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Abstract: Satisfying various constraints and multiple objectives simultaneously is a significant
challenge in solving constrained multi-objective optimization problems. To address this issue, a
new approach is proposed in this paper that combines multi-population and multi-stage methods
with a Carnivorous Plant Algorithm. The algorithm employs the ε-constraint handling method,
with the ε value adjusted according to different stages to meet the algorithm’s requirements. To
improve the search efficiency, a cross-pollination is designed based on the trapping mechanism
and pollination behavior of carnivorous plants, thus balancing the exploration and exploitation
abilities and accelerating the convergence speed. Moreover, a quasi-reflection learning mechanism
is introduced for the growth process of carnivorous plants, enhancing the optimization efficiency
and improving its global convergence ability. Furthermore, the quadratic interpolation method is
introduced for the reproduction process of carnivorous plants, which enables the algorithm to escape
from local optima and enhances the optimization precision and convergence speed. The proposed
algorithm’s performance is evaluated on several test suites, including DC-DTLZ, FCP, DASCMOP,
ZDT, DTLZ, and RWMOPs. The experimental results indicate competitive performance of the
proposed algorithm over the state-of-the-art constrained multi-objective optimization algorithms.

Keywords: carnivorous plant algorithm; constrained multi-objective optimization; cross-pollination;
quasi-reflection learning; quadratic interpolation

1. Introduction

Constrained multi-objective optimization problems (CMOPs) [1,2] are prevalent in
many real-world applications, such as software-defined networks [3], path planning [4],
wireless sensors deployment [5], and real-time systems [6]. Generally, a minimized CMOP
can be defined as Equation (1).

min
x∈S

f (x) = ( f1(x), f2(x), . . . , fm(x))T (1)

subject to gi(x) ≤ 0, i = 1, . . . , p

hj(x) = 0, j = 1, . . . , q

where x = (x1, x2, . . . , xn) represents the decision variable vector, f (x) represents the m-
objective functions, m represents the number of objective functions, and gi(x) ≤ 0 and
hj(x) = 0 represent the p inequality and q equality constraints, respectively.

CMOPs involve optimizing multiple conflicting objectives subject to constraints that
must be satisfied simultaneously, making it challenging to navigate towards the constrained
Pareto front (CPF) [7,8] and obtain satisfactory solutions. Despite the numerous constrained
multi-objective evolutionary algorithms (CMOEAs) proposed in the past two decades, only
a few have been able to balance convergence, diversity, and feasibility, particularly when
dealing with complex feasible regions. Therefore, further research and development of
effective CMOEAs is urgently required.
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To address this issue, this paper presents a novel algorithm, Constrained Multi-
Objective Carnivorous Plant Algorithm (CMOCPA), which employs the carnivorous plant
algorithm (CPA) [9] to solve CMOPs. To achieve a balance between convergence, diver-
sity, and feasibility, CMOCPA utilizes multi-population and multi-stage methods with
the secondary population that employs the ε-constrained handling method. Moreover,
the algorithm introduces a cross-pollination method inspired by the trapping mechanism
and pollination behavior of carnivorous plants, which improves the search efficiency of
the algorithm. Additionally, a quasi-reflection learning mechanism is used for the growth
process of carnivorous plants, while the quadratic interpolation method is introduced for
the reproduction process of carnivorous plants. The experimental results on DC-DTLZ,
FCP, and DASCMOP test suites show that CMOCPA outperforms existing state-of-the-art
CMOEAs. Therefore, this paper makes significant contributions to the field of constrained
multi-objective optimization. The contributions of this paper include:

• A new constrained multi-objective optimization algorithm, CMOCPA, is proposed.
CMOCPA employs a two-population, two-stage method. The two populations, namely
Pop1, Pop2, are employed for the original CMOP and the relaxed CMOP, respectively.
Pop1 concentrates on feasible solutions, while Pop2 ignores all constraints in Stage
1 to quickly converge to the unconstrained Pareto front. In Stage 2, Pop2 uses the
ε-constrained handling method to guide the population back to CPF. The two popula-
tions are designed to help each other evolve, with Pop1 providing guidance to Pop2 in
the search for feasible solutions, and Pop2 providing diversity to Pop1 by exploring
the infeasible regions of the search space.

• Various novel mechanisms are introduced in CMOCPA, including a quasi-reflection
learning mechanism in the growth process, quadratic interpolation in the reproduction
process, and a cross-pollination method inspired by the trapping mechanism and
pollination behavior of carnivorous plants. These mechanisms help the algorithm to
improve the convergence speed, local exploitation ability, and ability to escape from
local optima.

The remaining sections of this paper are organized as follows. In Section 2, a compre-
hensive overview of relevant concepts, including CPA and existing CMOEAs, is provided.
In Section 3, the proposed algorithm, CMOCPA, is presented, and its two-population,
two-phase strategy, as well as its mechanisms for growth process and reproduction process
are described. Section 4 investigates the competitiveness of CMOCPA and compares it with
the seven state-of-the-art CMOEAs on DC-DTLZ, FCP, and DASCMOP test suites. Finally,
Section 5 gives the conclusion and future works.

2. Related Work
2.1. Carnivorous Plant Algorithm

CPA [9] is a plant-based algorithm [10,11] inspired by the trapping behavior of carniv-
orous plants. The algorithm simulates the attraction, trapping, growth, and reproduction
process of carnivorous plants in the natural environment. CPA has the following steps:

The algorithm randomly initializes a population [12,13] containing n candidate so-
lutions as the initial vector of carnivorous plants and prey. Following the initialization
of the population, individuals are sorted in ascending order based on their fitness value
(in the case of a minimization problem). The sorted population is divided into two cat-
egories: carnivorous plant and prey. The prey individuals are allocated to carnivorous
plants based on their fitness values, forming the trapping range of the carnivorous plants.
The carnivorous plants only trap within their designated range. This classification and
grouping process emulates the way carnivorous plants attract and capture prey in their
natural environment. After classification and grouping, the algorithm enters the growth
process of carnivorous plants. The trapping of carnivorous plants is not always successful,
so the algorithm introduces an attraction rate to simulate this process. Carnivorous plants
will randomly select a prey within their attack range. When the random number is less
than the attraction rate, the carnivorous plant hunts and digests the selected prey. On the
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contrary, when the random number is greater than the attraction rate, the prey will escape
the trap of the carnivorous plant and will update its position. After the trapping process
is complete, the carnivorous plants will enter the reproduction process. To avoid wasting
computational resources caused by the generation of inferior offspring, CPA only selects
carnivorous plants to reproduce. During the reproduction process, the optimal individual
in the population guides the reproduction process of each individual. After the growth
and reproduction, the newly generated individuals will be compared with the original
population, and those with better fitness values will be selected to form the next generation
population. The algorithm will repeat the process of grouping and classifying, growth,
reproduction, and selection until the termination criteria are met.

CPA has been shown to be effective in solving a variety of optimization problems,
including the traveling salesman problem [14,15] and heat-treated woods [16]. Its unique
approach to simulating the trapping behavior of carnivorous plants provides a novel
perspective on evolutionary algorithms and may inspire future research in this field.

2.2. Constraints of CMOPs

CMOPs are optimization problems with multiple conflicting objectives and constraints
that must be satisfied simultaneously. For a CMOP, each solution has a degree of violation
for each constraint. The constraint violation (CVj) of a solution x at the jth constraint can
be expressed as Equation (2).

CVj =

{
max(0, gj(x)), j = 1, . . . , p

max(0, |hj(x)| − η), j = 1, . . . , q
(2)

where η is a very small value that can be used to relax equality constraints into inequality
constraints. In general, the feasibility of a solution x depends on the sum of its violations at
each constraint, as expressed in Equation (3).

CV(x) =
q

∑
j=1

CVj(x) (3)

When CV(x) = 0, we refer to solution x as a feasible solution; otherwise, x is an
infeasible solution. For a feasible solution, it must satisfy all of the problem’s constraints,
including both equality and inequality constraints.

2.3. Existing CMOEAs with Constraint-Handling Technologies

Handling feasible and infeasible solutions resulting from constraints is a crucial aspect
in solving CMOPs, for which there are two major categories of algorithms: feasibility-driven
CMOEAs and infeasibility-assisted CMOEAs.

2.3.1. Feasibility-Driven CMOEAs

Feasibility-driven CMOEAs prioritize feasible solutions over infeasible ones. For
instance, MOSES [17] preserves feasible solutions and discards all infeasible ones, resulting
in insufficient selection pressure for solutions in later stages, reducing the ability to converge
to the true Pareto front. To increase the selection pressure, Deb et al. proposed the Constraint
Domination Principle (CDP) in NSGA-II [18]. In CDP, constraints take precedence over
objectives in the dominance relation to ensure that the solution is within the feasible region.
CDP selects infeasible solutions based on constraint domination. Given two solutions xa
and xb, the xa constraint dominates xb if any of the following conditions are met:

1. Value xa is a feasible solution, and xb is an infeasible solution;
2. Both xa and xb are feasible solutions, and xa ≺ xb;
3. Both xa and xb are infeasible solutions, and CV(xa) < CV(xb).

CDP selects infeasible solutions based on constraint domination, where the solution
with fewer constraint violations dominates the one with more violations. When comparing
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two infeasible solutions, the one with fewer constraint violations is considered superior.
When both solutions are feasible, the Pareto dominance relation is used to determine
superiority. CDP has proven to be a powerful tool for handling constraints in CMOPs. By
giving precedence to constraints over objectives in the dominance relation, CDP ensures
that feasible solutions are always superior to infeasible ones. It has been adopted by many
CMOEAs, including C-NSGA-III [18] and C-MOEA/D [19].

2.3.2. Infeasibility-Assisted CMOEAs

CDP has limitations in handling certain types of constraints, such as nonlinear or
logical operator-based constraints. To overcome these limitations, the ε-constraint handling
method has been proposed as a popular infeasible auxiliary method. By introducing a
relaxation factor, ε, the ε-constrained method allows for the retention of some infeasible
solutions, thereby relaxing the comparison criteria of CDP. Given two solutions xa and xb,
xa dominates xb when any of the following conditions is met:

1. Value xa is feasible, and xb is infeasible;
2. Both xa and xb are infeasible, but xa violates fewer constraints than xb;
3. Both xa and xb violate the same number of constraints, but xa has a smaller sum of

constraint violation values than xb.

Several CMOEAs based on the ε-constrained handling method have been developed
to solve CMOPs, including the infeasible solutions diversity maintenance epsilon constraint
handling method, an improved epsilon method with M2M [20] for solving imbalanced CMOPs
with simultaneous convergence-hard and diversity-hard constraints, and εDE [21] using an
adaptive ε-level control method and a combined fitness-violation epsilon constraint handling for
differential evolution. Fan et al. [22] improved the ε-constrained handling method in MOEA/D
for CMOPs with large infeasible regions. These methods have shown promise in addressing the
challenges of solving CMOPs and improving the quality of obtained solutions.

The approach operates by defining a set of ε-constraints, which restrict the allowable
range of objective function values for the infeasible solutions. The optimization problem
is then transformed into multiple sub-problems, each with a different ε value, and these
sub-problems are solved independently. The resulting set of solutions represents the Pareto
front for each sub-problem, which can be combined to obtain the final Pareto front for the
original problem.

Another method for handling constraints is the penalty function approach [23], which
incorporates CVs into the fitness evaluation through a penalty function. In this approach,
the fitness of an individual is calculated by adding a penalty term to the original objective
function. The penalty term is proportional to the degree of constraint violation of the
individual, encouraging the search to avoid infeasible solutions while allowing some
infeasible solutions to be retained in the population for diversity. However, the penalty
function approach can suffer from issues such as sensitivity to penalty parameters and
premature convergence.

