
respectively.

Clearly, the v−subtraction Xi −v Xj represents a vector
→
χ ij, and we can look at

Equation (5) as the motion equation of the search agent Xi, since we can rewrite it in the

form Xnew
i = Xi +

→
r i ∗

→
Mi, where the mean vector

→
Mi =

1
N ∑N

j=1
(
Xi −v Xj

)
= 1

N ∑N
j=1
→
χ ij

determines the direction of the movement of the search agent Xi to its new position
Xnew

i . The search mechanism based on “the arithmetic mean of the v-subtractions”, which is
presented in (5), has the essential property of realizing both the exploration and exploitation
phases to explore the promising areas in the search space. The exploration phase is realized
by the operation of “v-subtraction” (i.e., the vector

→
χ ij), see Figure 1A, and the exploitation

phase by the operation of the “arithmetic mean of the v-subtractions” (i.e., the vector
→
Mi),

see Figure 1B.
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Figure 1. Schematic illustration (for the case m = 2) of the exploration phase by “v -subtraction” (A),
and the exploitation phase by “arithmetic mean of the v -subtractions” (B).

3.3. Repetition Process, Pseudocode, and Flowchart of SABO

After updating all the search agents, the first iteration of the algorithm is completed.
Then, based on the new values that have been evaluated for the positions of the search
agents and objective function, the algorithm enters its next iteration. In each iteration, the
best search agent is stored as the best candidate solution so far. This process of updating
the search agents continues until the last iteration of the algorithm, based on (3) to (5). In
the end, the best candidate solution that was stored during the iterations of the algorithm is
presented as the solution to the problem. The implementation steps of the SABO are shown
as a flowchart in Figure 2 and presented as a pseudocode in Algorithm 1.

Algorithm 1. Pseudocode of SABO.

Start SABO.
1. Input problem information: variables, objective function, and constraints.
2. Set SABO population size (N) and iterations (T).
3. Generate the initial search agents’ matrix at random using Equation (2).
xi,d ← lbd + ri,d·(ubd − lbd)
4. Evaluate the objective function.
5. For t = 1 to T
6. For i = 1 to N
7. Calculate new proposed position for ith SABO search agent using Equation (5).

xnew
i,d ← Xi +

→
r i ∗ 1

N ∑N
j=1

(
Xi −v Xj

)
8. Update ith GAO member using Equation (6). Xi ←

{
Xnew

i , Fnew
i < Fi

Xi, else
9. end
10. Save the best candidate solution so far.
11. end
12. Output best quasi-optimal solution obtained with the SABO.
End SABO.
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3.4. Computational Complexity of SABO

In this subsection, the computational complexity of the proposed SABO approach is
evaluated. The initialization steps of the SABO for dealing with an optimization problem
with m decision variables have a complexity that is equal to O(Nm), where N is the
number of search agents. Furthermore, the process of updating these search agents has
a complexity that is equal to O(NmT), where T is the total number of iterations of the
algorithm. Therefore, the computational complexity of the SABO is equal to O(Nm(1 + T)).

4. Simulation Studies and Results

In this section, the effectiveness of the proposed SABO approach in solving optimiza-
tion problems is challenged. For this purpose, a set of fifty-two standard benchmark func-
tions is employed, consisting of seven unimodal functions (F1 to F7), six high-dimensional
multimodal functions (F8 to F13), ten fixed-dimensional multimodal functions (F14 to F23),
and twenty-nine functions from the CEC 2017 test suite [59]. To analyze the performance
quality of the SABO in optimization tasks, the results that were obtained from the proposed
approach have been compared with twelve well-known metaheuristic algorithms: GA,
PSO, GSA, TLBO, GWO, MVO, WOA, MPA, TSA, RSA, WSO, and AVOA. The values of
the control parameters of the competitor algorithms are specified in Table 1.

Table 1. Control parameters values.

Algorithm Parameter Value

GA
Type Real coded
Selection Roulette wheel (Proportionate)

Crossover Whole arithmetic (Probability = 0.8,
α ∈ [−0.5, 1.5])

Mutation Gaussian (Probability = 0.05)
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Table 1. Cont.

Algorithm Parameter Value

PSO
Topology Fully connected
Cognitive and social constant (C1, C2) = (2, 2)
Inertia weight Linear reduction from 0.9 to 0.1
Velocity limit 10% of dimension range

GSA
Alpha, G0, Rnorm, Rpower 20, 100, 2, 1

TLBO
TF: teaching factor TF = round [(1 + rand)]
random number rand is a random number between [0–1]

GWO
Convergence parameter (a) a: Linear reduction from 2 to 0.

MVO
Wormhole existence probability (WEP) Min(WEP) = 0.2 and Max(WEP) = 1.
Exploitation accuracy over the iterations (p) p = 6.

WOA
Convergence parameter (a) a: Linear reduction from 2 to 0.
r is a random vector in [0–1]
l is a random number in [−1, 1].

TSA
Pmin and Pmax 1, 4
c1, c2, c3 Random numbers lie in the range of [0–1]

MPA
Constant number p = 0.5
Random vector R is a vector of uniform random numbers in [0, 1].
Fish Aggregating Devices (FADs) FADs = 0.2
Binary vector U = 0 or 1

RSA
Sensitive parameter β = 0.01
Sensitive parameter α = 0.1
Evolutionary Sense (ES) ES: randomly decreasing values between 2 and −2

AVOA
L1, L2 0.8, 0.2
w 2.5
P1, P2, P3 0.6, 0.4, 0.6

WSO
Fmin and Fmax 0.07, 0.75
τ, ao, a1, a2 4.125, 6.25, 100, 0.0005

The proposed SABO and each of the competitor algorithms are implemented for
twenty independent runs on the benchmark functions, where each independent run in-
cludes 1000 iterations. The optimization results are reported using six indicators: the mean,
best, worst, standard deviation (std), median, and rank. The ranking criterion of these
metaheuristic algorithms is based on providing a better value for the mean index.

4.1. Evaluation Unimodal Functions

The unimodal objective functions, F1 to F7, due to the lack of local optima, are suitable
options for analyzing the exploitation ability of the metaheuristic algorithms. The opti-
mization results of the F1 to F7 functions, using the SABO and competitor algorithms, are
reported in Table 2.
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Table 2. Optimization results of unimodal functions (F1–F8).

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F1

Mean 0 94.68556 0 0 6.88 × 10−50 6.07 × 10−47 2.4 × 10−155 0.144595 3.87 × 10−58 8.14 × 10−75 9.33 × 10−17 0.022702 30.50201

Best 0 17.42507 0 0 2.13 × 10−51 1.01 × 10−50 1.4 × 10−167 0.071226 7.24 × 10−61 5.32 × 10−77 4.88 × 10−17 4.43 × 10−6 17.92696

Worst 0 439.1736 0 0 5.24 × 10−49 6.22 × 10−46 2.1 × 10−154 0.269577 6.86 × 10−57 1.07 × 10−73 1.92 × 10−16 0.158149 56.92799

Std 0 101.7604 0 0 1.26 × 10−49 1.64 × 10−46 6.1 × 10−155 0.05687 1.52 × 10−57 2.34 × 10−74 3.76 × 10−17 0.046942 10.46286

Median 0 51.91934 0 0 1.97 × 10−50 4.04 × 10−48 3.7 × 10−158 0.122317 1.34 × 10−59 1.27 × 10−75 8.64 × 10−17 0.001314 28.19897

Rank 1 11 1 1 5 6 2 9 4 3 7 8 10

F2

Mean 0 1.575136 1.2 × 10−266 0 3 × 10−28 1.11 × 10−28 5.7 × 10−103 0.26717 7.97 × 10−35 6.09 × 10−39 5.22 × 10−8 0.731055 2.788395

Best 0 0.609154 2.3 × 10−301 0 3.21 × 10−31 1.02 × 10−30 3.8 × 10−114 0.189084 1.45 × 10−35 3.25 × 10−40 3.41 × 10−8 0.089719 1.745356

Worst 0 4.873582 2.5 × 10−265 0 1.5 × 10−27 5.72 × 10−28 5.3 × 10−102 0.457641 2.54 × 10−34 3.59 × 10−38 7.3 × 10−8 1.908597 3.806556

Std 0 1.088388 0 0 4.14 × 10−28 1.6 × 10−28 1.5 × 10−102 0.075891 6.78 × 10−35 9.92 × 10−39 1.14 × 10−8 0.534508 0.544788

Median 0 1.202514 7.1 × 10−287 0 1.17 × 10−28 3.98 × 10−29 9 × 10−108 0.253065 6.46 × 10−35 2.45 × 10−39 5.16 × 10−8 0.743555 2.741555

Rank 1 11 2 1 7 6 3 9 5 4 8 10 12

F3

Mean 0 1806.78 0 0 5.38 × 10−12 1.31 × 10−12 21,771.78 14.05216 4.07 × 10−15 1.87 × 10−25 434.0065 643.4302 2168.983

Best 0 687.9998 0 0 2.9 × 10−25 1.4 × 10−17 804.8555 5.810656 3.22 × 10−19 1.87 × 10−29 235.952 36.45082 1424.187

Worst 0 4051.23 0 0 7.54 × 10−11 1.89 × 10−11 39,997.34 29.19354 4.98 × 10−14 1.97 × 10−24 905.2518 5210.771 3458.935

Std 0 827.0454 0 0 1.71 × 10−11 4.22 × 10−12 10,690.48 6.15891 1.13 × 10−14 4.64 × 10−25 157.388 1118.449 639.6914

Median 0 1619.412 0 0 2.19 × 10−13 2.52 × 10−14 23,134.65 12.09381 2.84 × 10−16 1.35 × 10−26 418.4298 284.912 2100.7

Rank 1 9 1 1 5 4 11 6 3 2 7 8 10

F4

Mean 0 17.76181 2 × 10−263 0 4.29 × 10−19 0.004673 44.49878 0.52347 1.32 × 10−14 3.14 × 10−30 0.763785 6.431779 2.829395

Best 0 11.90369 0 0 9.98 × 10−20 3.08 × 10−5 3.549529 0.290684 3.65 × 10−16 1.45 × 10−31 1.23 × 10−8 3.435068 2.216469

Worst 0 24.61971 3.6 × 10−262 0 1.39 × 10−18 0.026002 92.11975 0.898058 5.88 × 10−14 1.33 × 10−29 4.299889 14.35043 3.992738

Std 0 3.607365 0 0 3.25 × 10−19 0.006495 30.23659 0.163563 1.68 × 10−14 3.51 × 10−30 1.049333 2.439277 0.466936

Median 0 16.86055 2.9 × 10−282 0 3.93 × 10−19 0.003083 40.15902 0.5337 7.33 × 10−15 1.86 × 10−30 0.402748 6.046926 2.783478

Rank 1 11 2 1 4 6 12 7 5 3 8 10 9
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Table 2. Cont.

