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Abstract: Previously, 3D-printed bone grafts made of titanium alloy with bioactive coating has
shown great potential for the restoration of bone defects. Implanted into a medullary canal titanium
graft with cellular structure demonstrated stimulation of the reparative osteogenesis and successful
osseointegration of the graft into a single bone-implant block. The purpose of this study was to
investigate osseointegration of a 3D-printed degradable polymeric implant with cellular structure
as preclinical testing of a new technique for bone defect restoration. During an experimental study
in sheep, a 20 mm-long segmental tibial defect was filled with an original cylindrical implant
with cellular structure made of polycaprolactone coated with hydroxyapatite. X-ray radiographs
demonstrated reparative bone regeneration from the periosteum lying on the periphery of cylindrical
implant to its center in a week after the surgery. Cellular structure of the implant was fully filled with
newly-formed bone tissue on the 4th week after the surgery. The bone tissue regeneration from the
proximal and distal bone fragments was evident on 3rd week. This provides insight into the use of
bioactive degradable implants for the restoration of segmental bone defects. Degradable implant
with bioactive coating implanted into a long bone segmental defect provides stimulation of reparative
osteogenesis and osseointegration into the single implant-bone block.

Keywords: bone defect; degradable implant; polycaprolactone; hydroxyapatite; osseointegration

1. Introduction

Unsatisfactory outcomes of orthopedic surgery for non-unions and bone defects are
not rare [1–3]. The methods of transosseous osteosynthesis developed by G. Ilizarov based
on low-invasive surgery, fixation stability, preservation of blood supply, and functional load-
ing demonstrated its efficiency in the treatment of pseudarthrosis and bone defects [4–6].
On the other hand, inconveniencies and disadvantages of external fixation are numerous:
long-lasting external frame wearing, staged in-patient stay, delayed functional recovery,
high rate of pin-site infections, decreased life quality of patients with external frame, and
external fixation index in single-level lengthening for bone transport on tibia being over
40 days/cm in adult patients [7–9]. Recently, an idea appeared to fill bone defects with a
personalized titanium implants, the design of which (inner cells and pores) is similar to the
structure of spongy bone [10–12]. Experimental studies demonstrated that osseointegration
of such an implant provides fast and durable restoration of a bone defect, but the titanium
does not allow monitoring the process of reparative bone regeneration and its functional re-
structuring in clinical conditions by the methods of X-rays [13–15]. Furthermore, sometimes
a metal implant remained into the bone arises concerns of a patient.

Over the past few years, there has been significant interest in the use of artificial
bioresorbable scaffolds made by 3D printing to treat large bone defects [16–18]. One of
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the main advantages of 3D printing is the ability to personalize the scaffold, which can be
designed to fit the size and shape of the bone defect with a similar structure and morphology
to the tissue it will replace. Fused Deposition Modeling (FDM) is a simple and cost-
effective 3D printing technique that allows for printing with thermoplastic polymers and
polymer composites with a print resolution of up to 50 µm. Currently, new linear polyester-
based bioresorbable materials for FDM 3D printing of personalized scaffolds for bone
tissue engineering are actively studied. Polylactic acid (PLA) and PLA-based composites
have been the most extensively studied, as they show good printability, a high level of
biocompatibility, support cell adhesion and proliferation, and can accelerate the formation
of bone tissue and osseointegration at the defect site in the combination with calcium
phosphates [19–22]. An alternative to PLA is another linear polyester polycaprolactone
(PCL). Compared to PLA, PCL has a much lower glass transition temperature, unique
elastic properties at human body temperature, and is known for its good suturability [23].
The low melting temperature of PCL allows for adapting the strategy of FDM printing, and
its high elasticity makes it easy to implant and withstand cyclic loads [24,25]. Previously,
it was shown that 3D-printed PCL composite scaffolds filled with hydroxyapatite (HA)
demonstrated a good level of biocompatibility, support for cell adhesion, growth, and
proliferation [26,27].