To improve the performance of penalty-function-based CMOEAs, some adaptive
penalty methods [24] have been proposed. For instance, c-DPEA [25] proposes an adaptive
penalty function to guide the population over infeasible regions, which allows for a more
effective retention of some infeasible solutions in the population for diversity consideration.
Similarly, in ShiP [26], the degree of shifting of infeasible solution positions is controlled
based on the proportion of feasible solutions in the parent and child populations. The
shifted solutions are then penalized according to their degree of CV violation.

Some CMOEAs convert CMOPs to unconstrained multi-objective optimization problems
(UMOPs) by using overall constraint violation as an additional objective function. This approach
has been employed in several algorithms, such as IDEA [27] and as presented by Peng et al. [28].

Other CMOEAs adopt a multi-stage method where the problem is tackled in two stages.
Liu et al. [29] propose a two-stage algorithm that transforms CMOPs into constrained single-
objective optimization problems in the first stage and then uses a specific CMOEA to find
the final feasible solution in the second stage. Similarly, Fan et al. propose a push–pull
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search framework (PPS) [30] that first pushes the population to the unconstrained Pareto
front using MOEA and then pulls the infeasible individuals towards the feasible region by
a modified constraint-processing CMOEA.

Multi-population/archive methods co-evolve through collaboration between multiple
populations/archives. For example, C-TAEA [31] proposes the use of two archives to
balance convergence, diversity, and feasibility of the optimization process, where one
archive pushes the population toward the Pareto front, while the other tends to maintain
population diversity. BiCo [29] retains a master population and an archive to guide the
search from both feasible and infeasible aspects. CCMO [32] is a weakly cooperative multi-
population method in which one population solves CMOPs, while the other solves its
unconstrained version.

3. The Proposed Algorithm

The effective handling of constraints is a critical issue when addressing CMOPs using
CPA. In this paper, multi-population and multi-stage methods are combined with CPA to
tackle this problem. The multi-population and multi-stage methods have been widely used
in CMOEAs.

The multi-population method allows different populations to manage the archive and
evolve separately for different purposes. For example, in a dual-population method, the
main population is designated to prioritize feasibility, while the secondary population is
used to converge quickly to the unconstrained Pareto front while ignoring the effects of
infeasible regions caused by constraints. This allows the secondary population to provide
information to the main population to help traverse the infeasible region. However, an
important challenge with the multi-population method is that when the PF and CPF do
not overlap fully, the secondary population’s convergence to the PF provides limited
information to the main population. This limitation hampers the effectiveness of single
multi-population CMOEAs in solving such problems, and the problem exacerbates as the
distance between PF and CPF increases.

The multi-stage method divides the constraint-handling process into several stages.
For instance, in a dual-stage method, constraints are not considered in the first stage, and
the population quickly converges to the unconstrained Pareto front (PF). Then, in the
second stage, constraints are taken into account using a constraint handling method such
as the ε-constraint method. An important limitation of using a multi-stage approach alone
is that when a population rapidly converges to the CPF without considering constraints in
the first stage, it often overlooks critical information in the search space, such as feasible
solutions with good convergence and diversity in the feasible region. This information
could be essential in solving CMOPs.

This paper proposes a constrained multi-objective version of CPA, CMOCPA, which
combines dual-population and dual-stage methods. In the first stage, the secondary popula-
tion ignores constraints and converges quickly to the unconstrained PF while continuously
providing information to the main population to help traverse the infeasible region. In
the second stage, the secondary population uses the ε-constrained handling method to
pull the population towards CPF with the help of the main population. The information
obtained during this process can also be used to help the main population explore near
the feasible region as it approaches the CPF from the PF. In addition, the paper proposes
some improvement strategies for CMOCPA to enhance the search efficiency of the algo-
rithm. Algorithm 1 presents the pseudocode for the proposed algorithm. Each part of the
algorithm is described in detail as follows:
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Algorithm 1: Procedure of CMOCPA
Input: Population size:N, max function evaluation times:maxFEs, the number of

carnivorous plants:nCP, the number of prey:nP, and the termination
criterion

Output: Pop1
1 begin
2 Pop1 ← Generate a random population with size N ;
3 Pop2 ← Generate a random population with size N ;
4 S← 1; t← 1; ε← in f ;
5 while termination criterion not satisfied do
6 objt ← Sum of absolute objective values in Pop2 ;
7 if t 6= 1 and |objst − objst−1| < δ and S = 1 then
8 S← 2 ;
9 ε← CVmax of Pop2 ;

10 end
11 O f f1 ← Generate offsprings according to Pop1 as Algorithm 2;
12 O f f2 ← Generate offsprings according to Pop2 as Algorithm 2;
13 while S = 2 do
14 Parent1 ← Select nCP individual by Tournament selection from CP1 ;
15 Parent2 ← Select nCP individual by Tournament selection from CP2 ;
16 O f f3 ← Generate offspring based on Parent1 and Parent2 ;
17 ε = (1− τ) ∗ ε ;
18 end
19 Pop1 ← Pop1 ∪O f f1 ∪O f f2 ∪O f f3 ;
20 Pop2 ← Pop2 ∪O f f1 ∪O f f2 ;
21 Pop1 ← Select N solutions from Pop1 with CDP method ;
22 Pop2 ← Select N solutions from Pop2 with ε method ;
23 t← t + 1 ;
24 end
25 end
26 return Pop1

The initialization process is performed in lines 1–4, which involves parameter setting
and population initialization.

The algorithmic parameters include:

• CPA parameters, such as growth_rate, reproduction_rate, and attraction_rate.
• The stage of the algorithm S. When S = 1, the algorithm is in Stage 1, and Pop2 is

evolving without constraints. On the other hand, when S = 2, the algorithm is in
Stage 2, and Pop2 is using the epsilon-constraints-handling method to ensure that its
solutions are feasible with respect to the constraints.

• The initial value ε for Pop2, which is set to be sufficiently large to ensure that all
solutions in Pop2 are feasible during Stage 1 when using the epsilon constraint method
to select individuals.

• The threshold δ to determine whether individuals in Pop2 have reached a stable state
and whether the algorithm should move from Stage 1 to Stage 2.

Population Initialization: The algorithm first generates two populations randomly
for the initial population. In the population initialization process, the algorithm randomly
initializes two population (Pop1 and Pop2) containing np candidate solutions as the initial
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vector of carnivorous plants and prey. The population is described by a matrix, as shown
in Equation (4).

pop =

 x1,1 . . . x1,d
...

. . .
...

xn,1 . . . xn,d

 (4)

where d is the number of decision variables, and n is the number of individuals in the
population. Each individual in the population is initialized using random initialization
based on a uniformly distributed random number in the range of [0,1], as shown in
Equation (5).

xi,j = lbi,j + rand ∗ (ubi,j − lbi,j) (5)

where lb and ub are the lower and upper bounds of the search domain, respectively, xi,j is
the jth decision variable of the ith candidate solution, i ∈ [1, 2, . . . , n], j ∈ [1, 2, . . . , d], and
rand is a uniformly distributed random number in the range of [0,1].

During Stage 1, the value of ε is retained at its initial setting to emphasize the diver-
sity and convergence of solutions during the selection process of Pop2 using the epsilon-
constrained method. The difference between the absolute sum of CVs in Pop2 of the current
and preceding generations is calculated. If this value is lower than δ, Pop2 is considered to
have achieved convergence to the unconstrained Pareto front. At this point, the maximum
constraint violation value in Pop2 is used to set ε, and S = 2 is set to enter Stage 2.

The offspring-generation process is described in Lines 11 and 12, and a detailed pro-
cess is presented in Algorithm 2. The algorithm utilizes the CPA framework to optimize
solutions and is mainly divided into the following processes:

Algorithm 2: Generate offspring of CMOCPA
Input: population: Pop, number of carnivorous plants: nCP, and number of preys: nPrey
Output: O f f

1 begin
2 // Classification and grouping ;
3 CP← Classify the top nCP solutions of Pop as carnivorous plants ;
4 Prey← Classify the remaining nPrey solutions of Pop as prey ;
5 Group the carnivous plants and prey ;
6 // Growth process
7 for i← 1 to nCP do
8 if rand < arrraction_rate then
9 O f f ← Generate new position of carnivorous plant using Equation (6);

10 else
11 O f f 1← Generate new solution based on cross-pollination with escaped prey using

Equation (12);
12 end
13 O f f 2← Generate quasi-reflection point using Equation (11);
14 end
15 // Reproduction process
16 for i← 1 to nCP do
17 O f f 1← Generate new solution based on cross-pollination with carnivorous plants using

Equation (13);
18 if rand < 0.5 then
19 O f f 3← Generate new solution based on QI using Equation (14);
20 else
21 O f f ← Generate new solution using Equation (8);
22 end
23 end
24 O f f ← O f f ∪O f f 1∪O f f 2
25 end
26 return O f f

• Classification and grouping: The algorithm divides the population into two categories:
carnivorous plants and prey. The population is further divided into several groups,
with the best prey assigned to the best carnivorous plant based on fitness value.
Subsequent prey are then assigned to subsequent carnivorous plants in order of fitness
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value until all preys are assigned. Carnivorous plants only prey within their trapping
range. Fitness calculation of the CMOPs version is carried out in the same way as in
SPEA2 [33];

• The growth process: After classification and grouping, the carnivorous plant selects
a prey randomly in its trapping range. When the random number is less than the
attraction rate, the prey is trapped and digested by the carnivorous plant, and the
plant’s position is updated according to Equation (6).

NewCPi,j = growth ∗ CPi,j + (1− growth) ∗ Preyv,j (6)

where CPi,j is the jth decision variable for the ith level of carnivorous plants, Preyv,j is
the jth-dimension decision variable for a randomly selected prey, the growth rate is
a predefined value, and rand is a randomly selected value from the range [0,1]. The
magnitude of carnivorous plant growth is expressed as Growth and is calculated using
Equation (7).

growth = growth_rate ∗ randi,j (7)

If the random number is less than the attraction rate, the selected prey will not
be trapped. This prey is considered a pollinator, helping the carnivorous plant to
complete cross-pollination. Once an offspring is generated, the quasi-reflection learn-
ing mechanism is used to generate a quasi-reflection point between the offspring
and the parent. These offspring and quasi-reflection points are added to the en-
vironmental selection to improve the population diversity and search efficiency of
the algorithm. The quasi-reflection and cross-pollination are described in detail in
Sections 3.1 and 3.2, respectively.

• The reproduction process: The reproduction process begins once carnivorous plants
complete the trapping process. Only carnivorous plants are eligible for reproduction
to save computing resources. Since the original reproduction method is always guided
by the optimal individual, the algorithm’s diversity gradually decreases as individuals
become closer to the optimal solution. To address this issue, a cross-pollination method
based on Lévy flight is proposed to increase the algorithm’s diversity and exploratory
ability, thus avoiding getting trapped in local optima. The original reproduction
method of CPA is treated as self-pollination. With a certain chance, carnivorous plants
generate offspring by self-pollination as shown in Equation (8).

NewCPi,j = CP1,j + Reproduction_rate ∗ randi,j ∗matei,j (8)

where CP1,j is the best solution, CPv,j is a randomly selected carnivorous plant, and
the reproduction rate is a predetermined utilization value. This process is repeated for
each of the nCPlant carnivorous plants. The value mate is selected based on the fitness
values of the random carnivorous plant and the best carnivorous plant to ensure that
the algorithm approaches the current best carnivorous plant; mate is calculated as
shown in Equation (9).

matei,j =

{
CPv,j − CPi,j, f (CPi) > f (CPv)
CPi,j − CPv,j, f (CPi) < f (CPv)

, i 6= v 6= 1 (9)

In addition, a quadratic interpolation method is introduced, where extreme points
fitted by curve-fitting replace the current offspring with a certain probability. The cross-
pollination behavior and the reproduction process based on quadratic interpolation
will be described in detail in Sections 3.2 and 3.3. The newly generated individuals are
then merged into the original population for environmental selection.