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F5

Mean 0.197101 11,081.32 1.87205 11.53391 23.55614 28.42991 27.20948 392.7405 26.99155 26.88666 26.39314 84.19977 595.3854

Best 0.003263 455.9772 1.58657 8.2 × 10−29 22.95066 26.0171 26.53351 24.75643 26.01628 25.61541 25.88273 11.41045 228.808

Worst 0.81947 44,603 2.13145 28.99015 24.83591 29.21115 28.51838 2433.592 27.94714 28.74413 27.72119 178.5254 2257.058

Std 0.215288 14,373.09 1.542075 14.49384 0.436322 0.779248 0.474719 735.2203 0.5881 0.964054 0.426365 44.9786 424.9867

Median 0.111639 2840.274 1.47245 1.08 × 10−28 23.42466 28.82636 27.0195 30.39723 27.11413 26.45399 26.28991 87.48235 475.573

Rank 1 13 2 3 4 9 8 11 7 6 5 10 12

F6

Mean 0 119.0172 6.52 × 10−8 6.319044 1.77 × 10−9 3.683762 0.086202 0.153294 0.636332 1.116967 1.07 × 10−16 0.082637 34.14746

Best 0 15.05144 4.73 × 10−9 3.88797 6.98 ×
10−10 2.821592 0.002679 0.092788 0.249403 0.487407 4.96 × 10−17 5.23 × 10−5 15.61244

Worst 0 618.6501 2.46 × 10−7 7.452363 4.45 × 10−9 4.79066 0.429712 0.2525 1.258956 1.907377 1.92 × 10−16 1.549095 62.76702

Std 0 131.4271 5.56 × 10−8 1.201026 9.43 ×
10−10 0.543926 0.110313 0.039617 0.309366 0.409251 3.8 × 10−17 0.345263 13.54999

Median 0 78.07582 5.69 × 10−8 6.999263 1.41 × 10−9 3.565372 0.03592 0.148684 0.501812 1.043402 9.84 × 10−17 0.002623 31.68218

Rank 1 13 4 11 3 10 6 7 8 9 2 5 12

F7

Mean 2.38 × 10−6 4.93 × 10−5 5.44 × 10−5 4.88 × 10−5 0.00056 0.005326 0.002244 0.011754 0.00091 0.001542 0.059762 0.168645 0.010589

Best 1.74 × 10−7 4.44 × 10−7 2.41 × 10−7 3.72 × 10−6 0.000225 0.002506 1.76 × 10−5 0.005824 0.000117 0.000261 0.024813 0.074626 0.003032

Worst 7.52 × 10−6 0.000128 0.000152 0.000226 0.001089 0.016372 0.010815 0.020623 0.00202 0.003007 0.102681 0.293086 0.021939

Std 1.98 × 10−6 3.94 × 10−5 5.06 × 10−5 5.09 × 10−5 0.000258 0.003333 0.002743 0.004162 0.000569 0.000772 0.021243 0.060668 0.004819

Median 1.63 × 10−6 5.39 × 10−5 3.64 × 10−5 3.21 × 10−5 0.00048 0.004299 0.001254 0.010535 0.000758 0.001479 0.056525 0.152506 0.010178

Rank 1 3 4 2 5 9 8 11 6 7 12 13 10

Sum rank 7 71 16 20 33 50 50 60 38 34 49 64 75

Mean rank 1 10.14286 2.285714 2.857143 4.714286 7.142857 7.142857 8.571429 5.428571 4.857143 7 9.142857 10.71429

Total rank 1 11 2 3 4 8 8 9 6 5 7 10 12
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Based on the obtained results, the proposed SABO, with a high exploitation ability,
provided the global optimal when solving the F1, F2, F3, F4, and F6 functions. Additionally,
the SABO is the best optimizer for the F5 and F7 functions. A comparison of the simulation
results shows that the SABO, through obtaining the first rank in the total, provided a supe-
rior performance for solving the unimodal problems F1 to F7 compared to the competitor
algorithms.

4.2. Evaluation High-Dimensional Multimodal Functions

The high-dimensional multimodal objective functions, F8 to F13, due to having a
large number of local optima, are suitable options for evaluating the exploration ability of
the metaheuristic algorithms. The results of implementing the SABO and its competitor
algorithms on the functions F8 to F13 are reported in Table 3.

Based on the optimization results, the SABO provided the global optimal for the
F9 and F11 functions, with a high exploration ability. The proposed SABO approach is
the best optimizer for solving the functions F8, F10, F12, and F13. The analysis of the
simulation results shows that the SABO provided a superior performance in handling the
high-dimensional multimodal problems compared to its competitor algorithms.

4.3. Evaluation Fixed-Dimensional Multimodal Functions

The fixed-dimensional multimodal objective functions, F14 to F23, have fewer numbers
of local optima than the functions F8 to F13. These functions are suitable options for
evaluating the ability of the metaheuristic algorithms to create a balance between the
exploration and exploitation. The optimization results of the operations F14 to F23, using
the SABO and its competitor algorithms, are presented in Table 4.

Based on the obtained results, the SABO is the best optimizer for the functions F15
and F21. In solving the other benchmark functions of this group, the SABO had a similar
situation to some of its competitor algorithms from the point of view of the mean criterion.
However, the proposed SABO algorithm performed better in solving these functions by
providing better values for the std index. Furthermore, the analysis of the simulation
results shows that, compared to the competitor algorithms, the SABO provided a superior
performance by balancing the exploration and exploitation in the optimization of the
fixed-dimensional multimodal problems.

The performances of the proposed SABO approach and the competitor algorithms in
solving the functions F1 to F23 are presented in the form of boxplot diagrams in Figure 3.
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Table 3. Optimization results of high-dimensional multimodal functions (F8–F13).

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F8

Mean −12,563.1 −7037.55 −12,433.2 −5458.28 −9865.61 −5913.41 −11,247.2 −7742.72 −6220.73 −5521.56 −2689.18 −6500.96 −8421.5

Best −12,569.5 −8624.3 −12,569.5 −5656.04 −10,653.2 −6776.47 −12,569.2 −9182.08 −8101.01 −6451.23 −3269.84 −7862.41 −9681.18

Worst −12,447.1 −5826.04 −11,896.8 −4124.78 −9067.64 −4968.21 −6824.1 −6283.06 −3450.14 −4631.24 −2140.43 −4751.67 −7028.99

Std 27.32588 840.3862 197.7043 345.5191 478.9808 494.6759 1769.136 677.1584 896.6881 562.8207 341.7721 885.9265 641.2242

Median −12,569.5 −7012.04 −12,569.5 −5531.08 −9792.7 −5881.29 −12,081.1 −7915.87 −6226.44 −5625.4 −2654.18 −6783.5 −8399.11

Rank 1 7 2 12 4 10 3 6 9 11 13 8 5

F9

Mean 0 30.53863 0 0 0 190.2096 0 104.0543 0.297985 0 25.07295 60.31323 54.68123

Best 0 15.22149 0 0 0 92.78168 0 43.82732 0 0 13.92943 29.84883 23.23239

Worst 0 68.24684 0 0 0 273.0471 0 152.2773 5.959691 0 41.78816 113.4265 76.90086

Std 0 11.93438 0 0 0 40.82636 0 28.71635 1.332627 0 6.256114 21.62223 13.80758

Median 0 30.62966 0 0 0 189.0894 0 99.60579 0 0 23.879 56.24334 52.61443

Rank 1 4 1 1 1 8 1 7 2 1 3 6 5

F10

Mean 8.88 × 10−16 4.901082 8.88 × 10−16 8.88 × 10−16 4.44 × 10−15 1.452865 4.26 × 10−15 0.451449 1.6 × 10−14 4.26 × 10−15 8.12 × 10−9 2.739329 3.5751

Best 8.88 × 10−16 3.530049 8.88 × 10−16 8.88 × 10−16 4.44 × 10−15 7.99 × 10−15 8.88 × 10−16 0.078241 1.15 × 10−14 8.88 × 10−16 5.45 × 10−9 1.778035 2.881962

Worst 8.88 × 10−16 6.874831 8.88 × 10−16 8.88 × 10−16 4.44 × 10−15 3.447315 7.99 × 10−15 1.799202 2.22 × 10−14 4.44 × 10−15 1.23 × 10−8 4.38263 4.641967

Std 0 0.939579 0 0 0 1.654267 2.44 × 10−15 0.574717 2.79 × 10−15 7.94 × 10−16 1.67 × 10−9 0.715238 0.396644

Median 8.88 × 10−16 4.668923 8.88 × 10−16 8.88 × 10−16 4.44 × 10−15 2.22 × 10−14 4.44 × 10−15 0.131373 1.51 × 10−14 4.44 × 10−15 7.81 × 10−9 2.604421 3.62958

Rank 1 10 1 1 3 7 2 6 4 2 5 8 9

F11

Mean 0 1.70897 0 0 0 0.008334 0 0.412213 0.000451 0 8.687165 0.156717 1.473471

Best 0 1.076151 0 0 0 0 0 0.191432 0 0 3.135355 0.001467 1.288095

Worst 0 5.872952 0 0 0 0.067031 0 0.535573 0.009011 0 15.71589 1.662839 1.725859

Std 0 1.0671 0 0 0 0.01536 0 0.099926 0.002015 0 3.751821 0.360388 0.123868

Median 0 1.425853 0 0 0 0 0 0.430656 0 0 7.888906 0.060533 1.447709

Rank 1 7 1 1 1 3 1 5 2 1 8 4 6
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Table 3. Cont.