Recent studies have shown that the printed infill pattern is also important for the
biocompatibility of biomimetic scaffolds [28–30]. Triply periodic minimal surfaces (TPMS)
have gained attention due to their high surface-to-volume ratio and interconnected porosity,
which closely mimic the structure of natural materials [31]. Numerous of studies have
employed gyroid-like TPMS infill patterns for 3D printing of PCL-based scaffolds and
showed improved cytocompatibility, mechanical strength, and osteoblast proliferation
compared to conventional cubic and rectangular infill patterns [32–38]. Studies demonstrate
the potential of using TPMS structures in the design and fabrication of personalized
biomimetic scaffolds for bone tissue engineering.

The purpose of this experimental study was the assessment of the reparative osteogen-
esis and osseointegration of a biomimetic TPMS-structured degradable cylindrical implant
with bioactive coating for long bone defect filling.

2. Materials and Methods

This non-randomized study was performed on five mixed-breed sheep of feminine
sex aged of 1 year in 2022. All the cheeps received the same postoperative care and same
complete feeding, they were examined by veterinarian doctor 5 days per week. They were
allowed to walk with no limitations in adapted vivarium.

Applied implants for bone defect filling had dimensions of 40 mm height and 18 mm
diameter (Figure 1a,b). The implants were 3D printed of ε-polycaprolactone (PCL; Sigma-
Aldrich, St. Louis, MO, USA; Mn 80,000 g/mol) and coated with hydroxyapatite (HA;
Fluidinova, Portugal; particle size 10 ± 5 µm). The implants were fabricated via Fused
Deposition Modeling (FDM) additive technology at Tomsk Polytechnic University (Tomsk,
Russia). PCL pellets were melted and extruded with the use of Filabot EX2 (Filabot HQ,
Barre, VT, USA) commercial single screw extruder to fabricate filament of 2.8 ± 0.15 mm
diameter. The temperature of extrusion was 80 ± 2 ◦C and the rate of extrusion was
2 m/min. Extruded filament was used for the 3D printing of scaffolds with the use of
Ultimaker S5 (Ultimaker B.V., Utrecht, The Netherlands) commercial FDM 3D printer. The
temperature of the glass substrate was 35 ◦C, and the temperature of the printing nozzle
was 200 ◦C. The printing was performed at printing rate of 6 mm/s. Dimensions and
shape of implants were designed exactly in accordance with the transverse dimensions of
the experimental animals tibial shaft and presented in Figure S1. The middle part of the
implants was designed in the form of 20 mm long porous cylinder with 18 mm diameter
and intramedullary cannel of 5 mm diameter. The inner space of the middle part of implants
was printed in the form of a gyroid divided into cells of 1 mm diameter with walls thickness
of 450 µm. Intramedullary canal of 5 mm diameter was designed in the center of the porous
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part. The outer walls of the cylinder had pores of 1 mm diameter to facilitate ingrowth
of blood vessels to the bone defect from the side of periosteal tissues and intramedullary
canal of adjacent bone fragments. The end face surfaces of the middle porous part were
printed in the form of hollow cylinders of 10 mm long each with small pores of 1 mm. The
external and internal surfaces of the implant were coated with a bioactive layer of HA.
«Solvent/non-solvent» treatment of scaffolds was performed with the use of the mixture
of toluene and ethanol at 3:7 v/v ratio. HA was mixed with the toluene/ethanol mixture
at 10% w/w and stirred on magnetic stirrer for 30 min to obtain suspension. Scaffolds
were dipped into the suspension for 2 min at room temperature under continuous stirring.
Coated scaffolds were washed with ethanol and dried for 24 h under vacuum (1 mbar) at
room temperature.
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Figure 1. 3D-printed cylindrical implant: (a)—screenshot of 3D model of the implant from Cura 5.1.0
slicer, (b)—3D-printed PCL cylindrical implant; (c)—computer tomography of a porous part of the
implant (×2.5).

Protocol. The study protocol included the following phases:

• 1–2 days before surgery: physical examination and standard AP and lateral radio-
graphs of both tibiae including adjacent joints;

• D0: surgery;
• Postoperative period: standard AP and lateral radiographs were taken on the D1 and

later once every week;
• Euthanasia at D30 (Euthanasia was performed by an intravenous injection of sodium

thiopental 5%, 45 mg/kg).