In Stage 2 of the algorithm, the goal is to move from the unconstrained Pareto front
to the constrained Pareto front while maintaining good diversity and convergence. To
accomplish this, the algorithm gradually reduces the value of epsilon, which allows Pop2
to prioritize feasibility without sacrificing the quality of solutions. In addition to this,
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individuals from different populations are considered to originate from different environ-
ments, and cross-environment pollination is used to generate offspring between Pop1 and
Pop2. This helps to explore the feasible area near Population 1 and maintain diversity in
Pop2. By combining these two techniques, the algorithm is able to effectively balance the
need for feasibility and quality of solutions while maintaining diversity and exploring the
search space.

Similar to most existing CMOEAs, CMOCPA employs an elite strategy to select the
best solutions from the combined populations to be carried over to the next generation
through environmental selection. This strategy ensures that high-quality solutions are
preserved and propagated in the population, while low-quality solutions are removed. This
helps to improve the overall quality of the population over time and increase the likelihood
of finding optimal or near-optimal solutions. CDP is used to select feasible solutions from
Pop1, while the ε-constraint handling method is used to select individuals from Pop2 that
satisfy the constraints. This approach ensures that Pop1 continues to focus on feasibility,
while Pop2 gradually shifts its focus towards feasible solutions as the value of epsilon
decreases. Throughout the optimization process, Pop1 receives information about feasible
solutions from Pop2 to accelerate convergence and improve the overall performance of
the algorithm.

3.1. Improved Growth Process Based on Quasi-Reflection Learning

During the growth process of CMOCPA, the algorithm is typically oriented towards the
optimal individual to accelerate convergence. However, this strategy often leads to a decrease
in population diversity, making it difficult for the algorithm to escape local optima. To address
these problems, quasi-reflection-based learning is introduced to enhance population diversity
and the algorithm’s probing ability to help the population escape local optima.

Quasi-reflection-based learning (QRBL) [34,35] is a variant of Opposition-based learning
(OBL) [36], which is a search strategy based on local search. QRBL works by first selecting a
candidate individual as the current best solution, and then generating a new candidate solution
through a reflection operation. The quasi-reflection number and quasi-reflection point are used
to generate the new solution as shown in Equations (10) and (11).

Definition 1. Quasi-reflection number.

xqr = rand(
lb + ub

2
, x) (10)

where lb and ub are the lower and upper bounds of the search space, respectively; x is a real number
in [lb, ub].

Definition 2. Quasi-reflection point.
Suppose the solution x = [x1, x2, . . . , xn], where x1, x2, . . . , xn ∈ R and xj ∈ [lbj, ubj]. The

quasi-opposite number can be extended to d-dimensional space by using Equation (11).

xqr
j = rand(

lbj + ubj

2
, xj) (11)

During the growth process of CPA, when an offspring is generated, quasi-reflection
learning is used to search in the vicinity of the current candidate solution in the search
space, generate a solution between the current solution and the offspring, and add this
solution to the environmental selection.

3.2. Cross-Pollination Based on Lévy’s Flight

Inspired by the distinctive trapping and pollination behaviors of carnivorous plants,
the breeding process of the CPA algorithm has been improved. Carnivorous plants rely on
insects for pollination to support their growth and reproduction, but excessive consump-
tion of insects can negatively impact their reproductive success. To address this, certain
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carnivorous plants have evolved mechanisms that spare some insects, such as producing
flowers and traps at different times or locations or using sticky hairs that do not harm
pollinators. These insects can assist in pollinating the plants and may exhibit Lévy flight
behavior, which is beneficial for optimizing search algorithms.

The ability of prey to escape traps can aid carnivorous plants in achieving global
pollination. Such “escaped prey” can assist in pollinating carnivorous plants and may
exhibit a preference for certain individuals, such as the most optimal individual CP1, which
appears more attractive to pollinators due to characteristics such as brighter color and so
on. In addition, insects may exhibit Lévy flight characteristics. To simulate the Lévy flight
behavior that pollinators may exhibit during pollination, the Lévy flight strategy has been
introduced into cross-pollination as shown in Equation (12).

O f f = CPi + Levy(λ)⊕ (CP1 − Preyv) (12)

where CPi represents the carnivorous plant, and Preyv is the insect that has escaped the
trap within the attack range of CPi; ⊕ is the dot product.

Cross-pollination is an important process in the reproduction of plants, and it can occur
through different mechanisms, including insects, wind, and water. The original method of
reproduction is considered to be self-pollination, but to improve the algorithm’s efficiency
and accuracy, cross-pollination assisted by wind or water has been taken into account.

Equation (13) shows the formula for cross-pollination without insects. It involves se-
lecting two different carnivorous plants randomly and generating a new offspring through
a weighted-average Lévy. This process allows the algorithm to explore different regions of
the search space and potentially find better solutions.

O f f = CPi + Levy(λ)⊕ (CP1 − Preyv) (13)

3.3. Improved Reproduction Process Based on Quadratic Interpolation Method

CPA selects the individual with the best fitness value for reproduction to guide other
individuals towards the best position, focusing on the best solution. However, when
applied to constrained multi-objective optimization problems, the algorithm’s reproduction
behavior suffers from defects such as slow search speed and a lack of local detection ability.
To address these defects, the quadratic interpolation (QI) [37,38] operator is introduced to
improve the algorithm’s local exploitation ability and convergence speed.

The QI operator is a local search operator that constructs a quadratic polynomial
similar to the objective function using the function values of the objective function at
three different points. It then uses the extreme points of this quadratic polynomial as the
approximate extreme points to approximate the objective function. The QI operator is
commonly used in many optimization algorithms to develop better solutions for specific
populations. The QI operator can rapidly approximate the optimal solution when the
population is located near the global solution, which is essential for improving the local
exploitation of CMOCPA. The QI operator updates the position of carnivorous plants using
Equation (14).

Xi =
(CP2

1 − CP2
r1) ∗ f (CPr2) + (CP2

r2 − CP2
1 ) ∗ f (CPr1) + (CP2

r1 − CP2
r2) ∗ f (CP1)

2 ∗ [(CP1 − CPr1) ∗ f (CPr2) + (CPr2 − CP1) ∗ f (CPr1) + (CPr1 − CPr2) ∗ f (CP1)]
(14)

where f (CP1), f (CPr1), and f (CPr2) are the fitnesses of three different carnivorous plants
CP1, CPr1, and CPr2, respectively. CP1 is the individual with the best fitness value among
carnivorous plants, and CPr1 and CPr2 are different carnivorous plants.

By using the QI operator, the position of the carnivorous plant can be updated more
efficiently, which improves the local exploitation ability of the algorithm. This is crucial
for CMOPs, where diversity of solutions is not guaranteed. The QI operator’s ability to
rapidly approximate the optimal solution helps to improve the algorithm’s convergence
speed and search ability, thus leading to better results.
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4. Simulation Experiments and Results Analysis

In this section, Section 4.1 gives the experimental setup, including the test suite
used for testing and the state-of-the-art CMOEAs used for comparison, and describes the
performance metrics used. Section 4.2 gives the experimental results and analysis.

4.1. Experimental Settings

To show the superiority of CMOCPA, seven CMOEAs were selected: BiCo [29], C-
TAEA [31], CAEAD [39], ICMA [40], PPS [30], ToP [41], and Trip [42]. To validate the perfor-
mance of CMOCPA on ZDT [43], DTLZ [44], and RWMOPs [45], seven algorithms were used
for comparison, including MOEAD [46], eMOEA [47], MOPSO [48], NSGAII [18], SPEA2 [33],
KnEA [49], and GrEA [50]. The default parameters in PlatEMO v4.0 [51] were used where there
is no particular explanation.

4.1.1. Benchmark Problems

DC-DTLZ [31], FCP [40], DASCMOP [52] , ZDT, DTLZ, and RWMOPs are benchmark
problems used to evaluate the performance of constrained multi-objective optimization
algorithms, including CMOCPA.

DC-DTLZ is a variant of C-DTLZ [53] in which the constraint conditions are dynam-
ically changing. In DC-DTLZ, the number and type of constraint conditions vary over
time, which increases the complexity and challenge of the problem and makes it closer to
practical problems. FCP is a set of fixed-budget constrained optimization problems that are
designed to evaluate the performance of constrained optimization algorithms under a lim-
ited computational budget. DASCMOP is a class of dynamic and adaptive multi-objective
optimization problems that test the ability of algorithms to track time-varying Pareto fronts.

By evaluating the performance of CMOCPA on these benchmark problems, one can
assess the algorithm’s ability to find high-quality solutions for constrained multi-objective
optimization problems and compare its performance to other state-of-the-art algorithms.
The following parameters are typically set for each benchmark:

Number of Runs: Each algorithm is run 30 times independently for each test instance.
For all benchmark problems, the population size N = 100. Their objective number M,
decision vector D, and number of function evaluations FEs are as follows:

• For all DC-DTLZ: FEs = 100, 000, for DC1-DTLZ1, DC2-DTLZ1, and DC3-DTLZ1, D
is set to 7; D is set to 12 for the remaining DC-DTLZ problems.

• For all FCP problems, FEs = 200, 000; for other parameters refer to ICMA [40];
• For all DASCMOP problems, D = 30, FEs = 300, 000; for DASCMOP1-DASCMOP6,

M = 2; for DASCMOP7-DASCMOP9, M = 3.
• For ZDT and DTLZ, FEs = 50, 000.
• For RWMOPs, all parameters are the same as in [45].

4.1.2. Genetic Operators and Parameter Settings

The pull stage of PPS, ToP, and CAEAD adopt DE [54] while other CMOEAs in
comparison adopt GA [55]. The experimental parameters are listed as follows:

• Simulated binary crossover (SBX): pc = 1, ηc = 20;
• Polynomial mutation (PM): pm = 1/D, ηm = 20;
• DE operators: CR = 1.0, F = 0.5;
• ToP parameters: p f = 1/3, δ = 0.2;
• PPS parameters: Tc = 800, α = 0.9, τ = 0.1, cp = 2, l = 20;
• MOEAD parameters: T = N/10;
• eMOEAD parameters: ε = 0.06;
• MOPSO parameters: div = 10;
• KnEA parameters: r = 0.5;
• GrEA parameters: div = [0, 45, 15, 10, 9, 9, 8, 8, 10, 12];
• CMOCPA parameters: attraction_rate = 0.8, reproduction_rate = 1.8, growth_rate = 2;
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4.1.3. Performance Metrics

Inverted Generational Distance (IGD) [56] is a comprehensive performance evaluation
metric. It is improved from the General Distance (GD) [57]. By calculating the minimum
distance sum between each individual on the real PF and the set of individuals obtained by
the algorithm, the convergence and diversity performance of the algorithm can be evaluated
simultaneously. The smaller the IGD, the better the integrated performance, including
convergence and diversity. The IGD value is calculated as shown in Equation (15).

IGD(P, Q) =
∑v∈P d(v, Q)

|P| (15)

where P is the set of points uniformly distributed on the real PF, p is the number of
individuals in the set of points distributed on the real PF, and Q is the optimal Pareto optimal
solution set obtained by the algorithm; d(v, Q) is the minimum Euclidean distance from
the individual v in p to the overall Q. Thus, IGD evaluates the comprehensive performance
of the algorithm by computing the average of the minimum Euclidean distances between
the set of points on the real PF and the obtained Pareto.