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F12

Mean 2.63 × 10−33 34.6973 2.86 × 10−9 1.314643 2.08 × 10−10 6.293599 0.00738 1.251754 0.035525 0.08398 0.187602 1.583141 0.274894

Best 2.13 × 10−34 0.938867 7.56 × 10−10 0.720132 6.03 × 10−11 0.216628 0.000964 0.001016 0.012978 0.035054 5.91 × 10−19 0.074149 0.060841

Worst 5.73 × 10−33 597.7173 5.14 × 10−9 1.629701 4.75 × 10−10 17.71439 0.033587 6.169218 0.07355 0.170805 0.634329 5.095104 0.650842

Std 1.57 × 10−33 132.7047 1.34 × 10−9 0.330125 9.3 × 10−11 4.26837 0.007596 1.62632 0.018405 0.032215 0.20951 1.251155 0.138648

Median 2.62 × 10−33 3.696076 2.7 × 10−9 1.525877 1.93 × 10−10 6.01544 0.005285 0.807143 0.029024 0.082474 0.155493 1.381006 0.264424

Rank 1 13 3 10 2 12 4 9 5 6 7 11 8

F13

Mean 6.7 × 10−32 4239.934 1.43 × 10−8 0.355 0.000567 2.81567 0.275667 0.02976 0.495453 1.030391 0.007691 4.690251 2.707835

Best 1.14 × 10−34 12.39891 1.5 × 10−9 6.53 × 10−32 8.3 × 10−10 2.029692 0.032988 0.009002 2.27 × 10−5 0.529644 5.94 × 10−18 0.04709 1.291959

Worst 4.34 × 10−31 17,963.65 3.86 × 10−8 2.9 0.011347 3.832826 0.781805 0.079707 0.852264 1.626638 0.098883 14.57619 3.940231

Std 1.2 × 10−31 7400.496 1.17 × 10−8 0.849443 0.002537 0.479843 0.209069 0.018477 0.219041 0.29138 0.022003 4.549049 0.754476

Median 3.38 × 10−32 55.13453 1.1 × 10−8 9.24 × 10−32 2.33 × 10−9 2.823652 0.233889 0.023238 0.569144 1.031507 1.1 × 10−17 3.216389 2.867222

Rank 1 13 2 7 3 11 6 5 8 9 4 12 10

Sum rank 6 54 10 32 14 51 17 38 30 30 40 49 43

Mean rank 1 9 1.666667 5.333333 2.333333 8.5 2.833333 6.333333 5 5 6.666667 8.166667 7.166667

Total rank 1 12 2 6 3 11 4 7 5 5 8 10 9

Table 4. Optimization results of high-dimensional multimodal functions (F14–F23).

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F14

Mean 0.998004 1.146516 1.295817 3.070575 0.998004 9.656354 1.783898 0.998004 4.423582 1.09721 3.999176 3.9306 1.048667

Best 0.998004 0.998004 0.998004 0.998031 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004

Worst 0.998004 3.96825 2.982105 10.76318 0.998004 17.37441 10.76318 0.998004 10.76318 2.982105 8.849513 15.50382 1.992037

Std 7.2 × 10−17 0.664167 0.651946 2.170562 7.2 × 10−17 5.167271 2.233902 3.74 × 10−12 4.335554 0.443658 2.698996 4.397024 0.222066

Median 0.998004 0.998004 0.998004 2.982105 0.998004 12.67051 0.998004 0.998004 2.982105 0.998004 3.146201 2.487068 0.998004

Rank 1 5 6 8 1 12 7 2 11 4 10 9 3
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Table 4. Cont.

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F15

Mean 0.000307 0.000308 0.000341 0.001134 0.000712 0.008416 0.00061 0.004474 0.004475 0.003436 0.002272 0.005546 0.015388

Best 0.000307 0.000307 0.000308 0.000538 0.000307 0.000308 0.00031 0.000348 0.000307 0.000308 0.001538 0.000307 0.000782

Worst 0.000307 0.000316 0.000527 0.00212 0.002252 0.056621 0.001502 0.056543 0.020363 0.020364 0.004034 0.056543 0.066917

Std 2.29 × 10−19 1.87 × 10−6 6.5 × 10−5 0.000451 0.000665 0.014443 0.000307 0.013022 0.00816 0.007301 0.000649 0.013444 0.016221

Median 0.000307 0.000307 0.000309 0.00099 0.000314 0.000627 0.000573 0.00062 0.000308 0.000317 0.00208 0.000444 0.014273

Rank 1 2 3 6 5 12 4 9 10 8 7 11 13

F16

Mean −1.03163 −1.03163 −1.03163 −1.02933 −1.03163 −1.02688 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163

Best −1.03163 −1.03163 −1.03163 −1.03162 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163

Worst −1.03163 −1.03163 −1.03163 −1 −1.03163 −1 −1.03163 −1.03163 −1.03163 −1.03162 −1.03163 −1.03163 −1.03161

Std 2.1 × 10−16 8.4 × 10−8 8.82 × 10−17 0.006971 1.91 × 10−16 0.011587 1.17 × 10−10 4.03 × 10−8 5.64 × 10−9 1.33 × 10−6 1.53 × 10−16 8.82 × 10−17 4.78 × 10−6

Median −1.03163 −1.03163 −1.03163 −1.0312 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163

Rank 1 4 1 8 1 9 2 5 3 6 1 1 7

F17

Mean 0.397887 0.397895 0.397887 0.409183 0.397887 0.39792 0.397888 0.397887 0.397888 0.400047 0.397887 0.52702 0.466023

Best 0.397887 0.397887 0.397887 0.397962 0.397887 0.397888 0.397887 0.397887 0.397887 0.3979 0.397887 0.397887 0.397887

Worst 0.397887 0.398048 0.397887 0.498535 0.397887 0.398075 0.397892 0.397888 0.397891 0.437578 0.397887 1.130918 1.75218

Std 0 3.59 × 10−5 3.98 × 10−16 0.023274 0 4.3 × 10−5 1.18 × 10−6 1.05 × 10−7 8.45 × 10−7 0.008836 0 0.254527 0.302731

Median 0.397887 0.397887 0.397887 0.401719 0.397887 0.397907 0.397887 0.397887 0.397888 0.397997 0.397887 0.397887 0.397905

Rank 1 6 2 9 1 7 5 3 4 8 1 11 10

F18

Mean 3 3 3.000003 5.742379 3 12.45003 3.000021 3 3.000012 3.000001 3 3 7.302903

Best 3 3 3 3 3 3.000001 3 3 3.000001 3 3 3 3

Worst 3 3 3.000028 30.75151 3 84.00011 3.000169 3.000001 3.000038 3.000006 3 3 34.94955

Std 9.11 × 10−16 4.2 × 10−16 6.42 × 10−6 8.441297 1.55 × 10−15 25.19918 3.78 × 10−5 3.94 × 10−7 9.8 × 10−6 1.56 × 10−6 3.02 × 10−15 2.58 × 10−15 10.54375

Median 3 3 3.000001 3.000014 3 3.00001 3.00001 3 3.00001 3 3 3 3.00117

Rank 1 1 7 10 2 12 9 5 8 6 4 3 11
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Table 4. Cont.

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F19

Mean −3.86278 −3.86278 −3.86278 −3.82685 −3.86278 −3.86274 −3.86058 −3.86278 −3.86072 −3.86047 −3.86278 −3.86278 −3.86262

Best −3.86278 −3.86278 −3.86278 −3.86048 −3.86278 −3.86278 −3.86278 −3.86278 −3.86278 −3.86273 −3.86278 −3.86278 −3.86278

Worst −3.86278 −3.86278 −3.86278 −3.73516 −3.86278 −3.86264 −3.85204 −3.86278 −3.8549 −3.85483 −3.86278 −3.86278 −3.86183

Std 2.28 × 10−15 2.28 × 10−15 3.89 × 10−13 0.038307 2.13 × 10−15 3.9 × 10−5 0.002904 1.87 × 10−7 0.003273 0.003341 1.9 × 10−15 2.06 × 10−15 0.000295

Median −3.86278 −3.86278 −3.86278 −3.8444 −3.86278 −3.86276 −3.86171 −3.86278 −3.86277 −3.86245 −3.86278 −3.86278 −3.86278

Rank 1 1 2 9 1 4 7 3 6 8 1 1 5

F20

Mean −3.322 −3.29813 −3.26819 −2.87036 −3.28036 −3.26468 −3.23382 −3.25652 −3.25038 −3.21772 −3.322 −3.29494 −3.2283

Best −3.322 −3.322 −3.322 −3.07689 −3.322 −3.32164 −3.32198 −3.32199 −3.32199 −3.31795 −3.322 −3.322 −3.32163

Worst −3.322 −3.20308 −3.1971 −2.48983 −3.2031 −3.1574 −3.0863 −3.2028 −3.085 −3.02017 −3.322 −3.13764 −2.99723

Std 4.32 × 10−16 0.048752 0.061042 0.155393 0.058168 0.064086 0.09432 0.060761 0.095649 0.079637 4.08 × 10−16 0.057012 0.078203

Median −3.322 −3.322 −3.322 −2.89614 −3.32199 −3.3194 −3.25911 −3.20305 −3.32199 −3.19712 −3.322 −3.322 −3.23661

Rank 1 2 5 12 4 6 9 7 8 11 1 3 10

F21

Mean −10.1532 −9.77968 −10.1532 −5.0552 −10.1532 −6.90572 −8.24533 −7.99956 −9.64755 −5.86981 −5.69611 −7.15161 −6.26023

Best −10.1532 −10.1532 −10.1532 −5.0552 −10.1532 −10.0952 −10.1532 −10.1532 −10.1532 −8.27119 −10.1532 −10.1532 −9.73855

Worst −10.1532 −2.68286 −10.1532 −5.0552 −10.1532 −2.61113 −2.6301 −2.63047 −5.10027 −4.17485 −2.63047 −2.63047 −2.38578

Std 2.61 × 10−15 1.670419 2.03 × 10−14 3.1 × 10−7 1.03 × 10−7 3.54775 2.711952 2.756513 1.555113 1.573889 3.51533 3.494447 2.711083

Median −10.1532 −10.1532 −10.1532 −5.0552 −10.1532 −9.86587 −10.1506 −10.1531 −10.1528 −4.88288 −3.46205 −10.1532 −7.06069

Rank 1 4 2 13 3 9 6 7 5 11 12 8 10
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Table 4. Cont.