Surgery. All the surgical interventions were performed under general anesthesia with
a sodium thiopental 5% solution (10–15 mg/kg) with atropine as needed. The same surgeon
performed all the surgeries. The first stage of the surgery consisted of the modeling of a
tibial defect: a longitudinal incision was made along the anterior surface of the tibia and the
shaft of the tibia was exposed. The periosteum was dissected longitudinally, and 20 mm
long sector of the shaft was resected with an oscillating saw. Then, the cylindrical implant
was mounted on the defect site by the integration of free ends of the bone fragments
into hollow cylinders on the end face surfaces of the implant. The wound was sutured
layer-by-layer, and the limb was fixed with the Ilizarov fixator. Regarding geometry of
circular external fixator, the Ilizarov frame comprised two distal circular rings of 110 mm
diameter made of stainless steel and two proximal rings of 110 mm diameter in three
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quarters connected by three 12 cm long threaded rods (Figure 2b). The gaps of proximal
rings were oriented posteriorly as so allowing flexion motion in knee joint while walking.
Three stain steel 1.5-mm wires were inserted in proximal tibial fragment and three Kirscher
wires without olive of the same diameter were inserted in the distal tibial fragment (one of
distal wires was inserted through tibia and fibula). Angulation between wires was about
90◦. All wires were tensioned with 100 kg forces with graduated wire—tensioner. The
external frame fixation lasted 30 days in each animal. In contrast to rigid half-pins, an
external fixator with wires provides biomechanical benefit with the weight bearing on the
bone regenerate while walking and does not demonstrate stiffness with negative influence
on bone remodelling [39,40]. Cefazolin was administered intramuscularly 7 days after the
surgery (0.5 g twice a day). In postoperative period the wounds underwent daily control,
pin-site care was performed every 2 days. The experimental surgeries were performed by
one surgical team.
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Figure 2. Filling tibia segmental defect with degradable implant: (a)—radiograph of a defect filled
with the implant (scan lines are marked); (b)—photo of an experimental animal on the 4th postopera-
tive day.

Radiographically control was performed using Premium VET X-ray system (TOSHIBA
(Rotanode) Model E7239. N: 10G749, Japan) and digital radiography system with CANON
CXDI-401C COMPACT flat-panel detector (Canon Inc. Medical Equipment Group, Tochigi,
Japan). The optical density of the interfragmentary gap filled with implant and newly
formed bone tissue was measured with original software (Certificate for the Computer
Program No. 2014611777 RF) by the transverse and longitudinal scanning (Figure 2a).

Computer tomography (CT) of anatomical specimens was preformed using the PRODIS
Compact table microtomography system (PRODIS. NDT Ltd., Moscow, Russia) and VG
Studio 3.5 (Volume Graphics GmbH, Heidelberg, Germany) software.

For morphological study the specimens were dissected in the longitudinal direction to
visually assess the state of the bone and soft tissues lying on the implant surface, and to
assess the tissue substrate filling the cells of the implant and the longitudinal axial canal of
the implant.
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AtteStat 12.0.5 (Kurgan, Russia) software was used for the statistical analysis. The
statistical values described the mean and standard deviations.

Ethics. Approval was obtained from the institutional ethics committee before the
experiment (Ethics Committee of the Ilizarov National Medical Research Center for Trau-
matology and Orthopedics, Kurgan, Russia (protocol code 1(71), date of approval 28 April
2022). Interventions, animal care, and euthanasia conformed to the requirements of the
European Convention for the Protection of Vertebrate Animals used for Experimental and
other Scientific Purposes (Strasbourg, 18 March 1986), principles of laboratory animal care
(NIH publication number 85-23, revised 1985), and the national laws.

3. Results

Three-dimensional-printed PCL implant and CT of porous part of the implant are
presented in Figure 1b,c, respectively. Implants have smooth surface with open pores in
the middle part (Figure 1b). CT images show regular porous structure of the middle part of
implant with visible inner intramedullary canal (Figure 1c).

A promising approach for modifying the surface of biodegradable polyesters involves
treatment of the polymer with a mixture of organic solvents to partially swell its sur-
face [41–43]. It was shown that a mixture of toluene and ethanol has no destructive effect
on the PCL scaffold structure and allows non-covalent immobilization of gelatin and iodine.
The swelled surface layer of the polymer is able to adsorb molecules and particles from
the contacting medium. Such mechanism of adsorption is highly suitable for the immo-
bilization of inorganic particles. HA distributed evenly over the surface of the implant
in the form of dispersed segregated particles (white particles in the SEM micrograph of
implant surface) (Figure 3). EDX mapping of the HA coated surface and chemical composi-
tion of implants examined by FTIR are shown in the supporting information manuscript
(Figures S2 and S3).