Hypervolume (HV) [58] is a commonly used evaluation metric that reflects how close
the set of non-dominated solutions obtained by CMOEA is to the true PF. The HV of the
solution set S is shown in Equation (16).

HV(S) = VOL(
⋃
i∈P
d f1(i), zr

1e) (16)

where VOL(.) is the Lebesgue measure, m denotes the number of objectives, and zr =
(zr

1, . . . , zr
m) is a user-defined reference point in the objective space. The bigger the HV value,

the better the performance of the algorithm.

4.2. Experimental Results

In this section, the performance of CMOCPA is compared with seven other CMOEAs
on three test suites using two widely used metrics, namely, IGD and HV, to evaluate
their performance. The Wilcoxon rank sum test [59] at 0.05 significance level is performed
between CMOCPA and its peer algorithms on the IGD and HV results. CMOCPA is
compared with each competitor in a paired comparison. The symbols “+”, “−”, or “≈”
indicate whether the corresponding competitor is superior to, inferior to, or equivalent
to CMOCPA, respectively. Additionally, the best metric values for each problem are
highlighted in yellow in each table. Appendix A shows the population with median IGD
value among 30 runs obtained by MOEAD, eMOEA, MOPSO, NSGAII, SPEA2, KnEA,
GrEA and CMOCPA on each problem and other supplementary data.

4.2.1. Result on DC-DTLZ Benchmark Problems

DC-DTLZ is a challenging multi-objective optimization problem that involves dynamic
constraints. In this problem, constraints can change dynamically, which increases the
complexity of the optimization process. The objective function structure in DC-DTLZ is
similar to that of the DTLZ function, with the main difference being the dynamic nature of
the constraints. New constraints can be added or removed at each iteration, making the
problem even more challenging.

The experimental results for the DC-DTLZ problem, presented in Tables 1 and 2,
demonstrate that the proposed algorithm in this paper outperforms the comparison algo-
rithms. Analysis of the IGD metrics shows that CMOCPA achieves the best results in five
out of the six problems. When compared to BiCo, the proposed algorithm outperforms
BiCo in three results, with the remaining result showing no significant difference. Com-
pared to other algorithms not included in BiCo, CMOCPA significantly outperforms these
algorithms in all problems.
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Table 1. Mean and standard deviation of IGD values on DC-DTLZ; ‘NAN’ indicates that no feasible solution was found; best result is highlighted in yellow.

Problem BiCo CTAEA CAEAD ICMA PPS ToP TriP CMOCPA
DC1_DTLZ1 1.1584e-2 (1.20e-4) − 1.5158e-2 (2.56e-4) − 1.0618e-1 (1.55e-1) − 1.1893e-2 (1.60e-4) − 2.8409e-2 (9.10e-3) − 2.1664e-2 (6.14e-3) − 1.2794e-2 (2.60e-4) − 1.1488e-2 (2.06e-4)
DC1_DTLZ3 3.4686e-2 (7.70e-4) ≈ 4.3288e-2 (1.50e-3) − 1.0197e+0 (1.29e+0) − 5.3560e-2 (3.73e-2) − 3.7055e-1 (2.35e-1) − 8.9654e-1 (1.11e+0) − 3.6929e-2 (7.67e-4) − 3.4627e-2 (1.39e-3)
DC2_DTLZ1 5.2700e-2 (6.42e-2) ≈ 2.3224e-2 (1.87e-4) − 7.7302e-2 (6.92e-2) − 5.5734e-2 (6.54e-2) − 5.1453e-2 (5.42e-2) − NaN (NaN) 2.2525e-2 (6.59e-4) − 2.0804e-2 (4.65e-4)
DC2_DTLZ3 5.6324e-1 (1.81e-3) − 1.4721e-1 (1.85e-1) − 4.0076e-1 (2.61e-1) − 2.6150e-1 (2.79e-1) − 3.4354e-1 (2.54e-1) − NaN (NaN) 1.7668e-1 (1.93e-1) − 5.4735e-2 (1.00e-3)
DC3_DTLZ1 2.9754e-2 (5.59e-2) − 9.3533e-3 (2.12e-4) − 9.8043e-1 (6.23e-1) − 7.0463e-3 (1.35e-4) − 3.1353e-1 (3.70e-1) − 2.1104e+0 (2.31e+0) − 7.6022e-3 (3.51e-4) − 6.8449e-3 (8.80e-5)
DC3_DTLZ3 9.4436e-1 (4.65e-1) − 2.8206e-2 (8.64e-3) + 4.5099e+0 (3.57e+0) − 9.4954e-1 (4.70e-1) − 2.2421e+0 (2.11e+0) − 8.3246e+0 (4.28e+0) − 2.7967e-1 (2.49e-1) − 3.0185e-2 (3.42e-2)
+/− / ≈ 0/4/2 1/5/0 0/6/0 0/6/0 0/6/0 0/4/0 0/6/0

Table 2. Mean and standard deviation of HV values on DC-DTLZ; ’NAN’ indicates that no feasible solution was found; best result is highlighted in yellow.

Problem BiCo CTAEA CAEAD ICMA PPS ToP TriP CMOCPA
DC1_DTLZ1 6.3234e-1 (6.43e-4) + 6.2733e-1 (5.11e-4) − 4.2919e-1 (2.23e-1) − 6.2323e-1 (2.02e-3) − 5.8118e-1 (2.36e-2) − 5.8213e-1 (2.38e-2) − 6.2773e-1 (1.69e-3) − 6.3073e-1 (1.22e-3)
DC1_DTLZ3 4.7345e-1 (1.22e-3) + 4.6238e-1 (1.95e-3) − 1.1362e-1 (1.49e-1) − 4.2699e-1 (7.22e-2) − 2.6423e-1 (1.53e-1) − 1.3585e-1 (1.80e-1) − 4.6865e-1 (2.40e-3) − 4.6982e-1 (3.62e-3)
DC2_DTLZ1 7.5947e-1 (1.62e-1) ≈ 8.3810e-1 (4.37e-4) − 6.8824e-1 (1.82e-1) − 7.5158e-1 (1.66e-1) − 7.4660e-1 (1.42e-1) − NaN (NaN) 8.3582e-1 (2.75e-3) − 8.3958e-1 (1.71e-3)
DC2_DTLZ3 1.3824e-2 (1.30e-3) − 4.5198e-1 (1.99e-1) − 1.9546e-1 (2.54e-1) − 3.3823e-1 (2.97e-1) ≈ 2.4488e-1 (2.60e-1) − NaN (NaN) 4.0725e-1 (2.05e-1) − 5.5451e-1 (3.68e-3)
DC3_DTLZ1 4.6968e-1 (1.49e-1) − 5.2111e-1 (2.85e-3) − 5.2955e-2 (1.42e-1) − 5.2074e-1 (3.25e-3) − 2.3702e-1 (2.06e-1) − 1.5169e-2 (5.56e-2) − 5.3229e-1 (3.00e-3) ≈ 5.3349e-1 (1.36e-3)
DC3_DTLZ3 0.0000e+0 (0.00e+0) − 3.5792e-1 (1.56e-2) ≈ 4.2454e-2 (1.08e-1) − 1.1401e-2 (6.24e-2) − 4.0734e-2 (9.20e-2) − 0.0000e+0 (0.00e+0) − 1.7514e-1 (1.62e-1) − 3.5426e-1 (2.08e-2)
+/− / ≈ 2/3/1 0/5/1 0/6/0 0/5/1 0/6/0 0/4/0 0/5/1



Biomimetics 2023, 8, 136 14 of 38

Regarding the HV metrics, the results indicate that the proposed algorithm has a
significant advantage over BiCo in three out of six problems, lags behind in two results,
and achieves similar results in one. This suggests that CMOCPA has a slight advantage
over BiCo in terms of HV metrics. Furthermore, compared to other algorithms, apart from
BiCo, CMOCPA clearly outperforms them in all problems based on HV metrics.

The experimental results based on IGD and HV metrics demonstrate that the proposed
CMOCPA algorithm performs well in terms of diversity and convergence, outperforming
BiCo in some cases. Compared to other algorithms besides BiCo, CMOCPA shows a
significant advantage in solving DC-DTLZ problems. These results suggest that CMOCPA
is a competitive algorithm for solving DC-DTLZ problems.

4.2.2. Result on FCP Benchmark Problems

Tables 3 and 4 demonstrate that CMOCPA exhibits superior performance to the other
seven algorithms on the FCP test suite, which comprises CMOPs featuring deceptive con-
straints. Due to the non-monotonic and randomly generated nature of constraint violations
in FCP problems, discovering the CPF presents a formidable challenge to algorithms.

Regarding FCP1–FCP4, only ICMA and CMOCPA were capable of identifying the CPF,
whereas other algorithms quickly converged to locally infeasible regions. ICMA assumes
the entire search space as a promising region, resulting in some evaluations being wasted
due to the oversized objective function upfront. In contrast, CMOCPA employs a two-
population, two-stage method to simultaneously evolve feasible and infeasible solutions.
Additionally, CMOCPA leverages the Lévy flight strategy to perturb the populations and
enhance the algorithm’s ability to escape local optima. As a result, CMOCPA discovers the
feasible region more rapidly than ICMA, as demonstrated in Figure 1.

With respect to FCP5, all algorithms except ICMA and CMOCPA found partial CPFs.
For example, C-TAEA incorporates two archives: DA and CA. However, DA disregards
constraints and tends to identify small convergence values below the CPF while neglecting
the feasible region above. Hence, such algorithms can only detect fragments of the CPF.
In contrast, ICMA and CMOCPA discovered the entire convergence region. CMOCPA
incorporates search strategies that enhance its capabilities and allow for a more-refined
search process. Notably, CMOCPA exhibits superior diversity and convergence compared
to ICMA, setting it apart from the latter.
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Figure 1. IGD convergence of ICMA and CMOCPA on FCP5.
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Table 3. Mean and standard deviation of IGD values on FCP; ’NAN’ indicates that no feasible solution was found; best result is highlighted in yellow.

Problem BiCo CTAEA CAEAD ICMA PPS ToP TriP CMOCPA
FCP1 NaN (NaN) − NaN (NaN) − NaN (NaN) − 3.5398e-2 (6.02e-4) − NaN (NaN) − NaN (NaN) − NaN (NaN) − 3.2784e-2 (4.59e-4)
FCP2 NaN (NaN) − NaN (NaN) − NaN (NaN) − 3.0284e-2 (3.96e-3) − NaN (NaN) − NaN (NaN) − NaN (NaN) − 2.6771e-2 (4.28e-4)
FCP3 NaN (NaN) − NaN (NaN) − NaN (NaN) − 3.8765e-2 (7.00e-4) − NaN (NaN) − NaN (NaN) − NaN (NaN) − 3.5363e-2 (4.54e-4)
FCP4 NaN (NaN) − NaN (NaN) − NaN (NaN) − 2.7470e-2 (5.64e-4) − NaN (NaN) − NaN (NaN) − NaN (NaN) − 2.5518e-2 (4.38e-4)
FCP5 4.6504e+0 (1.03e-1) − 4.7204e+0 (2.60e-2) − 4.6766e+0 (1.38e-3) − 1.7074e-1 (8.53e-1) − 4.6799e+0 (9.06e-3) − 4.2654e+0 (4.62e-3) − 4.6780e+0 (2.81e-3) − 1.3151e-2 (4.78e-4)

+/− / ≈ 0/5/0 0/5/0 0/5/0 0/5/0 0/5/0 0/5/0 0/5/0

Table 4. Mean and standard deviation of HV values on FCP; ’NAN’ indicates that no feasible solution was found; best result is highlighted in yellow.