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F22

Mean −10.4029 −9.73508 −10.4029 −5.08767 −10.4029 −8.2408 −7.7929 −8.9621 −10.1367 −7.82384 −10.4029 −5.31476 −7.37187

Best −10.4029 −10.4029 −10.4029 −5.08767 −10.4029 −10.3533 −10.4029 −10.4029 −10.4028 −10.0684 −10.4029 −10.4029 −9.9828

Worst −10.4029 −3.7243 −10.4029 −5.08767 −10.4029 −1.83234 −2.76573 −2.76589 −5.08766 −3.63254 −10.4029 −2.75193 −2.67682

Std 3.65 × 10−15 2.055642 3.13 × 10−14 6.98 × 10−7 3.62 × 10−15 3.482703 2.946435 2.605072 1.18842 1.928487 2.79 × 10−15 3.465308 1.916626

Median −10.4029 −10.4029 −10.4029 −5.08767 −10.4029 −10.1656 −10.0872 −10.4029 −10.4025 −8.44314 −10.4029 −3.2451 −7.86313

Rank 1 5 3 12 1 7 9 6 4 8 2 11 10

F23

Mean −10.5364 −10.1307 −10.5364 −5.12847 −10.5364 −8.08868 −8.25778 −10.266 −10.5361 −7.60728 −10.5364 −5.56226 −6.36016

Best −10.5364 −10.5364 −10.5364 −5.12848 −10.5364 −10.4974 −10.5363 −10.5364 −10.5364 −10.3064 −10.5364 −10.5364 −10.1845

Worst −10.5364 −2.42173 −10.5364 −5.12847 −10.5364 −2.41711 −1.67653 −5.12846 −10.5357 −3.91631 −10.5364 −2.42734 −2.38229

Std 2.51 × 10−15 1.814497 3.97 × 10−15 1.53 × 10−6 2.85 × 10−15 3.633979 3.217511 1.209244 0.000146 1.800721 1.63 × 10−15 3.772667 2.608634

Median −10.5364 −10.5364 −10.5364 −5.12847 −10.5364 −10.3713 −10.5338 −10.5364 −10.5361 −8.05319 −10.5364 −3.35328 −6.88826

Rank 1 5 2 11 1 7 6 4 3 8 1 10 9

Sum rank 10 35 33 98 20 85 64 51 62 78 40 68 88

Mean rank 1 3.5 3.3 9.8 2 8.5 6.4 5.1 6.2 7.8 4 6.8 8.8

Total rank 1 4 3 13 2 11 8 6 7 10 5 9 12



Biomimetics 2023, 8, 149 18 of 42Biomimetics 2023, 8, x FOR PEER REVIEW 14 of 31 
 

 

    
    

    
    

    
    

    
    

    
    

   

 

    
Figure 3. Boxplot diagrams of the proposed SABO and competitor algorithms for F1 to F23
test functions.
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4.4. Evaluation CEC 2017 Test Suite

In this subsection, the efficiency of the SABO in solving the complex optimization
problems from the CEC 2017 test suite is evaluated. The CEC 2017 test suite has thirty
benchmark functions, consisting of three unimodal functions, C17-F1 to C17-F3, seven
multimodal functions, C17-F4 to C17-F10, ten hybrid functions, C17-F11 to C17-F20, and
ten composition functions, C17-F21 to C17-F30. The C17-F2 function was removed from
this test suite due to its unstable behavior. The complete information on the CEC 2017 test
suite is provided by [59]. The results of implementing the proposed SABO approach and
its competitor algorithms on the CEC 2017 test suite are reported in Table 5.

Based on the obtained results, the SABO is the best optimizer for the functions C17-F1,
C17-F3 to C17-F23, and C17-F25 to C17-F30. The analysis of the simulation results shows
that the proposed SABO approach provided better results for most of the benchmark
functions. Overall, by winning the first rank, it provided a superior performance in
handling the CEC 2017 test suite compared to the competitor algorithms. The performances
of the SABO and its competitor algorithms in solving the CEC 2017 test suite are plotted as
boxplot diagrams in Figure 4.
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Table 5. Optimization results of the CEC 2017 test suite.

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C17-F1

Mean 100 7046.882 1840.86 9.82 × 109 10,040.45 1.34 × 109 7,369,265 11,894.28 19,142.49 1.59 × 108 332.224 3380.706 20,223,617

Best 100 349.4302 761.674 7.37 × 109 2897.088 11,782,641 3,382,781 6418.842 11,813.99 70,630,075 110.2765 365.6412 6,742,684

Worst 100 12,596.3 3920.943 1.28 × 1010 13,813.56 3.84 × 109 10,346,872 16,013.61 28,455.49 3.83 × 108 754.7187 10,023.59 37,058,367

Std 1.76 × 10−5 6377.11 1455.264 2.72 × 109 4862.963 1.71 × 109 3,477,153 4126.177 7771.845 1.5 × 108 293.2302 4472.088 12,528,147

Median 100 7620.896 1340.412 9.56 × 109 11,725.58 7.54 × 108 7,873,703 12,572.34 18,150.24 90,563,366 231.9504 1566.796 18,546,709

Rank 1 5 3 13 6 12 9 7 8 11 2 4 10

C17-F3

Mean 300 353.4634 336.7463 11,593.82 303.0258 11,561.85 1014.038 303.025 3214.45 762.0832 11,528.91 303 15,890.56

Best 300 305.6803 303.001 7495.814 303.0155 7333.238 506.675 303.0096 618.2583 487.416 9410.586 303 4664.339

Worst 300 398.7643 379.2247 15,992.88 303.034 15,496.53 1772.56 303.0438 7596.973 941.5065 13,035.42 303 25,128.63

Std 5.43 × 10−11 51.21056 31.53062 4721.028 0.008085 3337.066 557.707 0.014236 3317.442 199.0619 1570.355 4.64 × 10−14 10,690.16

Median 300 354.7045 332.3797 11,443.29 303.0267 11,708.81 888.4577 303.0233 2321.285 809.7051 11,834.82 303 16,884.64

Rank 1 6 5 12 4 11 8 3 9 7 10 2 13

C17-F4

Mean 400.002 411.7815 422.7311 890.6229 407.5184 588.2896 435.164 408.4423 427.4762 413.8849 410.3218 425.8947 419.8654

Best 400 404.0126 405.1815 592.3616 406.3748 410.9766 410.9211 407.3072 411.3067 413.039 409.1493 404.1139 416.5881

Worst 400.008 428.8649 473.5286 1532.186 408.0158 956.8654 461.0965 409.526 475.1348 414.4191 410.867 479.8561 423.8752

Std 0.004024 11.75615 33.87191 431.9196 0.767374 248.7957 27.51261 0.907625 31.77317 0.591742 0.789237 36.34511 3.18921

Median 400 407.1243 406.1071 718.9722 407.8415 492.6581 434.3191 408.4681 411.7316 414.0409 410.6354 409.8044 419.4992

Rank 1 5 8 13 2 12 11 3 10 6 4 9 7

C17-F5

Mean 510.1638 524.345 547.7084 585.8799 516.3361 577.0081 543.3966 529.3387 523.0358 541.9821 558.7547 535.2866 535.4083

Best 507.9597 515.0492 526.103 566.9905 512.0446 539.5294 519.6511 520.078 515.4188 536.0268 545.1657 517.0589 530.3026

Worst 513.7912 534.1427 569.3135 597.8354 523.1164 599.001 567.8895 548.081 533.9026 545.8445 572.3282 561.2747 541.6999

Std 2.551081 8.813038 17.75945 13.40493 4.81413 26.23584 20.0436 12.73497 8.200079 4.315597 12.68207 20.42117 5.160091

Median 509.4521 524.094 547.7084 589.3468 515.0917 584.7509 543.0228 524.5978 521.411 543.0286 558.7624 531.4064 534.8153

Rank 1 4 10 13 2 12 9 5 3 8 11 6 7
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Table 5. Cont.

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C17-F6

Mean 600.0003 606.5662 621.0782 650.7423 609.1735 633.9321 646.477 606.5379 607.6657 613.5003 624.6064 614.1202 617.2135

Best 600.0001 606.0005 611.45 647.7003 607.6625 618.2979 641.2523 606.2218 607.1218 611.2009 615.1481 607.4805 613.5467

Worst 600.0004 608.0621 641.9305 654.2638 610.8793 650.6244 657.2451 607.0517 609.1673 617.0857 636.0319 627.0489 621.8526

Std 0.000133 1.001765 14.07778 2.920617 1.432896 13.49693 7.511607 0.38974 1.001744 2.682933 8.726274 8.876072 3.681783

Median 600.0004 606.1011 615.4663 650.5025 609.0762 633.4031 643.7053 606.4391 607.1869 612.8573 623.6228 610.9757 616.7274

Rank 1 3 9 13 5 11 12 2 4 6 10 7 8

C17-F7

Mean 720.073 734.6061 761.3859 807.9573 722.6878 832.3335 780.3394 729.1437 737.4493 762.9736 723.9356 741.8665 746.3812

Best 715.4835 724.1491 735.2345 798.2316 721.6198 802.1454 758.5209 718.6366 729.0264 758.0501 718.5417 733.9806 735.012

Worst 724.3538 744.5125 809.0966 818.5406 724.5213 871.8311 810.1066 735.7483 757.2095 771.8916 733.1719 754.5434 751.4285

Std 3.767197 8.718046 32.71951 8.520126 1.302941 28.97113 25.43976 7.630846 13.25034 6.207461 6.432453 9.363563 7.701444

Median 720.2273 734.8814 750.6063 807.5285 722.305 827.6787 776.3651 731.0949 731.7806 760.9763 722.0144 739.471 749.5423

Rank 1 5 9 12 2 13 11 4 6 10 3 7 8

C17-F8

Mean 810.4471 816.5418 839.1887 862.826 817.8294 842.4619 847.5424 835.8918 823.7197 849.1191 831.6153 832.7817 826.2435

Best 807.9597 813.0245 830.2544 848.7521 813.055 820.5764 834.07 817.0478 818.4748 841.6045 824.0785 825.0834 821.9262

Worst 812.9345 820.059 846.1864 869.0084 821.0988 864.6593 862.7255 864.2865 830.5745 857.9026 840.157 839.7978 834.8115

Std 2.071168 2.900933 8.233535 9.572994 3.420317 18.78867 11.74116 20.07474 5.330818 8.339208 7.762303 7.284997 5.810643

Median 810.4471 816.5418 840.157 866.7719 818.5819 842.306 846.6871 831.1164 822.9147 848.4846 831.1129 833.1227 824.1182

Rank 1 2 9 13 3 10 11 8 4 12 6 7 5
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Table 5. Cont.