Biomimetics 2023, 8, x FOR PEER REVIEW 5 of 14 
 

 

assess the tissue substrate filling the cells of the implant and the longitudinal axial canal 

of the implant. 

AtteStat 12.0.5 (Kurgan, Russia) software was used for the statistical analysis. The 

statistical values described the mean and standard deviations. 

Ethics. Approval was obtained from the institutional ethics committee before the 

experiment (Ethics Committee of the Ilizarov National Medical Research Center for 

Traumatology and Orthopedics, Kurgan, Russia (protocol code 1(71), date of approval 28 

April 2022). Interventions, animal care, and euthanasia conformed to the requirements of 

the European Convention for the Protection of Vertebrate Animals used for Experimental 

and other Scientific Purposes (Strasbourg, 18 March 1986), principles of laboratory 

animal care (NIH publication number 85-23, revised 1985), and the national laws. 

3. Results 

Three-dimensional-printed PCL implant and CT of porous part of the implant are 

presented in Figure 1b,c, respectively. Implants have smooth surface with open pores in 

the middle part (Figure 1b). CT images show regular porous structure of the middle part 

of implant with visible inner intramedullary canal (Figure 1c). 

A promising approach for modifying the surface of biodegradable polyesters 

involves treatment of the polymer with a mixture of organic solvents to partially swell its 

surface [41–43]. It was shown that a mixture of toluene and ethanol has no destructive 

effect on the PCL scaffold structure and allows non-covalent immobilization of gelatin 

and iodine. The swelled surface layer of the polymer is able to adsorb molecules and 

particles from the contacting medium. Such mechanism of adsorption is highly suitable 

for the immobilization of inorganic particles. HA distributed evenly over the surface of 

the implant in the form of dispersed segregated particles (white particles in the SEM 

micrograph of implant surface) (Figure 3). EDX mapping of the HA coated surface and 

chemical composition of implants examined by FTIR are shown in the supporting 

information manuscript (Figures S2 and S3). 

 

Figure 3. Microscopic appearance of the HA coated gyroid PCL implant: (a)—SEM micrograph of 

PCL implant with HA coating, (b)—HA coated surface at 250× magnification, (c)—HA coated 

surface at 1000× magnification. 

The body weight of animals at the beginning of the study was 37.2 ± 3.2 kg (ranged 

from 34 to 38.5 kg). In a month after surgery the mean weight was 37.1 kg (34.5 kg to 37.9 

kg). The sheep started walking with total weight-bearing on the limb that has undergone 

surgery since the 3th–5th day (Figure 2b). There was neither septic nor neurological 

complications during the study. The weight-bearing function of the experimental limb 

was maintained until the end of the study. 

The radiography demonstrated to be enough informative for assessment of bone 

reparative regeneration: the PCL implant was X-ray transparent enough. X-ray 

Figure 3. Microscopic appearance of the HA coated gyroid PCL implant: (a)—SEM micrograph
of PCL implant with HA coating, (b)—HA coated surface at 250× magnification, (c)—HA coated
surface at 1000× magnification.

The body weight of animals at the beginning of the study was 37.2 ± 3.2 kg (ranged
from 34 to 38.5 kg). In a month after surgery the mean weight was 37.1 kg (34.5 kg to 37.9 kg).
The sheep started walking with total weight-bearing on the limb that has undergone surgery
since the 3th–5th day (Figure 2b). There was neither septic nor neurological complications
during the study. The weight-bearing function of the experimental limb was maintained
until the end of the study.