Problem BiCo CTAEA CAEAD ICMA PPS ToP TriP CMOCPA
FCP1 NaN (NaN) − NaN (NaN) − NaN (NaN) − 5.8138e-1 (1.19e-4) − NaN (NaN) − NaN (NaN) − NaN (NaN) − 5.8168e-1 (1.12e-4)
FCP2 NaN (NaN) − NaN (NaN) − NaN (NaN) − 4.3132e-1 (2.76e-4) − NaN (NaN) − NaN (NaN −) NaN (NaN) − 4.3161e-1 (7.19e-5)
FCP3 NaN (NaN) − NaN (NaN) − NaN (NaN) − 3.4691e-1 (1.15e-4) − NaN (NaN) − NaN (NaN) − NaN (NaN) − 3.4706e-1 (1.14e-4)
FCP4 NaN (NaN) − NaN (NaN) − NaN (NaN) − 6.3405e-1 (2.62e-4) − NaN (NaN) − NaN (NaN) − NaN (NaN) − 6.3455e-1 (6.25e-5)
FCP5 2.4822e-1 (5.28e-2) − 2.3073e-1 (2.28e-2) − 2.6215e-1 (3.70e-5) − 4.6845e-1 (3.95e-2) − 2.6120e-1 (2.35e-3) − 5.3823e-2 (2.44e-5) − 2.6209e-1 (2.20e-4) − 4.7986e-1 (1.03e-4)

+/− / ≈ 0/5/0 0/5/0 0/5/0 0/5/0 0/5/0 0/5/0 0/5/0
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4.2.3. Result on DASCMOP Benchmark Problems

DASCMOP is a dynamic multi-objective optimization problem that takes into ac-
count the impact of dynamics and uncertainty in constrained multi-objective optimization
problems. It requires identifying optimal solutions for a multi-objective function, the con-
straints of which vary with time. Furthermore, each objective function includes a stochastic
component, adding to the complexity and uncertainty of the problem.

Tables 5 and 6 present the IGD and HV results, respectively, of CMOCPA and other
comparable algorithms for the DASCMOP problem. CMOCPA outperforms other algorithms
in terms of IGD metrics, with six out of nine test problems achieving optimal results. The
IGD metric is a measure of convergence and diversity, and CMOCPA’s multi-population and
multi-stage strategy allows Pop2 to provide a more diverse solution than Pop1, facilitating faster
coverage of the feasible region when dealing with the DASCMOP problem.

In terms of the HV metric, CMOCPA achieves the best performance in four out of
nine problems and is not statistically significantly different from ICMA but outperforms
the other compared algorithms. However, comparing the performance of optimization
algorithms using HV values can be misleading since HV is sensitive to the distribution and
scaling of the Pareto-optimal front. In contrast, IGD measures the distance between the
true Pareto-optimal front and the approximation obtained by the optimization algorithm.
The superior IGD results of CMOCPA demonstrate its capability to handle dynamic and
stochastic multi-objective optimization problems with constraints, outperforming other
state-of-the-art algorithms in terms of both convergence and diversity.

4.2.4. Result on ZDT and DTLZ Benchmark Problems

ZDT and DTLZ offer a total of twelve test functions that serve as standard benchmarks
for evaluating the performance of multi-objective optimization algorithms. ZDT comprises
five test functions, namely ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6, which are distinguished
by varying numbers and types of objective functions, including both linear and nonlinear
ones. In contrast, DTLZ offers seven test functions, namely DTLZ1, DTLZ2, DTLZ3,
DTLZ4, DTLZ5, DTLZ6, and DTLZ7, which are similar to ZDT functions in having multiple
objective functions and diverse features. However, the DTLZ functions are more complex,
featuring more objective functions and nonlinear properties than the ZDT functions.

Tables 7 and 8 present the IGD and HV results, respectively, of CMOCPA and other
comparable algorithms for ZDT and DTLZ problems. CMOCPA outperforms other algo-
rithms in terms of IGD metrics, with eight out of twelve test problems achieving optimal
results. In terms of the HV metric, CMOCPA achieves the best performance in six out of
twelve problems.

Compared to SPEA2, CMOCPA performs significantly worse on two problems, signif-
icantly better on eight problems, and similarly on two problems. The algorithm has two
populations evolving simultaneously, which may result in wasted evaluation time when the
two populations are close to each other. This may result in suboptimal convergence in later
stages. Analysis of the HV metrics reveals that CMOCPA performs well on the majority of
problems, with only a few problems demonstrating weaker performance compared to SPEA2.
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Table 5. Mean and standard deviation of IGD values on DASCMOP; ’NAN’ indicates that no feasible solution was found; best result is highlighted in yellow.

Problem BiCo CTAEA CAEAD ICMA PPS ToP TriP CMOCPA
DASCMOP1 7.0996e-1 (3.86e-2) − 1.8326e-1 (1.41e-2) − 2.8895e-3 (2.16e-4) ≈ 2.8510e-3 (2.42e-4) ≈ 1.8950e-1 (2.31e-1) − 7.3320e-1 (1.51e-1) − 2.2514e-1 (2.21e-1) − 2.8431e-3 (1.31e-4)
DASCMOP2 2.3555e-1 (1.97e-2) − 9.1724e-2 (4.30e-2) − 4.1915e-3 (1.13e-4) + 4.1524e-3 (8.69e-5) + 5.1338e-3 (1.76e-4) − 4.8869e-1 (2.54e-1) − 4.4553e-3 (1.19e-4) ≈ 4.4568e-3 (1.23e-4)
DASCMOP3 2.7163e-1 (3.32e-2) − 1.2803e-1 (1.04e-2) − 1.9162e-2 (1.27e-3) − 1.8978e-2 (2.15e-3) ≈ 2.9289e-1 (1.07e-1) − 7.0016e-1 (1.08e-1) − 2.3729e-1 (1.23e-1) − 1.9088e-2 (1.76e-3)
DASCMOP4 1.2904e-3 (2.01e-4) − 1.0966e-2 (2.02e-3) − 1.8708e-3 (7.96e-4) − 1.7461e-3 (8.35e-4) − 1.5584e-1 (1.16e-1) − NaN (NaN) − 1.6389e-3 (3.86e-4) − 1.2186e-3 (1.76e-4)
DASCMOP5 2.8730e-3 (7.70e-4) − 7.1383e-3 (4.82e-4) − 8.8972e-2 (2.26e-1) − 2.8957e-3 (8.51e-5) − 4.1381e-3 (3.64e-4) − NaN (NaN) − 3.4980e-3 (8.80e-4) − 2.7905e-3 (5.03e-5)
DASCMOP6 4.7748e-2 (9.48e-2) − 2.3661e-2 (4.96e-3) − 8.0642e-2 (1.75e-1) ≈ 1.9401e-2 (1.27e-3) − 1.6117e-1 (2.66e-1) − NaN (NaN) − 1.8982e-2 (2.18e-3) − 1.8467e-2 (2.46e-3)
DASCMOP7 3.1651e-2 (8.35e-4) − 3.8141e-2 (7.98e-4) − 4.0516e-2 (1.78e-2) − 3.3291e-2 (1.05e-3) − 5.8472e-2 (1.20e-2) − NaN (NaN) − 4.3108e-2 (3.44e-3) − 3.0844e-2 (7.42e-4)
DASCMOP8 4.1198e-2 (8.64e-4) − 5.7532e-2 (9.49e-3) − 7.1127e-2 (1.18e-1) − 4.3247e-2 (9.58e-4) − 6.9460e-2 (7.19e-3) − NaN (NaN) − 5.4660e-2 (5.18e-3) − 3.9807e-2 (1.28e-3)
DASCMOP9 3.0573e-1 (5.44e-2) + 2.2504e-1 (7.20e-2) + 4.1371e-2 (1.06e-3) + 4.2363e-2 (5.90e-4) + 1.4368e-1 (1.10e-1) + 5.9957e-1 (2.05e-1) − 1.3114e-1 (7.30e-2) + 3.9880e-1 (1.07e-2)
+/− / ≈ 1/8/0 1/8/0 2/5/2 2/5/2 1/8/0 0/9/0 1/7/1

Table 6. Mean and standard deviation of HV values on DASCMOP; ’NAN’ indicates that no feasible solution was found; best result is highlighted in yellow.

Problem BiCo CTAEA CAEAD ICMA PPS ToP TriP CMOCPA
DASCMOP1 1.0656e-2 (7.27e-3) − 1.6840e-1 (3.89e-3) − 2.1253e-1 (3.09e-4) − 2.1249e-1 (2.51e-4) − 1.7009e-1 (4.78e-2) − 1.2917e-2 (3.86e-2) − 1.6002e-1 (4.66e-2) − 2.1278e-1 (3.34e-4)
DASCMOP2 2.5508e-1 (3.92e-3) − 3.0983e-1 (1.26e-2) − 3.5530e-1 (9.54e-5) + 3.5554e-1 (4.64e-5) + 3.5483e-1 (9.92e-5) − 1.5024e-1 (1.11e-1) − 3.5514e-1 (7.22e-5) − 3.5519e-1 (8.41e-5)
DASCMOP3 2.1854e-1 (1.15e-2) − 2.6212e-1 (4.00e-3) − 3.1239e-1 (7.32e-5) + 3.1228e-1 (1.98e-4) ≈ 2.2503e-1 (3.39e-2) − 3.5027e-2 (4.83e-2) − 2.3708e-1 (4.05e-2) − 3.1227e-1 (7.73e-5)
DASCMOP4 2.0413e-1 (3.72e-4) − 1.9675e-1 (4.02e-3) − 2.0349e-1 (3.80e-4) − 2.0378e-1 (2.07e-4) − 1.7059e-1 (2.52e-2) − NaN (NaN) − 2.0398e-1 (2.36e-4) − 2.0424e-1 (1.15e-4)
DASCMOP5 3.5155e-1 (7.62e-4) + 3.4841e-1 (3.47e-4) − 3.1045e-1 (1.04e-1) − 3.5117e-1 (9.21e-5) − 3.5111e-1 (2.16e-4) − NaN (NaN) − 3.5092e-1 (5.00e-4) − 3.5154e-1 (8.92e-5)
DASCMOP6 2.9357e-1 (5.30e-2) − 3.0889e-1 (3.32e-3) − 2.8328e-1 (8.17e-2) − 3.1236e-1 (3.22e-4) ≈ 2.5075e-1 (1.14e-1) − NaN (NaN) − 3.1222e-1 (3.18e-4) − 3.1244e-1 (1.03e-4)
DASCMOP7 2.8785e-1 (4.88e-4) ≈ 2.8779e-1 (1.74e-4) − 2.8060e-1 (1.03e-2) − 2.8782e-1 (3.85e-4) ≈ 2.7840e-1 (6.51e-3) − NaN (NaN) − 2.8478e-1 (7.51e-4) − 2.8796e-1 (2.79e-4)
DASCMOP8 2.0671e-1 (5.31e-4) ≈ 2.0321e-1 (2.04e-3) − 1.9222e-1 (3.95e-2) − 2.0747e-1 (2.50e-4) + 2.0051e-1 (1.65e-3) − NaN (NaN) − 2.0400e-1 (8.52e-4) − 2.0654e-1 (3.66e-4)
DASCMOP9 1.3765e-1 (9.72e-3) + 1.5234e-1 (1.55e-2) + 2.0490e-1 (4.52e-4) + 2.0750e-1 (1.82e-4) + 1.7760e-1 (2.63e-2) + 8.6488e-2 (3.73e-2) − 1.7815e-1 (2.13e-2) + 1.2667e-1 (3.47e-3)
+/− / ≈ 2/5/2 1/8/0 3/6/0 3/3/3 1/8/0 0/9/0 1/8/0
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Table 7. Mean and standard deviation of IGD values on ZDT and DTLZ; ’NAN’ indicates that no feasible solution was found; best result is highlighted in yellow.