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C17-F9

Mean 900 967.6049 1195.105 1536.685 909.5698 1285.153 1156.894 909.1165 909.5976 921.9334 909 913.6391 914.5897

Best 900 915.8816 1042.267 1391.599 909.0062 940.4326 1015.748 909.0008 909.0575 916.909 909 909.9834 912.06

Worst 900 1067.154 1401.239 1802.164 910.3272 1718.309 1474.688 909.4606 909.9263 930.8768 909 922.4721 918.9278

Std 6.63 × 10−8 71.14703 150.341 186.13 0.668621 339.4266 213.3433 0.22941 0.37996 6.138603 0 5.963657 3.106199

Median 900 943.6919 1168.458 1476.489 909.4729 1240.936 1068.57 909.0023 909.7033 919.974 909 911.0504 913.6856

Rank 1 9 11 13 4 12 10 3 5 8 2 6 7

C17-
F10

Mean 1332.824 1480.565 1983.322 2488.599 1425.781 2408.738 2489.529 1812.192 1551.249 2278.76 2590.355 2033.726 1784.313

Best 1148.146 1252.93 1547.347 2301.942 1233.409 2216.257 2144.702 1622.704 1424.405 1855.109 2170.808 1615.933 1457.91

Worst 1472.816 1779.22 2200.435 2845.624 1648.377 2797.678 2935.651 2062.389 1738.377 2591.357 2916.871 2473.996 2212.947

Std 135.4067 219.8764 295.2874 242.7758 186.9812 263.5195 332.5847 215.659 133.4848 313.057 335.5618 352.4818 323.6579

Median 1355.166 1445.056 2092.754 2403.414 1410.669 2310.509 2438.88 1781.838 1521.107 2334.287 2636.871 2022.487 1733.197

Rank 1 3 7 11 2 10 12 6 4 9 13 8 5

C17-F11

Mean 1101.951 1140.586 1228.49 2875.633 1161.199 3483.1 1283.95 1128.6 1140.581 1166.078 1143.474 1158.09 2498.755

Best 1100.106 1123.786 1148.587 2212.166 1146.001 1239.695 1142.653 1114.45 1125.089 1151.928 1134.302 1145.891 1127.276

Worst 1103.709 1166.606 1396.414 3651.557 1172.502 5750.695 1486.99 1150.863 1155.683 1189.225 1150.141 1181.344 6389.56

Std 1.471866 20.62707 113.236 604.7776 13.25433 2511.116 152.6594 15.59771 13.5372 16.09987 6.99637 15.96627 2594.499

Median 1101.994 1135.977 1184.48 2819.403 1163.147 3471.005 1253.078 1124.544 1140.775 1161.58 1144.726 1152.563 1239.093

Rank 1 4 9 12 7 13 10 2 3 8 5 6 11
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Table 5. Cont.

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C17-
F12

Mean 1236.271 5559.916 2,511,388 2.22 × 108 359,149.5 273,948.3 8,393,395 183,943.7 1,538,474 5,480,627 532,151.5 8674.094 656,172.8

Best 1200.472 2570.303 1,341,217 72,092,500 73,415.04 90,941.23 1,034,605 53,497.94 352,069 1,466,612 87,116.48 2632.812 189,991.5

Worst 1320.393 8481.589 4,328,205 3.96 × 108 782,590.9 369,792.4 18,669,650 405,280 2,144,531 9,702,434 1,174,998 14,989.43 1,158,399

Std 56.3488 2534.165 1,377,237 1.54 × 108 302,391.3 128,159.5 7,419,726 153,869.8 829,555.8 4,362,453 490,016 5630.259 397,641.8

Median 1212.11 5593.885 2,188,065 2.1 × 108 290,296.1 317,529.7 6,934,662 138,498.5 1,828,648 5,376,730 433,245.8 8537.066 638,150.3

Rank 1 2 10 13 6 5 12 4 9 11 7 3 8

C17-
F13

Mean 1304.993 1344.367 8117.328 14,715,489 8085.628 7104.87 21,009.24 23,961.97 13,686.04 18,044.16 11,826.33 7084.083 58,962.19

Best 1300.267 1326.243 4012.739 562,966.1 6942.551 3435.632 8238.108 1430.428 1754.981 17,033.29 9912.376 2482.891 9169.346

Worst 1307.311 1388.356 12,303.06 38,809,343 8625.08 9713.084 33,878.59 32,971.52 29,492.54 20,513.96 13,294.02 18,031.96 195,190.8

Std 3.216697 29.52882 3426.914 18,055,269 789.815 3079.479 11,270.67 15,062.17 12,680.32 1662.195 1404.497 7379.557 90,872.29

Median 1306.198 1331.435 8076.757 9,744,822 8387.44 7635.382 20,960.14 30,722.97 11,748.31 17,314.69 12,049.47 3910.74 15,744.32

Rank 1 2 6 13 5 4 10 11 8 9 7 3 12

C17-
F14

Mean 1402.488 1444.236 2289.895 4231.887 1521.929 2518.19 2024.33 1458.924 2213.02 1621.184 7031.375 3146.623 13,967.98

Best 1400.997 1436.972 1480.121 1776.823 1465.868 1498.802 1555.677 1451.275 1520.805 1540.045 4068.107 1449.32 3940.504

Worst 1404.975 1461.52 4154.407 5069.283 1606.812 5475.471 2659.533 1467.14 4230.062 1654.052 9502.841 7325.205 27,939.94

Std 1.722924 11.57122 1251.151 1636.771 63.50277 1971.796 461.422 8.566456 1344.803 54.35347 2875.255 2808.222 10,166.57

Median 1401.99 1439.226 1762.525 5040.72 1507.517 1549.244 1941.054 1458.639 1550.606 1645.319 7277.277 1905.983 11,995.75

Rank 1 2 8 11 4 9 6 3 7 5 12 10 13
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Table 5. Cont.

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C17-
F15

Mean 1500.735 1543.281 6262.746 11,927.86 5086.004 8164.765 10,192.3 3355.232 8109.99 1742.133 22,752.48 9655.325 4826.672

Best 1500.42 1516.603 2595.687 7176.916 3413.436 1622.124 2332.897 1548.837 1626.364 1606.337 9801.267 3004.24 1939.079

Worst 1501.47 1576.696 10,895 18,873.62 5725.449 23,941.47 19,122.93 6441.311 13,816.11 1839.486 32,087.12 15,949.83 8587.927

Std 0.492915 28.38924 3620.641 5484.158 1118.04 10,590.53 6882.544 2332.862 5279.614 114.4205 10,813.18 5410.479 3305.625

Median 1500.525 1539.914 5780.148 10830.45 5602.566 3547.731 9656.686 2715.391 8498.744 1761.354 24,560.77 9833.616 4389.841

Rank 1 2 7 12 6 9 11 4 8 3 13 10 5

C17-
F16

Mean 1601.491 1649.923 1821.649 2117.474 1750.931 1902.667 1820.004 1954.402 1757.887 1699.423 2169.685 1967.285 1835.615

Best 1600.891 1618.631 1746.382 1931.724 1626.595 1703.917 1662.416 1861.547 1676.507 1671.229 2002.795 1857.47 1744.823

Worst 1602.221 1740.889 1927.75 2277.287 1870.188 2204.793 1928.273 2089.957 1886.671 1758.351 2292.979 2140.708 1869.332

Std 0.559227 60.65097 88.96065 175.2947 99.64392 225.6027 127.3475 111.8741 96.67836 40.60161 121.7196 131.2036 60.58069

Median 1601.426 1620.087 1806.232 2130.443 1753.471 1850.979 1844.663 1933.052 1734.186 1684.057 2191.484 1935.481 1864.152

Rank 1 2 7 12 4 9 6 10 5 3 13 11 8

C17-F17

Mean 1723.586 1765.069 1823.242 1893.54 1766.873 1888.486 1865.574 1798.636 1761.392 1780.403 1845.77 1773.865 1777.796

Best 1720.806 1743.094 1789.168 1820.852 1763.401 1786.601 1786.288 1748.661 1747.335 1769.398 1767.287 1766.627 1774.404

Worst 1726.376 1777.321 1887.088 1950.365 1769.946 2028.162 1929.496 1821.921 1771.594 1791.214 2058.763 1781.135 1780.448

Std 2.675517 15.11684 46.17573 62.33027 3.283575 109.6898 70.76013 33.79072 10.16705 10.80578 142.2006 6.203813 2.734527

Median 1723.581 1769.93 1808.356 1901.471 1767.072 1869.592 1873.255 1811.981 1763.319 1780.5 1778.515 1773.849 1778.167

Rank 1 3 9 13 4 12 11 8 2 7 10 5 6
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Table 5. Cont.

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C17-
F18

Mean 1800.837 1859.672 13,938.97 59,571,750 3535.842 22,783.74 11,831.85 17,169.54 28,339.11 31,819.69 6760.801 23,558.67 13,746.07

Best 1800.382 1831.441 7463.635 1,172,817 2282.239 7557.654 4843.622 3049.12 6350.854 25,849.48 2784.765 2988.52 3590.053

Worst 1801.23 1885.454 30,792.79 2.31 × 108 6112.985 38,664.33 18,444.13 28,482.17 43,862.39 39,830.07 11,735.05 43,985.86 19,884.62

Std 0.425238 23.75548 11,291.02 1.14 × 108 1769.324 17,002.7 5997.927 11,063.84 16,266.21 6430.793 3719.078 21,164.6 7117.107

Median 1800.869 1860.897 8749.724 2,951,840 2874.071 22,456.49 12,019.82 18,573.44 31,571.61 30,799.6 6261.693 23,630.15 15,754.81

Rank 1 2 7 13 3 9 5 8 11 12 4 10 6

C17-
F19

Mean 1900.699 1926.294 17,532.55 887,210 2810.952 69,696.01 91,329.02 2061.048 9918.311 4947.729 37,009.45 26,876.64 6556.993

Best 1900.02 1920.536 11,947.26 261,858.1 1991.015 1989.788 2432.302 1934.73 1948.214 2074.039 19,605.58 2703.715 2258.266

Worst 1901.018 1936.758 22,949.02 1,457,677 4443.733 269,653.5 302,603.7 2186.265 14,970.35 13,386.75 56,169.17 83,121.28 10,563.68

Std 0.469791 7.217362 4527.227 569,116 1113.981 133,312.5 141,491.7 138.5845 5844.748 5626.219 16,830.68 37,918.21 3426.682

Median 1900.878 1923.94 17,616.97 914,652.3 2404.53 3570.371 30,140.06 2061.599 11,377.34 2165.063 36,131.53 10,840.78 6703.014

Rank 1 2 8 13 4 11 12 3 7 5 10 9 6

C17-
F20

Mean 2012.062 2054.989 2168.699 2315.007 2062.648 2354.534 2225.473 2091.528 2084.559 2097.948 2297.8 2202.964 2074.353

Best 2000.995 2041.52 2097.348 2255.245 2054.132 2248.846 2216.119 2060.579 2060.809 2086.007 2211.927 2176.839 2058.758

Worst 2022.277 2065.326 2289.042 2384.066 2075.653 2525.444 2244.977 2174.014 2122.146 2109.232 2418.189 2237.451 2082.762

Std 10.64651 11.14546 85.72215 54.87906 9.167641 130.7472 13.17126 55.19227 26.7293 9.737469 99.95301 30.12514 11.06745

Median 2012.488 2056.554 2144.203 2310.359 2060.403 2321.923 2220.398 2065.759 2077.64 2098.276 2280.541 2198.783 2077.947

Rank 1 2 8 12 3 13 10 6 5 7 11 9 4
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Table 5. Cont.