The radiography demonstrated to be enough informative for assessment of bone repar-
ative regeneration: the PCL implant was X-ray transparent enough. X-ray transparency
of the implant allowed monitoring of reparative bone regeneration and bone tissue in-
growth. On the first day of the study the cellular structure of the implant was clearly visible
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(Figure 4a). The optical density inside the cells corresponded to the density of the soft
tissues surrounding the bone. Less pronounced shadow was visible along the axial channel
of the implant, as well as the denser shadow from the superposition of muscle tissue.
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Figure 4. Optical density of the osseointegration zone of an implant (transverse scanning, white
arrows indicate the zone of implant axial channel): (a)—day of surgery (×1.1); (b)—7th days of
fixation (×1.0); (c)—21st days of fixation (zone of the cortices is expanded, zone of implant axial
channel disappeared) (×0.8).

A slight periosteal reaction was noted closing to the ends of the implant at the 7th day
after the surgery (Figure 4b). Densitometry revealed that all the cells of the implant were
filled with the substance which optical density is higher than the density of surrounding
soft tissues. An area of a low density was located in the middle of the implant along the
axial line. We hypothesized that this area was not yet filled with newly forming bone
tissue of low mineralization. By the 21st day of the study, the optical density in transverse
scanning increased. It was no longer possible to distinguish the area of the axial canal of
the implant (Figure 4c).

We compared optical density of cylindrical implant in longitudinal scanning with the
optical density of the distal tibial fragment (Table 1). The optical density of the implant
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was increasing during the study and approaching to the values of the optical density of the
distal tibial fragment.

Table 1. Dynamics of the optical density of the degradable implant on the bone defect site.

Period of Study,
Days

Average Optical Density of
the Bone Defect, a.u.

Optical Density of the Shaft of the
Adjacent Distal Shaft End, a.u.

Coefficient of Optical Density
(Relative to the Distal Bone

Fragment)

D0 (surgery) 103 ± 10.7 382 ± 10.4 0.20

7 106 ± 20.4 349 ± 17.4 0.33

14 149 ± 21.2 405 ± 20.1 0.38

21 159 ± 23.1 307 ± 15.5 0.50

28 312 ± 15.9 409 ± 20.3 0.75

Longitudinal scanning of the implant zone compared to the density of the distal tibial
fragment revealed increasing optical density during experimental study (Figure 5).
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arrow): (a)—the day of the surgery, (b)—7th day after surgery, (c)—14th day after surgery, (d)—28th
day after surgery.

There was no pathological reaction from the soft tissues and signs of inflammation:
subcutaneous tissue, fascia, muscles, and periosteum were of the usual structure. On the
transverse and longitudinal sections of the implants after euthanasia (one month after
the surgery), all cells of implants and longitudinal axial canals were filled with bone
spongy substance (Figure 6a,b). Comparative analysis of the images with the use of
CT reconstruction in the range of the shades of gray and color visualization revealed
the presence of colored structures of high-intensity on the surface (in the outer pores of
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implants) and in the cells of the implant proving bone ingrowth (Figure 6c,d). In the
longitudinal axial canal, images of trabecular structure of 5–6 mm long were observed
(Figure 6c,e, white arrows). They were united with the proximal and distal bone fragments.
The intensity of these structures corresponded to the intensity of cortical bone.
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Figure 6. Bone-implant block after 30 days of the experiment: (a)—photo of the anatomical prepa-
ration of the tibia (the arrow indicates newly formed bone in the central canal), (b)—photo of the
longitudinal section of the anatomical preparation, (c)—CT reconstruction of the anatomical prepa-
ration in the range of the shades of gray (×1.1), (d)—CT image of a cross-sectioned anatomical
preparation in the range of the shades of gray (×2.8), (e)—colored visualization of a cross-sectioned
anatomical preparation using the Smart colors filter (×1.1).

On the sides of the proximal and distal bone fragments, the implants were periosteally
covered with cone-shaped bands of dense compact bone tissue (Figure 6e). Moreover, low
mineralized bone trabeculae were found in the cells of implants (Figure 6d). There were no
signs of resorption or porosity of the compact plate of a bone fragments.

Thus, the study demonstrated ingrowth of bone tissue into cylindrical PCL-HA im-
plant both from the adjacent bone ends and periosteal structures. By the 30th postoperative
day the implant and bone defect were filled in with a newly-formed bone tissue.