Problem MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA CMOCPA
ZDT1 5.0328e-3 (1.04e-3) − 2.8606e-2 (1.82e-3) − 1.6802e+0 (9.47e-2) − 4.7933e-3 (2.19e-4) − 3.9617e-3 (7.27e-5) − 1.6000e-1 (8.99e-2) − 7.7519e-3 (2.03e-3) − 3.8891e-3 (7.68e-5)
ZDT2 5.8825e-3 (9.54e-4) − 3.0931e-2 (3.38e-3) − 3.1778e+0 (1.64e-1) − 4.8971e-3 (2.04e-4) − 3.9216e-3 (4.55e-5) − 9.4728e-2 (2.16e-2) − 7.9482e-3 (1.44e-4) − 3.8472e-3 (4.65e-5)
ZDT3 1.4930e-2 (6.44e-3) − 6.6691e-2 (1.16e-2) − 1.1959e+0 (7.17e-2) − 6.3819e-3 (5.33e-3) − 4.9250e-3 (1.08e-4) − 1.0725e-2 (5.43e-3) − 1.3962e-2 (9.57e-4) − 4.8095e-3 (8.46e-5)
ZDT4 7.4937e-3 (2.13e-3) − 2.8669e-2 (1.79e-3) − 1.3118e+1 (5.26e+0) − 4.8101e-3 (4.12e-4) − 4.0406e-3 (2.35e-4) + 2.5345e-1 (9.47e-2) − 3.3221e-1 (1.42e-1) − 4.2835e-3 (3.62e-4)
ZDT6 4.6155e-3 (5.88e-4) − 2.9127e-2 (1.43e-3) − 5.5098e+0 (4.97e-1) − 3.6581e-3 (9.10e-5) − 3.0849e-3 (2.45e-5) − 7.2564e-3 (1.77e-3) − 6.0337e-3 (9.05e-5) − 3.0663e-3 (3.14e-5)

DTLZ1 2.0639e-2 (7.92e-5) − 3.6655e-2 (2.28e-3) − 1.5378e+0 (1.01e+0) − 2.6598e-2 (1.03e-3) − 2.0254e-2 (2.38e-4) ≈ 5.2936e-2 (2.87e-2) − 9.0384e-2 (7.49e-2) − 2.0306e-2 (2.48e-4)
DTLZ2 5.4464e-2 (4.51e-7) − 6.4801e-2 (1.33e-3) − 1.5407e-1 (3.38e-2) − 6.9652e-2 (2.37e-3) − 5.4266e-2 (5.08e-4) − 6.6606e-2 (3.09e-3) − 6.3790e-2 (5.49e-4) − 5.3337e-2 (3.36e-4)
DTLZ3 5.9931e-2 (5.59e-3) + 1.3317e-1 (1.99e-1) ≈ 1.4438e+1 (6.98e+0) − 7.1776e-2 (4.07e-3) ≈ 5.6580e-2 (2.43e-3) + 9.6273e-2 (2.15e-2) + 1.7125e-1 (1.41e-1) ≈ 2.9649e-1 (4.96e-1)
DTLZ4 2.7931e-1 (2.71e-1) − 2.5799e-1 (2.65e-1) − 2.6746e-1 (1.92e-1) − 9.6517e-2 (1.60e-1) + 2.7599e-1 (2.93e-1) − 1.2482e-1 (2.23e-1) − 1.3005e-1 (1.65e-1) − 1.1868e-1 (1.68e-1)
DTLZ5 3.3860e-2 (2.79e-5) − 6.8262e-2 (4.12e-3) − 9.0944e-3 (1.13e-3) − 5.8083e-3 (2.78e-4) − 4.4163e-3 (1.16e-4) − 9.2901e-3 (1.27e-3) − 2.1806e-2 (1.11e-3) − 4.2786e-3 (1.17e-4)
DTLZ6 3.3911e-2 (1.26e-5) − 6.2350e-2 (2.03e-3) − 9.2118e+0 (6.70e-2) − 5.8309e-3 (3.81e-4) − 4.0878e-3 (3.84e-5) − 1.2456e-2 (6.70e-3) − 2.2303e-2 (9.19e-5) − 4.0298e-3 (2.55e-5)
DTLZ7 1.9844e-1 (1.64e-1) − 2.2912e-1 (1.90e-1) − 6.5150e+0 (8.39e-1) − 7.6159e-2 (4.40e-3) − 6.9672e-2 (5.21e-2) ≈ 7.4722e-2 (5.24e-2) − 9.2857e-2 (5.53e-2) − 5.9811e-2 (1.27e-3)

+/− / ≈ 1/11/0 0/11/1 0/12/0 1/10/1 2/8/2 1/11/0 0/11/1

Table 8. Mean and standard deviation of HV values on ZDT and DTLZ; ’NAN’ indicates that no feasible solution was found; best result is highlighted in yellow.

Problem MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA CMOCPA
ZDT1 7.1781e-1 (1.33e-3) − 6.8614e-1 (3.32e-3) − 0.0000e+0 (0.00e+0) − 7.1920e-1 (2.73e-4) − 7.2028e-1 (1.27e-4) − 6.2622e-1 (5.17e-2) − 7.1514e-1 (2.02e-3) − 7.2035e-1 (1.18e-4)
ZDT2 4.4031e-1 (2.06e-3) − 4.1083e-1 (3.17e-3) − 0.0000e+0 (0.00e+0) − 4.4398e-1 (2.26e-4) − 4.4497e-1 (8.60e-5) ≈ 3.5749e-1 (1.87e-2) − 4.4153e-1 (5.66e-5) − 4.4500e-1 (9.56e-5)
ZDT3 6.0068e-1 (1.76e-2) ≈ 5.8614e-1 (2.92e-2) − 4.4309e-4 (1.19e-3) − 6.0236e-1 (1.62e-2) + 5.9960e-1 (5.83e-5) − 6.0128e-1 (1.62e-2) + 5.9728e-1 (3.68e-4) − 5.9964e-1 (6.12e-5)
ZDT4 7.1281e-1 (3.03e-3) − 6.8414e-1 (4.70e-3) − 0.0000e+0 (0.00e+0) − 7.1866e-1 (1.03e-3) ≈ 7.1956e-1 (7.55e-4) + 5.6968e-1 (5.82e-2) − 5.1348e-1 (9.92e-2) − 7.1893e-1 (8.80e-4)
ZDT6 3.8551e-1 (1.00e-3) − 3.5878e-1 (2.06e-3) − 0.0000e+0 (0.00e+0) − 3.8830e-1 (1.06e-4) − 3.8888e-1 (4.50e-5) + 3.8476e-1 (1.74e-3) − 3.8599e-1 (9.16e-5) − 3.8876e-1 (1.32e-4)

DTLZ1 8.4079e-1 (7.47e-4) ≈ 7.2735e-1 (1.70e-2) − 3.3631e-4 (1.84e-3) − 8.2427e-1 (3.39e-3) − 8.4138e-1 (1.40e-3) + 7.4896e-1 (5.46e-2) − 6.7294e-1 (1.42e-1) − 8.4024e-1 (1.43e-3)
DTLZ2 5.5961e-1 (5.00e-6) + 5.4650e-1 (2.54e-3) − 4.1184e-1 (2.92e-2) − 5.3141e-1 (4.33e-3) − 5.5504e-1 (8.65e-4) − 5.4381e-1 (3.60e-3) − 5.5845e-1 (5.77e-4) + 5.5764e-1 (1.22e-3)
DTLZ3 5.3562e-1 (1.76e-2) + 4.7263e-1 (1.20e-1) ≈ 0.0000e+0 (0.00e+0) − 5.1877e-1 (1.37e-2) ≈ 5.4425e-1 (7.96e-3) + 4.9667e-1 (2.72e-2) ≈ 4.5856e-1 (1.10e-1) ≈ 4.0698e-1 (2.08e-1)
DTLZ4 4.5608e-1 (1.27e-1) ≈ 4.5492e-1 (1.34e-1) − 3.1868e-1 (7.29e-2) − 5.2074e-1 (8.13e-2) − 4.5444e-1 (1.39e-1) − 5.1446e-1 (1.15e-1) − 5.2844e-1 (7.88e-2) − 5.2970e-1 (7.28e-2)
DTLZ5 1.8188e-1 (1.51e-5) − 1.6809e-1 (1.83e-3) − 1.9392e-1 (2.90e-3) − 1.9912e-1 (1.91e-4) − 1.9954e-1 (1.49e-4) − 1.9408e-1 (1.39e-3) − 1.8813e-1 (4.94e-4) − 1.9977e-1 (1.13e-4)
DTLZ6 1.8185e-1 (6.54e-6) − 1.7722e-1 (6.68e-4) − 0.0000e+0 (0.00e+0) − 1.9945e-1 (1.53e-4) − 2.0006e-1 (4.95e-5) − 1.9229e-1 (5.94e-3) − 1.8765e-1 (2.83e-5) − 2.0010e-1 (3.57e-5)
DTLZ7 2.5236e-1 (1.36e-2) − 2.4692e-1 (2.12e-2) − 0.0000e+0 (0.00e+0) − 2.6839e-1 (1.90e-3) − 2.7575e-1 (6.22e-3) − 2.7673e-1 (7.07e-3) − 2.7036e-1 (7.10e-3) − 2.7737e-1 (7.87e-4)

+/− / ≈ 2/7/3 0/11/1 0/12/0 1/9/2 4/7/1 1/10/1 1/10/1
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Overall, CMOCPA is effective on ZDT and DTLZ test problems, indicating that it can
be applied beyond CMOPs and is also competitive for MOPs.

4.2.5. Result on RWMOPs Benchmark Problems

RWMOPs are a set of benchmark problems widely used in the field of multi-objective
optimization. These problems are designed to simulate real-world scenarios, taking into
account various complexities and constraints that are commonly encountered in practical
applications. The problems included in the RWMOPs cover a wide range of engineering
and scientific disciplines, reflecting the diversity of real-world optimization problems.

(1) Results on mechanical design problems (RWMOP1-RWMOP21)

Mechanical design problems focus on optimizing the design of mechanical components
or systems, taking into account factors such as strength, durability, weight, and cost.
Tables 9 and 10 present the IGD and HV values for CMOCPA and seven other algorithms
in solving mechanical design problems. Table 9 shows that CMOCPA obtained eleven
optimal solutions, followed by eMOEA with three, NSGAII with six, and KnEA with two
out of twenty-two problems. Notably, RWMOP8, RWMOP13, RWMOP19, and RWMOP20
are multimodal problems, which are difficult to converge to the PF. However, CMOCPA
performed well on these problems. In terms of IGD, CMOCPA outperformed NSGAII
on ten problems, had similar results on seven, and performed worse on four. As for
HV, CMOCPA outperformed NSGAII on eight problems, had similar results on four, and
performed worse on nine. Overall, CMOCPA and NSGAII had similar performance on
mechanical design problems.

(2) Results on chemical engineering problems (RWMOP22-RWMOP24)

Chemical engineering problems typically involve optimizing chemical processes such
as distillation or chemical reactions with objectives such as maximizing yield or minimizing
energy consumption. Tables 11 and 12 present the IGD and HV values for CMOCPA and
other algorithms in solving chemical engineering problems. RWMOP22, a realistic problem
with many local optimal solutions, poses a difficult convergence challenge. However,
CMOCPA’s Levy’s individual perturbation mechanism allows it to escape local optima
effectively. For RWMOP23, which has a very decentralized solution, NSGAII, KnEA, and
CMOCPA performed similarly. For RWMOP24, which is similar to RWMOP22, CMOCPA
is the only algorithm that could find feasible solutions.
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Table 9. Mean and standard deviation of IGD values on mechanical design problems of RWMOPs; ’NAN’ indicates that no feasible solution was found; best result is
highlighted in yellow.