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C17-F21

Mean 2227.269 2277.628 2303.89 2376.87 2277.037 2324.678 2318.231 2314.057 2340.214 2330.032 2385.654 2350.741 2328.384

Best 2200 2223.137 2225.887 2290.952 2222.014 2228.428 2261.055 2222.011 2328.288 2226.03 2365.778 2342.005 2250.78

Worst 2309.074 2332.025 2390.796 2417.574 2333.006 2422.937 2380.97 2356.142 2347.139 2371.958 2397.662 2358.925 2365.929

Std 54.53713 61.08269 90.13716 57.92822 63.53908 103.91 63.56486 61.89353 8.23251 69.83162 13.80538 8.322173 52.39665

Median 2200 2277.675 2299.439 2399.477 2276.563 2323.674 2315.448 2339.036 2342.715 2361.069 2389.588 2351.016 2348.414

Rank 1 3 4 12 2 7 6 5 10 9 13 11 8

C17-
F22

Mean 2281.681 2332.152 2330.768 3087.845 2329.939 2718.571 2342.642 2327.38 2334.197 2344.22 2323 2337.385 2342.437

Best 2225.162 2327.867 2325.755 2817.831 2325.678 2264.186 2335.826 2326.342 2324.894 2337.414 2323 2323.692 2339.298

Worst 2300.816 2337.065 2342.905 3336.034 2333.863 3182.255 2350.877 2328.435 2348.562 2356.955 2323 2372.308 2347.267

Std 37.67967 3.848159 8.161645 229.8799 3.910382 445.6178 6.479651 0.855293 11.30366 8.937244 1.82 ×
10−10 23.3312 3.403963

Median 2300.372 2331.838 2327.207 3098.757 2330.107 2713.922 2341.933 2327.371 2331.666 2341.256 2323 2326.771 2341.592

Rank 1 6 5 13 4 12 10 3 7 11 2 8 9

C17-
F23

Mean 2611.357 2579.308 2667.971 2718.43 2637.237 2697.98 2694.535 2643.4 2646.047 2672.2 2786.48 2674.092 2686.975

Best 2608.305 2323.003 2650.779 2706.877 2629.339 2655.067 2677.464 2633.778 2636.214 2660.434 2715.86 2666.127 2665.349

Worst 2616.532 2672.945 2699.707 2741.376 2640.62 2748.004 2714.439 2650.725 2653.039 2682.164 2952.25 2687.118 2696.114

Std 3.64721 170.9946 21.67124 15.74796 5.317777 41.0529 15.28266 7.839137 8.395193 9.651696 111.046 9.466652 14.63718

Median 2610.296 2660.642 2660.699 2712.733 2639.494 2694.424 2693.118 2644.548 2647.467 2673.1 2738.904 2671.562 2693.219

Rank 2 1 6 12 3 11 10 4 5 7 13 8 9
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Table 5. Cont.

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C17-
F24

Mean 2500 2654.765 2810.582 2882.259 2762.108 2806.98 2824.644 2770.844 2779.167 2792.961 2608.498 2803.53 2757.421

Best 2500 2525.074 2790.184 2864.037 2748.444 2669.506 2794.738 2767.398 2761.584 2788.468 2525 2784.989 2548.505

Worst 2500 2779.422 2842.774 2898.174 2767.624 2899.038 2857.29 2779.739 2806.256 2797.165 2858.992 2818.582 2845.439

Std 0.000208 142.3299 23.04341 15.24674 9.138715 98.25782 25.82208 5.959332 19.47309 3.56214 166.996 14.18211 139.8829

Median 2500 2657.281 2804.685 2883.413 2766.182 2829.688 2823.274 2768.118 2774.413 2793.106 2525 2805.275 2817.869

Rank 1 3 11 13 5 10 12 6 7 8 2 9 4

C17-
F25

Mean 2897.743 2939.205 3002.932 3379.608 2951.006 3084.264 2923.738 2950.689 2967.678 2962.932 2961.387 2951.867 2983.245

Best 2897.743 2926.72 2978.251 3289.304 2926.744 2978.771 2784.028 2926.876 2942.501 2943.1 2926.92 2927.701 2970.614

Worst 2897.743 2974.732 3054.607 3454.308 2974.394 3341.814 2987.511 2975.572 2976.797 2982.504 2972.89 2976.076 2993.868

Std 3.36 × 10−8 23.70208 35.87615 70.12321 26.94928 173.2479 96.18849 27.35035 16.79278 20.94847 22.97801 27.38743 9.901458

Median 2897.743 2927.683 2989.435 3387.41 2951.444 3008.235 2961.706 2950.154 2975.707 2963.062 2972.869 2951.845 2984.249

Rank 1 3 11 13 5 12 2 4 9 8 7 6 10

C17-
F26

Mean 2825.003 2972.504 3385.253 4092.298 2831.005 3908.684 4085.422 3257.318 3200.927 3262.013 3220.902 2933.409 2925.977

Best 2800.002 2828.894 3084.199 3766.19 2830.358 3507.432 3146.636 2929.126 2929.209 2942.092 2828 2828 2719.842

Worst 2900 3164.947 4136.214 4330.297 2831.923 4302.23 4744.193 4241.866 3841.664 3988.718 4399.609 3047.636 3156.644

Std 49.99818 169.2791 505.5009 237.3648 0.672201 432.8631 683.3607 656.3655 429.2242 487.656 785.8045 89.81023 221.2334

Median 2800.005 2948.087 3160.299 4136.353 2830.87 3912.537 4225.429 2929.14 3016.417 3058.621 2828 2929 2913.711

Rank 1 5 10 13 2 11 12 8 6 9 7 4 3
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Table 5. Cont.

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C17-F27

Mean 3089.302 3187.335 3131.406 3230.803 3126.61 3213.757 3170.819 3123.865 3127.21 3148.188 3285.324 3170.977 3196.967

Best 3088.978 3138.891 3125.805 3163.998 3124.072 3185.351 3123.898 3120.635 3123.737 3126.785 3274.05 3128.643 3152.806

Worst 3089.706 3220.632 3135.892 3360.837 3127.949 3243.35 3278.907 3126.25 3134.393 3209.196 3292.888 3222.369 3260.97

Std 0.366278 34.63162 5.15301 88.33327 1.727664 28.24835 72.58966 2.388077 4.967803 40.68205 8.30382 39.41506 45.7305

Median 3089.262 3194.909 3131.964 3199.189 3127.209 3213.163 3140.235 3124.288 3125.354 3128.386 3287.178 3166.448 3187.046

Rank 1 9 5 12 3 11 7 2 4 6 13 8 10

C17-
F28

Mean 3100 3209.471 3291.862 3805.864 3297.406 3485.689 3402.419 3231.942 3444.978 3375.163 3508.536 3354.094 3289.755

Best 3100 3131.001 3131 3641.298 3131.318 3249.761 3206.373 3131.128 3417.601 3254.631 3448 3214.648 3179.683

Worst 3100 3249.505 3445.94 4085.063 3480.946 3689.471 3510.723 3417.587 3468.617 3446.202 3545.106 3446.173 3579.424

Std 7.84 × 10−5 55.48586 132.2739 199.9835 192.2555 180.4896 134.1804 135.448 20.93876 91.4386 42.94438 104.9692 193.8496

Median 3100 3228.689 3295.254 3748.547 3288.68 3501.763 3446.29 3189.526 3446.846 3399.909 3520.519 3377.778 3199.956

Rank 1 2 5 13 6 11 9 3 10 8 12 7 4

C17-
F29

Mean 3145.635 3198.911 3328.492 3371.819 3223.14 3336.276 3401.823 3295.223 3208.039 3250.921 3362.277 3308.944 3277.638

Best 3136.956 3178.603 3221.613 3307.382 3211.292 3249.631 3291.368 3232.601 3191.878 3200.04 3269.198 3202.464 3224.531

Worst 3153.72 3210.792 3490.816 3407.078 3243.25 3490.938 3542.404 3343.345 3228.417 3275.391 3560.442 3398.811 3331.133

Std 8.915623 14.73388 126.0596 44.12179 14.06066 109.1835 104.2167 52.40041 15.19086 35.35944 133.6847 89.23126 44.81565

Median 3145.932 3203.125 3300.77 3386.407 3219.01 3302.268 3386.76 3302.473 3205.931 3264.127 3309.733 3317.25 3277.445

Rank 1 2 9 12 4 10 13 7 3 5 11 8 6
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Table 5. Cont.

SABO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C17-
F30

Mean 3399.757 10,068.96 287,700.2 11,930,005 54,083.49 811,693.2 1,282,284 394,299.5 786,216.7 65,324.3 934,558 418,537.2 1,651,370

Best 3395.483 4233.284 30,695.17 1,938,209 32,506.21 20,261.8 230,760.6 16,058.25 6350.293 31,434.05 576,418.6 6669.239 568,362.1

Worst 3406.359 23,879.15 684,228 31,239,242 77,137.33 1,695,201 304,9926 1,493,937 2,907,196 109,796.9 1,285,469 830,093.5 3,762,394

Std 4.745776 9332.561 317,094.7 13,174,546 24,872.51 910,839.9 1,321,431 733,263.4 1,416,501 38,272.74 289,499.1 474,595.8 1,505,564

Median 3398.593 6081.714 217,938.8 7,271,284 53,345.21 765,654.9 924,224.8 33,601.32 115,660.1 60,033.11 938,172.3 418,693 1,137,363

Rank 1 2 5 13 3 9 11 6 8 4 10 7 12

Sum rank 30 101 221 363 113 301 278 148 187 222 243 208 224

Mean rank 1.034483 3.482759 7.62069 12.51724 3.896552 10.37931 9.586207 5.103448 6.448276 7.655172 8.37931 7.172414 7.724138

Total rank 1 2 7 13 3 12 11 4 5 8 10 6 9
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4.5. Statistical Analysis

In this subsection, statistical analyses are presented for the results of the proposed
SABO approach and its competing algorithms to determine whether the superiority of the
SABO over the competing algorithms is significant from a statistical point of view. For this
purpose, the Wilcoxon rank sum test [60] was used, which is a non-parametric statistical
analysis that is used to determine the significant difference between the averages of two
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data samples. In this test, an index called the p-value is used to determine the significant
difference. The results of implementing the Wilcoxon rank sum test on the performances of
the SABO and the competitor algorithms are presented in Table 6.