Biomimetics 2023, 8, 138 9 of 14

4. Discussion

Architecture and surface properties are among the most important characteristics for
the biocompatibility of scaffolds. The ideal scaffold should provide an optimal surface for
cell adhesion and interconnected porous architecture for vascularization and extracellular
matrix reproduction [44,45]. Three-dimensional printing technologies implement a highly
adaptable and predictable scaffold design: layer-by-layer fabrication allows the formation
of various shapes and a wide range of infills from ordinary 2D grids to 3D structures with
triply periodic minimal surfaces. Providing an interconnected 3D porous structure, high
surface area and high-energy adsorption [46–48], TPMS appears to be biomimetic and
highly desirable for the design of scaffolds. However, among various biomimetic TPMS
structures, a gyroid is the most convenient to use due to the presence of the gyroid infill in
advanced slicer software. The possibility to design the gyroid infill directly with the use of
slicing software makes the scaffolds design highly variable and reproducible.

Ilizarov’s distraction osteogenesis method demonstrates effectiveness in treatment
and reconstruction of large bone defects [3–5]. However, difficulties and complications
associated with the use of the Ilizarov bone transport technique have been reported: high
rate of pin-site infection, prolonged time of external frame fixation, joint contractures, risk
of ischemic regeneration in compromised soft tissues around a large defect, and physical
and psychological suffering of patients [4,5,49,50].

Combination of Masquelet technique (induced membrane technique) followed by
Ilizarov bone transport demonstrated effectiveness in the treatment of nonunions of long
bones [51,52]. The bone transport through induced membrane chamber allowed improving
outcomes and avoiding bone grafting. However, the healing index remained high, varying
from 35 to 60 days/cm [53].

Previously, it was demonstrated that an ideal type of non-free bone grafting for bone
defects filling presents a vascularized autologous osteotomized bone fragment transported
gradually in the interfragmental gap within the soft tissue envelopment providing os-
teogenic properties [54,55]. An autologous graft allows to avoid graft harvesting but risks
of delayed bone union, pin-site infection, and prolonged external frame wearing are not
negligible.

Another option for treatment of extensive diaphyseal and metaphyseal bone defects,
emerging for the latest 20 years, is presented by 3D printed scaffolds for hard tissue replace-
ment [56,57]. This technique gives an alternative method to repair bone defects caused by
osteomyelitis or trauma [58,59]. Materials for large bone defect reconstruction required to
ensure high resistance to mechanical load. The titanium porous implants corresponded to
these requirements providing high mechanical resistance to loading force [60]. On the other
hand, biomaterials used in bone defect repairing should provide osteoinductivity. It is the
second requirement of an ideal bone graft material for total long bone defect reconstruc-
tion. A scaffold promoting new bone tissue formation should enable conducting of bone
regeneration [61]. Non-degradable materials provide only maintenance of the anatomical
function rather than bone regeneration. High stiffness of metallic biomaterials results in
a stress-shielding effect leading to microfractures of additional bone tissue surrounding
implants [62]. Habibovic et al. [63] and Lan Levengood et al. [64] advocate necessity of an
intrinsic microporosity and macropores to enhance new bone formation on the surfaces
of 3D scaffold implants. Moreover, the increase in the porosity of implants decreases the
stress-shielding effect. However, the strength of implants simultaneously reduces [65].

Biomaterials used in bone defect repairing should provide osteoinductivity. Three-
dimensional printing of calcium-phosphates scaffolds enables biocompatibility and osteoin-
ductive properties of implants [66]. Depending on filling the 3D-printed titanium scaffolds
can provide antibacterial and osteoconductive properties [67]. However, it is still limited
compared to the one of rhBMP-2 regarding osteoinduction properties. The recombinant
human BMP-2 stimulates mesenchymal stem cells to differentiate into preosteoblasts and
osteoblasts, and acts as a trigger for migration of osteoblasts in vivo and in vitro [68]. The
use of BMP-2 for clinical purposes arises concerns: the release of rh-BMP-2, especially in
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surrounding soft tissues, could cause heterotopic ossifications, osteolysis and cancer [69,70].
For this reason, an osteoinductive activity of an implant has to be limited to contacting
surfaces of a reconstructed bone and implant to avoid any systemic undesirable side effect.