Problem MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA CMOCPA
RWMOP1 NaN (NaN)− NaN (NaN)− NaN (NaN)− 3.5961e+5 (8.69e+1) ≈ NaN (NaN)− 4.8572e+5 (2.15e+5) − NaN (NaN)− 3.5990e+5 (8.16e+2)
RWMOP2 NaN (NaN)− NaN (NaN)− NaN (NaN)− 5.4112e+1 (3.17e+1) ≈ NaN (NaN)− 5.6426e+1 (3.13e+1) ≈ NaN (NaN)− 6.1584e+1 (2.91e+1)
RWMOP3 NaN (NaN)− 3.7831e+4 (0.00e+0) ≈ 9.9252e+14 (5.36e+15) − 2.2125e+2 (3.47e+2) + NaN (NaN)− 1.4399e+4 (5.80e+3) − NaN (NaN)− 1.2378e+3 (1.15e+3)
RWMOP4 NaN (NaN)− NaN (NaN)− 2.4187e+4 (6.09e+4) − 1.2702e+0 (1.01e-1) + NaN (NaN)− 7.4940e+0 (2.95e+0) − NaN (NaN)− 1.3552e+0 (1.36e-2)
RWMOP5 NaN (NaN)− 1.8879e+0 (3.85e-3) + NaN (NaN)− 1.8882e+0 (4.11e-4) − 1.8882e+0 (5.89e-5) − 2.7303e+0 (3.24e-1) − 1.8884e+0 (2.38e-4) − 1.8881e+0 (1.31e-4)
RWMOP6 NaN (NaN)− NaN (NaN)− NaN (NaN)− 6.9699e+2 (3.01e+2) − NaN (NaN) 2.2970e+3 (8.40e+2) − NaN (NaN)− 6.0571e+2 (1.00e+0)
RWMOP7 1.5430e+1 (1.36e-1) − 1.4185e+1 (1.37e+0) ≈ 2.4624e+1 (1.15e+1) − 1.3810e+1 (3.03e+0) ≈ 1.4086e+1 (2.87e+0) ≈ 1.5318e+1 (3.89e-1) − 1.4800e+1 (6.98e-1) − 1.2785e+1 (3.59e+0)
RWMOP8 NaN (NaN)− 2.6709e+1 (1.61e+1) − 1.2085e+1 (1.26e+1) − 2.1298e+0 (1.89e-4) − 2.1235e+0 (3.50e-2) ≈ 1.6635e+1 (1.45e+1) − 6.0661e+0 (4.50e+0) − 2.1098e+0 (3.05e-2)
RWMOP9 1.6484e+3 (3.49e-2) − 3.8763e-2 (6.37e-3) − 9.9729e+13 (3.62e+14) − 3.7239e-2 (1.41e-17) ≈ 3.7239e-2 (1.98e-12) ≈ 5.8747e+2 (1.22e+2) − 2.5868e+2 (8.81e+1) − 3.7239e-2 (1.41e-17)

RWMOP10 1.5861e+2 (9.63e-5) − 1.6677e-3 (2.04e-3) ≈ 1.9116e+44 (1.03e+45) − 7.5315e-3 (7.66e-3) ≈ 5.9892e-3 (4.16e-3) ≈ 8.2014e+0 (3.77e+0) − 1.2891e+2 (1.55e+1) − 5.5261e-3 (7.46e-3)
RWMOP11 3.7069e+6 (8.20e+2) − 2.5043e+6 (9.02e+3) − 1.1797e+7 (1.38e+7) − 2.4589e+6 (4.09e+4) − 2.4906e+6 (2.35e+5) − 2.4559e+6 (5.11e+4) − 2.5608e+6 (3.70e+4) − 2.3088e+6 (7.19e+4)
RWMOP12 NaN (NaN)− 4.5903e+1 (0.00e+0) ≈ 8.7901e+2 (9.82e+2) − 3.7516e+0 (2.45e+0) − 2.5646e+0 (1.64e+0) ≈ 1.3507e+0 (7.96e-1) + NaN (NaN)− 2.0109e+0 (1.12e+0)
RWMOP13 NaN (NaN)− NaN (NaN)− NaN (NaN)− 4.5851e+2 (6.80e+1) − NaN (NaN)− 8.0857e+2 (9.97e+1) − NaN (NaN)− 3.8510e+2 (1.99e+1)
RWMOP14 NaN (NaN)− 1.2264e-2 (5.87e-4) − 1.8289e+3 (0.00e+0) − 1.2137e-2 (2.12e-14) ≈ 1.2137e-2 (2.35e-12) ≈ 6.5289e-1 (5.18e-2) − NaN (NaN)− 1.2137e-2 (3.53e-18)
RWMOP15 NaN (NaN)− NaN (NaN)− NaN (NaN)− 4.3236e+3 (4.14e+3) − NaN (NaN)− 2.9551e+4 (1.67e+4) − NaN (NaN)− 5.7265e+2 (8.93e+2)
RWMOP16 NaN (NaN)− 1.9989e-3 (1.32e-18) ≈ 2.0269e+6 (7.98e+6) − 1.9989e-3 (1.32e-18) ≈ 1.9989e-3 (1.32e-18) ≈ 5.9503e-2 (4.32e-2) − 2.4842e+0 (1.13e-1) − 1.9989e-3 (1.32e-18)
RWMOP17 4.4783e+9 (3.75e+9) − NaN (NaN)− 8.1597e+3 (5.52e+2) − 5.1163e+3 (2.79e+2) − NaN (NaN)− 1.1209e+4 (1.84e+3) − NaN (NaN)− 4.6960e+3 (1.53e+2)
RWMOP18 9.4571e-2 (3.59e-6) − 1.0726e-1 (1.89e-2) − NaN (NaN)− 9.4283e-2 (2.02e-4) + 9.4458e-2 (1.25e-4) ≈ 9.4784e-2 (8.18e-4) ≈ 9.4414e-2 (2.61e-4) ≈ 9.4514e-2 (8.82e-5)
RWMOP19 NaN (NaN)− NaN (NaN)− NaN (NaN)− 7.7965e+4 (2.50e+4) − NaN (NaN)− 1.3088e+5 (8.95e+3) − NaN (NaN)− 3.8623e+4 (1.01e+4)
RWMOP20 NaN (NaN)− NaN (NaN)− NaN (NaN)− 1.9764e+3 (2.05e+2) + NaN (NaN)− 1.9680e+3 (2.24e+2) + NaN (NaN)− 2.0864e+3 (1.73e+2)
RWMOP21 6.6237e+0 (3.95e-3) − 1.4326e-1 (2.92e-1) − 4.9022e+0 (6.43e+0) − 1.3186e-1 (2.36e-1) − 7.0673e-2 (1.25e-1) ≈ 2.4790e+0 (3.75e-1) − 4.4463e-1 (3.76e-1) − 1.6050e-2 (7.06e-18)
+/− / ≈ 0/21/0 1/15/5 0/21/0 4/10/7 0/12/9 2/17/2 0/20/1
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Table 10. Mean and standard deviation of HV values on mechanical design problems of RWMOPs; ’NAN’ indicates that no feasible solution was found; best result
is highlighted in yellow.

Problem MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA CMOCPA
RWMOP1 NaN (NaN)− NaN (NaN)− NaN (NaN)− 6.0523e-1 (4.27e-4) − NaN (NaN)− 5.9323e-1 (1.41e-2) − NaN (NaN)− 6.0766e-1 (3.43e-4)
RWMOP2 NaN (NaN)− NaN (NaN)− NaN (NaN)− 2.2625e-1 (1.49e-1) ≈ NaN (NaN)− 2.3799e-1 (1.43e-1) ≈ NaN (NaN)− 2.4536e-1 (1.52e-1)
RWMOP3 NaN (NaN)− 4.0552e-1 (0.00e+0) ≈ 8.9848e-1 (2.44e-1) − 9.0206e-1 (1.68e-4) + NaN (NaN)− 8.3815e-1 (4.08e-2) − NaN (NaN)− 9.0010e-1 (5.88e-4)
RWMOP4 NaN (NaN)− NaN (NaN)− 8.8056e-1 (3.06e-1) + 8.5888e-1 (3.41e-3) + NaN (NaN)− 7.6779e-1 (2.96e-2) − NaN (NaN)− 8.5619e-1 (1.49e-3)
RWMOP5 NaN (NaN−) 2.4936e-1 (1.38e-3) − NaN (NaN)− 4.3356e-1 (1.14e-3) ≈ 2.7321e-1 (2.58e-3) − 3.9767e-1 (1.27e-2) − 2.7424e-1 (1.05e-3) − 4.3417e-1 (1.80e-4)
RWMOP6 NaN (NaN)− NaN (NaN)− NaN (NaN)− 2.7715e-1 (5.39e-5) + NaN (NaN)− 2.4092e-1 (3.09e-2) − NaN (NaN)− 2.7482e-1 (1.07e-3)
RWMOP7 4.7784e-1 (3.64e-3) − 4.8285e-1 (6.94e-4) − 7.5277e-1 (1.72e-1) + 4.8398e-1 (6.83e-5) − 4.8285e-1 (1.92e-4) − 4.8218e-1 (9.93e-4) − 4.8178e-1 (4.08e-4) − 4.8442e-1 (7.98e-5)
RWMOP8 NaN (NaN)− 2.1196e-2 (2.09e-3) − 4.0212e-2 (1.46e-2) + 2.5879e-2 (1.04e-4) ≈ 2.3654e-2 (4.28e-4) − 2.5050e-2 (5.47e-4) − 2.2567e-2 (3.27e-4) − 2.5794e-2 (1.85e-4)
RWMOP9 5.3068e-2 (5.05e-5) − 2.5125e-1 (5.21e-2) − 6.1315e-1 (1.80e-1) + 4.0902e-1 (1.49e-4) − 4.0947e-1 (1.13e-4) ≈ 3.6925e-1 (8.76e-3) − 4.0115e-1 (2.42e-3) − 4.0950e-1 (1.19e-4)