Table 6. Wilcoxon rank sum test results.

Compared
Algorithm

Objective Function Type

Unimodal High-Dimensional Fixed-Dimensional CEC 2017

SABO vs. WSO 1.08 × 10−24 1.97 × 10−21 0.000113 1.72 × 10−19

SABO vs. AVOA 0.057751 1.71 × 10−5 1.27 × 10−18 1.97 × 10−21

SABO vs. RSA 1.11 × 10−5 5.15 × 10−11 1.44 × 10−34 1.97 × 10−21

SABO vs. MPA 1.01 × 10−24 6.98 × 10−15 1.02 × 10−8 1.22 × 10−18

SABO vs. TSA 1.01 × 10−24 1.28 × 10−19 1.44 × 10−34 2.41 × 10−21

SABO vs. WOA 1.01 × 10−24 5.16 × 10−14 1.44 × 10−34 5.93 × 10−21

SABO vs. MVO 1.01 × 10−24 1.97 × 10−21 1.44 × 10−34 1.16 × 10−20

SABO vs. GWO 1.01 × 10−24 7.58 × 10−16 1.44 × 10−34 1.97 × 10−21

SABO vs. TLBO 1.01 × 10−24 1.04 × 10−14 1.44 × 10−34 7.05 × 10−21

SABO vs. GSA 1.01 × 10−24 1.97 × 10−21 1.46 × 10−13 2.13 × 10−21

SABO vs. PSO 1.01 × 10−24 1.97 × 10−21 1.2 × 10−16 1.97 × 10−21

SABO vs. GA 1.01 × 10−24 1.97 × 10−21 1.44 × 10−34 2.09 × 10−20

Based on the simulation results, in cases where the p-value was less than 0.05, the
proposed SABO approach had a significant statistical superiority over the corresponding
metaheuristic algorithm.

4.6. Advantages and Disadvantages of SABO

The proposed SABO approach is a metaheuristic algorithm that performs the optimiza-
tion process based on the search power of its population through an iteration-based process.
Among the advantages of the SABO, it can be mentioned that, except for the parameters
of the number of population members N and the maximum number of iterations of the
algorithm T, which are similar in all the algorithms, it does not have any control parameters.
For this reason, it does not need a parameter-setting process. The simplicity of its equations,
its easy implementation, and its simple concepts are other advantages of the SABO. The
SABO’s ability to balance exploration and exploitation during the search process in the
problem solving space is another advantage of this proposed approach. Despite these
advantages, the proposed approach also has several disadvantages. The proposed SABO
approach belongs to the group of stochastic techniques for solving optimization problems,
and for this reason, its first disadvantage is that there is no guarantee of it achieving the
global optimal. Another disadvantage of the SABO is that, based on the NFL theorem,
it cannot be claimed that the proposed approach performs best in all optimization appli-
cations. Another disadvantage of the SABO is that there is always the possibility that
newer metaheuristic algorithms will be designed that have a better performance than the
proposed approach in handling some optimization tasks.

5. SABO for Real-World Applications

In this subsection, the capability of the proposed SABO approach in handling opti-
mization tasks in real-world applications is challenged by four engineering design opti-
mization problems.

5.1. Pressure Vessel Design Problem

The pressure vessel design is an optimization challenge with the aim of minimizing
construction costs. The pressure vessel design schematic is shown in Figure 5.
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Figure 5. Schematic of the pressure vessel design.

The mathematical model of the pressure vessel design problem is as follows [61]:
Consider: X = [x1, x2, x3, x4] = [Ts, Th, R, L].
Minimize: f (x) = 0.6224x1x3x4 + 1.778x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3.
Subject to:

g1(x) = −x1 + 0.0193x3 ≤ 0, g2(x) = −x2 + 0.00954x3 ≤ 0,

g3(x) = −πx2
3x4 −

4
3

πx3
3 + 1296000 ≤ 0, g4(x) = x4 − 240 ≤ 0.

with
0 ≤ x1, x2 ≤ 100 and 10 ≤ x3, x4 ≤ 200.

The optimization results for the pressure vessel design, using the SABO and its
competing algorithms, are reported in Tables 7 and 8.

Based on the obtained results, the SABO provided the optimal solution, with the
values of the design variables being equal to (0.778027075, 0.384579186, 40.3122837, and
200) and the value of the objective function being equal to 5882.901334. The analysis of
the simulation results shows that the SABO more effectively dealt with the pressure vessel
design compared to its competing algorithms. The convergence curve of the SABO during
the pressure vessel design optimization is drawn in Figure 6.

Table 7. Performance of optimization algorithms for the pressure vessel design problem.

Algorithm
Optimum Variables

Optimum Cost
Ts Th R L

SABO 0.778027 0.384579 40.31228 200 5882.901
WSO 0.778027 0.384579 40.31228 200 5882.901
AVOA 0.778027 0.384579 40.31228 200 5882.901
RSA 0.802584 0.844696 40.70183 200 7482.575
MPA 0.778027 0.384579 40.31228 200 5882.901
TSA 0.779501 0.39248 40.31357 200 5916.63
WOA 0.829716 0.514131 41.05723 189.8821 6541.663
MVO 0.857853 0.42615 44.43659 149.6475 6044.237
GWO 0.780028 0.386828 40.41563 198.6128 5891.034
TLBO 1.203325 1.486222 58.51898 69.96653 14,118.06
GSA 1.227629 0.698407 51.74761 114.4765 9945.211
PSO 1.333518 1.047126 67.93357 17.51237 12,075.36
GA 1.475349 0.666431 53.45493 162.9081 14,813.53
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Table 8. Statistical results of optimization algorithms for the pressure vessel design problem.

Algorithm Mean Best Worst Std Median Rank

SABO 5882.901 5882.901 5882.901 1.87 × 10−12 5882.901 1
WSO 5915.105 5882.901 6498.223 137.3202 5882.901 3
AVOA 6481.485 5883.345 7313.806 539.7058 6320.198 6
RSA 13,096.94 7482.575 31,153.65 5269.559 11,801.01 9
MPA 5882.901 5882.901 5882.901 7.88 × 10−6 5882.901 2
TSA 6338.723 5916.63 7390.013 508.4069 6070.166 5
WOA 8510.284 6541.663 11,984.76 1564.63 7876.801 8
MVO 6728.999 6044.237 7328.396 420.5985 6712.525 7
GWO 6025.596 5891.034 7223.113 382.0974 5903.094 4
TLBO 29,784.06 14,118.06 54,039.67 10,010.76 29,098.17 11
GSA 22,548.81 9945.211 40,013.2 8166.03 21,797.25 10
PSO 32,641.1 12,075.36 74,979.4 18,333.66 31,455.76 12
GA 32,672.62 14,813.53 57,925.8 12,038.98 30,822.44 13
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5.2. Speed Reducer Design Problem

The speed reducer design is a real-world application within engineering science with
the aim of minimizing the weight of the speed reducer. The speed reducer design schematic
is shown in Figure 7.
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The mathematical model of the speed reducer design problem is as follows [62,63]:
Consider: X = [x1, x2, x3, x4, x5, x6, x7] = [b, m, p, l1, l2, d1, d2].
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Minimize: f (x) = 0.7854x1x2
2
(
3.3333x2

3 + 14.9334x3 − 43.0934
)
− 1.508x1

(
x2

6 + x2
7
)
+

7.4777
(

x3
6 + x3

7
)
+ 0.7854

(
x4x2

6 + x5x2
7
)
.

Subject to:

g1(x) =
27

x1x2
2x3
− 1 ≤ 0, g2(x) =

397.5
x1x2

2x3
− 1 ≤ 0,

g3(x) =
1.93x3

4
x2x3x4

6
− 1 ≤ 0, g4(x) =

1.93x3
5

x2x3x4
7
− 1 ≤ 0,

g5(x) =
1

110x3
6

√(
745x4

x2x3

)2
+ 16.9 · 106 − 1 ≤ 0,

g6(x) =
1

85x3
7

√(
745x5

x2x3

)2
+ 157.5 · 106 − 1 ≤ 0,

g7(x) =
x2x3

40
− 1 ≤ 0, g8(x) =

5x2

x1
− 1 ≤ 0,

g9(x) =
x1

12x2
− 1 ≤ 0, g10(x) =

1.5x6 + 1.9
x4

− 1 ≤ 0.

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0.

with

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5
≤ 8.3, 2.9 ≤ x6 ≤ 3.9, and 5 ≤ x7 ≤ 5.5.

The results of implementing the proposed SABO approach and its competing algo-
rithms on the speed reducer design problem are presented in Tables 9 and 10.

Based on the obtained results, the SABO provided the optimal solution, with the val-
ues of the design variables being equal to (3.5, 0.7, 17, 7.3, 7.8, 3.350214666, and 5.28668323)
and the value of the objective function being equal to 2996.348165. What can be concluded
from the comparison of the simulation results is that the proposed SABO approach pro-
vided better results and a superior performance in dealing with the speed reducer design
problem compared to the competing algorithms. The convergence curve of the SABO while
achieving the optimal solution for the speed reducer design problem is drawn in Figure 8.

Table 9. Performance of optimization algorithms for the speed reducer design problem.

Algorithm
Optimum Variables

Optimum Cost
b M p l1 l2 d1 d2

SABO 3.5 0.7 17 7.3 7.8 3.350215 5.286683 2996.348
WSO 3.5 0.7 17 7.300011 7.800021 3.350215 5.286686 2996.349
AVOA 3.5 0.7 17 7.3 7.8 3.350215 5.286683 2996.348
RSA 3.6 0.7 17 8.3 8.3 3.367585 5.5 3201.663
MPA 3.5 0.7 17 7.3 7.8 3.350215 5.286683 2996.348
TSA 3.502148 0.7 17 7.3 8.3 3.35245 5.289842 3010.76
WOA 3.5 0.7 17 7.3 7.8 3.367938 5.291747 3004.112
MVO 3.512969 0.7 17 7.531103 7.8 3.358073 5.28743 3005.97
GWO 3.500135 0.7 17 7.465414 7.842208 3.351387 5.288783 3000.422
TLBO 3.580555 0.702711 24.74533 8.098778 8.176551 3.674643 5.412883 4887.56
GSA 3.542686 0.702648 17.21175 7.499948 7.843232 3.588004 5.320297 3152.102
PSO 3.540769 0.70174 27.65403 7.555885 8.17207 3.390954 5.389825 5497.948
GA 3.554445 0.706553 20.58122 7.559935 8.141695 3.627213 5.383383 3897.082
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Table 10. Statistical results of optimization algorithms for the speed reducer design problem.