Coating of surfaces with hydroxyapatite (HA) improves bioactivity and osteointegra-
tion of metallic implants [71]. Only implants with bioactive HA-coated surfaces ensure
primary implant stability which results in an improved contact between bone and im-
plant [72]. The osteoinductive layer of HA on the implant can be achieved by micro arc
oxidation in an electrolyte with calcium and phosphate or by composite coating including
fluorocarbon plastic filled with dispersed hydroxyapatite [73]. Uklejewski et al., emphasize
the role of a biomineral coating with a native Ca/P ratio [74]. It can be one of crucial
factors in mechanics of interacting biomaterials the innovative multi-spiked connecting
scaffold [75].

On the other hand, there are certain limitations of clinical use of titanium implants
in long bone defects in humans. Porous 3D scaffolds fabricated of titanium alloys induce
osseointegration but material obstructs radiological control of ingrowth of newly formed
bone in early postoperative period and in long-term follow up after surgery in clinics [76].

Recently, a scaffold-guided bone regeneration with use of highly porous biodegradable
scaffolds providing long-term mechanical stability has been emerged [76]. Our earlier
morphological studies demonstrated a positive effect of implant hydroxyapatite coating
on the reparative bone formation in experimental fractures: porous surfaces contribute
to a microvascular development followed by formation of dense trabecular structure on
the implant surface without formation of a connective tissue envelope [77]. In cases of
a significant defect in long bone shaft and the absence of bone marrow and endosteum,
the periosteum ensures the main role in the reparative osteogenesis process of restoring
the bone substance [13]. The formation of bone tissue is associated primarily with the
intensity of angiogenesis: perivascular cells that have differentiation potential similar to
mesenchymal stem/progenitor cells migrate together with the vessels into the cells of the
graft differentiating into one or more of the cellular components of the vascular bed [78,79].
Possessing multipotent properties and inducibility to osteogenesis, in the presence of HA
(inducer), which is present on the surface of both external and internal structures of the
new implant, perivasculitis differentiate into osteoblasts [73,80].

The proposed PCL-HA cylindrical implant ensures ingrowth of bone tissue into cells
of implant from the surrounding periosteum. Development of bone tissues from medullary
canal of adjacent bone fragments was also achieved. The newly formed bone was observed
on the implantation site in one month after implantation. Implant material (PCL) allowed
to assess new bone development within the implant. In this experimental study the highly
porous biodegradable construct was stabilized with Ilizarov frame.

We suppose that PCL osteoinductive biodegradable implants coated with HA allow to
overcome inconveniences of stress-shielding effect and limited (even absent) radiological
assessment typical for metal (titanium alloys and steels) 3D-printed implants. The use
of temporary limited external fixation or degradable material providing a long-lasting
mechanical resistance represents an option for mechanical resistance while bone healing.

This study did not evaluate the stability of bone fragments when the PCL-HA im-
plant was applied for experimental defect filling. We recognize it as a weak point of the
research. Thus, additional studies are required for assessment of biomechanical stability of
bone fragments with such type of polymeric implants. Furthermore, morphological and
biomechanical studies will clarify the remodeling of bone inside the implant in the process
of polymeric matrix degradation.

5. Conclusions

In the present study, a method for the restoration of long bone segmental defect with
the use of bioactive degradable 3D-printed implant was proposed. Porous biomimetic
implant was 3D printed of biodegradable polymer PCL and coated with bioactive mineral
HA. Experimental in vivo study with the use of laboratory sheep revealed that the porous
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degradable 3D implants with bioactive coating located in a long bone segmental defect
provide stimulation of reparative osteogenesis and osseointegration into the single implant-
bone block. Ingrowth of bone tissue into cylindrical PCL-HA implant from adjacent
bone ends and periosteal structures was observed to start from day 7 of study. By the 30th
postoperative day, the implant was filled in with bone tissue. Moreover, this type of implant
made of degradable polymer allows radiological assessment of reparative osteogenesis in
long bone defect filling.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomimetics8020138/s1. Figure S1. Drawing of the implant:
(a)—front view, (b)—top view, (c)—A-A section; Figure S2. EDX elemental mapping of the HA coated
implants: (a)—carbon (C), (b)—calcium (Ca), (c)—phosphorus (P), (d)—EDX spectra; Figure S3.
Chemical characterization of the implants by FTIR.
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