Algorithm Mean Best Worst Std Median Rank

SABO 2996.348 2996.348 2996.348 9.33 × 10−13 2996.348 1
WSO 2996.428 2996.349 2997.378 0.229195 2996.36 3
AVOA 3001.508 2996.348 3012.836 4.579725 3001.278 4
RSA 3275.755 3201.663 3363.128 58.7856 3268.023 9
MPA 2996.348 2996.348 2996.348 1.03 × 10−5 2996.348 2
TSA 3031.051 3010.76 3055.05 12.61348 3031.917 7
WOA 3119.79 3004.112 3241.885 71.0998 3139.051 8
MVO 3027.597 3005.97 3055.36 14.62276 3028.79 6
GWO 3005.626 3000.422 3015.259 4.261653 3005.579 5
TLBO 9.03 × 1013 4887.56 3.39 × 1014 9.66 × 1013 5.47 × 1013 12
GSA 3622.122 3152.102 4409.364 332.2137 3665.23 10
PSO 1.67 × 1014 5497.948 5.21 × 1014 1.61 × 1014 1.37 × 1014 13
GA 4.37 × 1013 3897.082 1.77 × 1014 4.76 × 1013 2.62 × 1013 11
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5.3. Welded Beam Design

The design of the welded beam is the subject of optimization by real users to minimize
its production costs. The design of the welded beam schematic is shown in Figure 9.
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The mathematical model of the welded beam design problem is as follows [32]:
Consider: X = [x1, x2, x3, x4] = [h, l, t, b].
Minimize: f (x) = 1.10471x2

1x2 + 0.04811x3x4 (14.0 + x2).
Subject to:

g1(x) = τ(x)− 13600 ≤ 0, g2(x) = σ(x)− 30000 ≤ 0,

g3(x) = x1 − x4 ≤ 0, g4(x) = 0.10471x2
1 + 0.04811x3x4 (14 + x2)− 5.0 ≤ 0,

g5(x) = 0.125− x1 ≤ 0, g6(x) = δ (x)− 0.25 ≤ 0,

g7(x) = 6000− pc (x) ≤ 0.

where

τ(x) =
√
(τ′)2 + (2ττ′)

x2

2R
+ (τ′′)2 , τ′ =

6000√
2x1x2

, τ” =
MR

J
,

M = 6000
(

14 +
x2

2

)
, R =

√
x2

2
4

+

(
x1 + x3

2

)2
,

J = 2x1x2
√

2

(
x2

2
12

+

(
x1 + x3

2

)2
)

, σ(x) =
504000

x4x2
3

,

δ (x) =
65856000

(30·106)x4x3
3

, pc (x) =
4.013

(
30·106)√ x2

3x6
4

36
196

(
1− x3

28

√
30·106

4(12·106)

)
.

with
0.1 ≤ x1, x4 ≤ 2 and 0.1 ≤ x2, x3 ≤ 10.

The results of using the SABO and its competitor algorithms on the welded beam
design problem are reported in Tables 11 and 12.

Table 11. Performance of optimization algorithms for the welded beam design problem.

Algorithm
Optimum Variables

Optimum Cost
h l t b

SABO 0.20573 3.470489 9.036624 0.20573 1.724852
WSO 0.20573 3.470489 9.036624 0.20573 1.724852
AVOA 0.20573 3.470489 9.036624 0.20573 1.724852
RSA 0.168536 4.097767 10 0.204452 1.908712
MPA 0.20573 3.470489 9.036624 0.20573 1.724852
TSA 0.20487 3.485327 9.06275 0.206144 1.733193
WOA 0.205398 3.46205 9.077283 0.21425 1.795184
MVO 0.204071 3.502486 9.058767 0.205639 1.729722
GWO 0.20563 3.472437 9.041285 0.205727 1.725749
TLBO 0.366925 3.230843 8.472588 0.399745 3.288168
GSA 0.269422 2.818837 7.907051 0.269422 1.94981
PSO 0.407489 5.001097 5.120335 0.644527 3.934221
GA 0.152949 6.850027 7.076448 0.44196 3.314212
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Table 12. Statistical results of optimization algorithms for the welded beam design problem.

Algorithm Mean Best Worst Std Median Rank

SABO 1.724852 1.724852 1.724852 6.83 × 10−16 1.724852 1
WSO 1.724859 1.724852 1.724984 2.94 × 10−5 1.724852 3
AVOA 1.766698 1.724892 1.894369 0.047302 1.749276 7
RSA 2.206838 1.908712 2.432765 0.167509 2.206361 8
MPA 1.724852 1.724852 1.724852 9.33 × 10−9 1.724852 2
TSA 1.743398 1.733193 1.753578 0.005756 1.742708 5
WOA 2.507115 1.795184 4.863039 0.864664 2.221353 10
MVO 1.744239 1.729722 1.766106 0.010415 1.740333 6
GWO 1.727645 1.725749 1.731538 0.001804 1.726748 4
TLBO 8.86 × 1012 3.288168 1.06 × 1014 2.67 × 1013 5.130472 12
GSA 2.444295 1.94981 3.206643 0.318079 2.420274 9
PSO 3.23 × 1013 3.934221 1.47 × 1014 5.01 × 1013 2.52 × 1012 13
GA 5.15 × 1012 3.314212 9.81 × 1013 2.19 × 1013 5.32709 11

Based on the obtained results, the SABO provided the optimal solution, with the values
of the design variables being equal to (0.20572964, 3.470488666, 9.03662391, and 0.20572964)
and the value of the objective function being equal to 1.724852309. Comparing these
optimization results indicates the superior performance of the SABO over the competing
algorithms in optimizing the welded beam design. The SABO convergence curve while
providing the solution for the welded beam design problem is drawn in Figure 10.
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5.4. Tension/Compression Spring Design

The tension/compression spring design is an engineering challenge with the aim
of minimizing the weight of the tension/compression spring. The tension/compression
spring design schematic is shown in Figure 11.
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The mathematical model of the tension/compression spring design problem is as
follows [32]:

Consider: X = [x1, x2, x3 ] = [d, D, P].
Minimize: f (x) = (x3 + 2)x2x2

1.
Subject to:

g1(x) = 1−
x3

2x3

71785x4
1
≤ 0, g2(x) =

4x2
2 − x1x2

12566
(

x2x3
1
) + 1

5108x2
1
− 1 ≤ 0,

g3(x) = 1− 140.45x1

x2
2x3

≤ 0, g4(x) =
x1 + x2

1.5
− 1 ≤ 0.

with
0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3 and 2 ≤ x3 ≤ 15.

The results of employing the SABO and the competing algorithms to handle the
tension/compression spring design problem are presented in Tables 13 and 14.

Table 13. Performance of optimization algorithms for the tension/compression spring design problem.

Algorithm
Optimum Variables

Optimum Cost
d D p

SABO 0.051689 0.356718 11.28897 0.012665
WSO 0.051689 0.356718 11.28894 0.012665
AVOA 0.051689 0.356718 11.28897 0.012665
RSA 0.05 0.31073 15 0.013206
MPA 0.051688 0.35669 11.29061 0.012665
TSA 0.052552 0.377537 10.18444 0.012704
WOA 0.050879 0.337552 12.50787 0.012677
MVO 0.060316 0.601884 4.373275 0.013955
GWO 0.050839 0.33652 12.59396 0.012694
TLBO 0.069085 0.936567 2 0.01788
GSA 0.054593 0.420665 8.807168 0.013549
PSO 0.055083 0.362868 14.11723 0.017745
GA 0.069092 0.936121 2 0.017875

Table 14. Statistical results of optimization algorithms for the tension/compression spring
design problem.

Algorithm Mean Best Worst Std Median Rank

SABO 0.012665 0.012665 0.012665 1.32 × 10−18 0.012665 1
WSO 0.01268 0.012665 0.01278 2.79 × 10−5 0.012671 3
AVOA 0.013025 0.012691 0.014417 0.000435 0.012881 6
RSA 0.021483 0.013206 0.105648 0.023175 0.013311 11
MPA 0.012665 0.012665 0.012665 3.25 × 10−8 0.012665 2
TSA 0.012951 0.012704 0.013815 0.000279 0.012868 5
WOA 0.013608 0.012677 0.015812 0.000964 0.013087 7
MVO 0.017091 0.013955 0.01811 0.001373 0.017875 8
GWO 0.012746 0.012694 0.013145 9.55 × 10−5 0.012725 4
TLBO 0.018531 0.01788 0.01934 0.000379 0.01848 9
GSA 0.019326 0.013549 0.02727 0.003827 0.019966 10
PSO 2.98 × 1013 0.017745 3.97 × 1014 9.71 × 1013 0.017773 13
GA 1.08 × 1012 0.017875 2.09 × 1013 4.66 × 1012 0.023851 12

Based on the obtained results, the SABO provided the optimal solution, with the
values of the design variables being equal to (0.051689061, 0.356717736, and 11.28896595)
and the value of the objective function being equal to 0.012665233. What is evident from
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the analysis of the simulation results is that the SABO was more effective in optimizing the
tension/compression spring design than the competing algorithms. The SABO convergence
curve in reaching the optimal design for the tension/compression spring problem is drawn
in Figure 12.
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6. Conclusions and Future Works

In this paper, a new metaheuristic algorithm called the Subtraction Average of Searcher
Agents (SABO) was designed. The main idea of the design of the SABO was to use mathe-
matical concepts and information on the average differences of searcher agents to update
the population of the algorithm. The mathematical modeling of the proposed SABO ap-
proach was presented for optimization applications. The SABO’s ability to solve these
optimization problems was evaluated for fifty-two standard benchmark functions, includ-
ing unimodal, high-dimensional, and fixed-dimensional functions, and the CEC 2017 test
suite. The optimization results indicated the SABO’s optimal ability to create a balance
between exploration and exploitation while scanning the search space to provide suitable
solutions for the optimization problems. A total of twelve well-known metaheuristic algo-
rithms were employed for comparison with the proposed SABO approach. Comparing the
simulation results showed that the SABO performed better than its competitor algorithms,
providing better results for most of the benchmark functions. The implementation of the
proposed optimization method on four engineering design problems demonstrated the
SABO’s ability to handle these optimization tasks in real-world applications.

With the introduction of the proposed SABO approach, several research avenues are
opened for further study. The design of binary and multi-objective versions of the SABO
is one of this study’s most special research potentials. Employing the SABO to solve the
optimization problems within various sciences and real-world applications is another
suggestion for further studies.
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