RWMOP10 7.9369e-2 (6.24e-4) − 5.7450e-1 (2.29e-1) − 6.5537e-1 (2.93e-1) ≈ 8.4728e-1 (2.23e-4) + 8.4208e-1 (1.28e-3) ≈ 8.2504e-1 (1.10e-2) − 8.3621e-1 (5.73e-3) − 8.4218e-1 (1.23e-3)
RWMOP11 5.7358e-2 (9.23e-4) − 1.0791e-1 (1.96e-4) + 6.7100e-3 (1.43e-2) − 9.4453e-2 (1.33e-3) + 6.1777e-2 (9.98e-3) − 9.7678e-2 (1.22e-3) + 8.4401e-2 (4.47e-3) − 9.2711e-2 (2.09e-3)
RWMOP12 NaN (NaN)− 0.0000e+0 (0.00e+0) ≈ 5.9992e-1 (2.70e-1) ≈ 5.5982e-1 (3.88e-4) + 5.3842e-1 (7.14e-3) − 5.2949e-1 (6.15e-3) − NaN (NaN) 5.5653e-1 (1.25e-3)
RWMOP13 NaN (NaN)− NaN (NaN)− NaN (NaN)− 8.7936e-2 (1.04e-4) + NaN (NaN)− 8.7546e-2 (3.07e-4) ≈ NaN (NaN)− 8.7523e-2 (1.18e-4)
RWMOP14 NaN (NaN)− 1.4558e-1 (7.25e-2) − 9.9956e-1 (0.00e+0) ≈ 6.1748e-1 (1.31e-3) + 3.4771e-1 (2.64e-3) − 5.9485e-1 (9.49e-3) − NaN (NaN)− 6.1463e-1 (7.00e-4)
RWMOP15 NaN (NaN)− NaN (NaN)− NaN (NaN)− 5.4143e-1 (1.33e-3) − NaN (NaN)− 4.8584e-1 (2.84e-2) − NaN (NaN)− 5.4226e-1 (1.81e-4)
RWMOP16 NaN (NaN)− 3.4033e-1 (1.67e-1) − 3.3888e-1 (3.36e-1) − 7.6373e-1 (1.45e-4) + 7.6167e-1 (3.80e-4) − 7.6174e-1 (1.31e-3) − 3.5934e-1 (1.44e-1) − 7.6251e-1 (1.86e-4)
RWMOP17 2.0615e-1 (1.35e-1) ≈ NaN (NaN)− 6.1754e-1 (2.31e-2) + 2.6369e-1 (9.01e-3) − NaN (NaN)− 4.3461e-1 (1.12e+0) + NaN (NaN)− 2.6714e-1 (9.74e-3)
RWMOP18 4.0246e-2 (3.71e-5) − 2.9443e-2 (2.75e-3) − NaN (NaN)− 4.0493e-2 (4.44e-6) − 4.0401e-2 (5.19e-5) − 3.8136e-2 (7.82e-4) − 4.0234e-2 (9.59e-5) − 4.0509e-2 (4.24e-6)
RWMOP19 NaN (NaN)− NaN (NaN)− NaN (NaN)− 3.3547e-1 (9.62e-3) − NaN (NaN)− 2.8196e-1 (1.97e-2) − NaN (NaN)− 3.6157e-1 (2.88e-3)
RWMOP20 NaN (NaN)− NaN (NaN)− NaN (NaN)− 0.0000e+0 (0.00e+0) ≈ NaN (NaN)− 0.0000e+0 (0.00e+0) ≈ NaN (NaN)− 0.0000e+0 (0.00e+0)
RWMOP21 2.9319e-2 (3.47e-6) − 3.0724e-2 (6.57e-4) − 6.6135e-2 (1.59e-2) + 3.1741e-2 (2.10e-5) − 3.1721e-2 (1.59e-4) − 2.5192e-2 (8.29e-4) − 3.1485e-2 (3.69e-4) − 3.1761e-2 (7.50e-7)
+/− / ≈ 0/20/1 1/18/2 6/12/3 9/8/4 0/19/2 2/16/3 0/21/0

Table 11. Mean and standard deviation of IGD values on chemical engineering problems of RWMOPs; ’NAN’ indicates that no feasible solution was found; best
result is highlighted in yellow.

Problem MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA CMOCPA
RWMOP22 NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− 1.7024e+3 (3.64e+2)
RWMOP23 NaN (NaN)− NaN (NaN)− NaN (NaN)− 1.2492e+0 (7.02e-1) ≈ NaN (NaN)− 1.0692e+0 (5.86e-1) ≈ NaN (NaN)− 8.8150e-1 (4.90e-1)
RWMOP24 NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− 1.7997e+4 (6.57e+4)
+/− / ≈ 0/3/0 0/3/0 0/3/0 0/2/1 0/3/0 0/2/1 0/3/0
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Table 12. Mean and standard deviation of HV values on chemical engineering problems of RWMOPs; ’NAN’ indicates that no feasible solution was found; best
result is highlighted in yellow.

Problem MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA CMOCPA
RWMOP22 NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− 8.2709e-1 (2.16e-1)
RWMOP23 NaN (NaN)− NaN (NaN)− NaN (NaN)− 3.6105e-1 (1.72e-1) ≈ NaN (NaN)− 3.1904e-1 (1.43e-1) ≈ NaN (NaN)− 2.6831e-1 (1.29e-1)
RWMOP24 NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN) NaN (NaN)− NaN (NaN)− NaN (NaN)− 4.2171e-1 (4.37e-1)
+/− / ≈ 0/3/0 0/3/0 0/3/0 0/2/1 0/3/0 0/2/1 0/3/0
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(3) Results on process, design, and synthesis problems (RWMOP25-RWMOP29)

Process design and synthesis problems aim to optimize the design of complex industrial
processes, taking into account factors such as equipment selection, scheduling, and resource
allocation. Tables 13 and 14 present the IGD and HV values for CMOCPA and seven other
algorithms in solving process, design, and synthesis problems. These problems pose several
optimization challenges, such as non-separability, multimodality, bias, deception, many-to-one
mapping, and PF shape combinations. CMOCPA obtained optimal results in terms of IGD met-
rics for all problems, including the difficult-to-converge RWMOP28, for which other algorithms
were trapped in local PFs. For the relatively simple RWMOP25 and RWMOP27, CMOCPA
provided well-distributed solutions compared to other optimizers. Additionally, CMOCPA
demonstrated good convergence and diversity in RWMOP26, whereas other algorithms, except
CMOCPA, struggled to obtain well-converged solutions.

(4) Results on power electronics problems (RWMOP30-RWMOP35)

Power electronics problems are another important category of RWMOPs, focusing on
the optimization of electrical systems that involve the conversion and control of power.
These problems often involve a wide range of objectives, such as maximizing efficiency, min-
imizing losses, and ensuring stable operation under varying conditions. Tables 15 and 16
present the IGD and HV metrics for CMOCPA and other algorithms in solving power
electronic problems, which have many inequality constraints. RWMOP30-RWMOP33 have
twenty-four inequality constraints, while RWMOP34 and RWMOP35 have twenty-nine in-
equality constraints, making it difficult to converge to the true PF. CMOCPA outperformed
other algorithms in four out of the six problems.

(5) Results on power-system optimization problems (RWMOP36-RWMOP50)

Power-system optimization problems aim to optimize the operation of large-scale
electrical grids, taking into account factors such as demand, generation capacity, and
transmission constraints. Tables 17 and 18 display the IGD and HV metrics for these
problems, which are known for their numerous equality constraints and are challenging for
most algorithms to obtain optimal solutions. The results indicate that CMOCPA achieved
the best performance on two out of the fifteen problems, namely RWMOP49 and RWMOP50,
while almost all other algorithms struggled to find feasible solutions for most of the
problems. Notably, NSGAII, KnEA, and CMOCPA were able to obtain feasible solutions on
RWMOP50, whereas only CMOCPA was able to find feasible solutions on RWMOP49.

In summary, the results indicate that CMOCPA is a promising optimization algorithm
for resolving RWMOPs, particularly for problems with complex constraints and difficult-
to-converge PFs.
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Table 13. Mean and standard deviation of IGD values on process, design and synthesis problems of RWMOPs; ’NAN’ indicates that no feasible solution was found;
best result is highlighted in yellow.

Problem MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA CMOCPA
RWMOP25 8.0323e-1 (1.17e-1) − 7.4475e-1 (5.58e-4) − 6.2586e+2 (1.19e+3) − 7.4391e-1 (9.77e-5) ≈ 7.4408e-1 (2.09e-4) − 7.4388e-1 (3.03e-5) ≈ 7.4389e-1 (7.73e-7) − 7.4388e-1 (1.90e-5)
RWMOP26 NaN (NaN)− NaN (NaN)− NaN (NaN)− 2.6894e-1 (2.97e-2) − NaN (NaN)− 2.8814e-1 (4.48e-2) − NaN (NaN)− 2.4734e-1 (1.45e-4)
RWMOP27 1.0629e+0 (7.93e-2) − 1.0306e+0 (7.22e-2) − 1.7992e+0 (9.59e-2) − 9.9000e-1 (1.90e-5) − 1.0138e+0 (4.90e-2) − 9.9000e-1 (5.11e-5) ≈ 1.0452e+0 (3.53e-2) − 9.8997e-1 (1.36e-4)
RWMOP28 NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− 8.8494e+0 (0.00e+0)
RWMOP29 NaN (NaN)− NaN (NaN)− NaN (NaN)− 9.4792e+0 (6.64e-1) ≈ NaN (NaN)− 9.7243e+0 (9.16e-1) ≈ NaN (NaN)− 9.2095e+0 (1.07e-1)
+/− / ≈ 0/5/0 0/5/0 0/5/0 0/3/2 0/5/0 0/2/3 0/5/0

Table 14. Mean and standard deviation of HV values on process, design and synthesis problems of RWMOPs; ’NAN’ indicates that no feasible solution was found;
best result is highlighted in yellow.

Problem MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA CMOCPA
RWMOP25 2.6578e-1 (6.93e-2) + 2.2908e-1 (2.17e-3) − 9.9924e-1 (3.46e-3) + 2.4107e-1 (6.17e-5) − 2.3465e-1 (1.08e-3) − 2.4096e-1 (2.58e-4) − 2.3126e-1 (2.20e-5) − 2.4150e-1 (1.09e-5)
RWMOP26 NaN (NaN)− NaN (NaN)− NaN (NaN)− 1.4281e-1 (2.31e-2) ≈ NaN (NaN)− 1.3589e-1 (2.77e-2) − NaN (NaN)− 1.4605e-1 (4.41e-3)
RWMOP27 4.3841e+1 (5.17e+1) − 2.6239e+10 (1.03e+11) ≈ 6.6799e+0 (4.14e-1) − 1.8438e+10 (4.67e+10) + 3.8284e+9 (1.73e+10) + 2.1712e+11 (1.17e+12) + 3.3008e+1 (3.04e+1) − 1.2478e+9 (5.86e+9)
RWMOP28 NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− NaN (NaN)− 1.6667e-2 (0.00e+0)
RWMOP29 NaN (NaN)− NaN (NaN)− NaN (NaN)− 7.5346e-1 (5.86e-2) ≈ NaN (NaN)− 7.4404e-1 (6.86e-2) − NaN (NaN)− 7.8077e-1 (2.47e-3)
+/− / ≈ 1/4/0 0/4/1 1/4/0 1/2/2 1/4/0 1/4/0 0/5/0

Table 15. Mean and standard deviation of IGD values on power electronics problems of RWMOPs; ’NAN’ indicates that no feasible solution was found; best result is
highlighted in yellow.

Problem MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA CMOCPA
RWMOP30 NaN (NaN)− NaN (NaN)− NaN (NaN)− 1.2752e-1 (2.88e-2) ≈ NaN (NaN)− 1.6247e-1 (3.73e-2) − NaN (NaN)− 1.1106e-1 (3.92e-2)
RWMOP31 NaN (NaN)− NaN (NaN)− NaN (NaN)− 1.7148e-1 (1.14e-1) ≈ NaN (NaN)− 1.9880e-1 (1.65e-1) ≈ NaN (NaN)− 1.5409e-1 (1.27e-1)
RWMOP32 NaN (NaN)− NaN (NaN)− NaN (NaN)− 2.6653e-1 (1.00e-1) ≈ NaN (NaN)− 3.6026e-1 (1.55e-1) − NaN (NaN)− 1.6997e-1 (1.15e-1)
RWMOP33 NaN (NaN)− NaN (NaN)− NaN (NaN)− 2.1002e+0 (7.05e-1) ≈ NaN (NaN)− 2.1525e+0 (8.35e-1) ≈ NaN (NaN)− 3.0123e+0 (3.65e-1)
RWMOP34 NaN (NaN)− NaN (NaN)− NaN (NaN)− 1.6020e+0 (8.63e-1) ≈ NaN (NaN)− 1.5357e+0 (8.71e-1) ≈ NaN (NaN)− 3.0357e+0 (1.14e+0)
RWMOP35 NaN (NaN)− NaN (NaN)− NaN (NaN)− 4.2593e+0 (1.57e+0) ≈ NaN (NaN)− 4.7182e+0 (1.74e+0) − NaN (NaN)− 2.7377e+0 (1.14e+0)
+/− / ≈ 0/6/0 0/6/0 0/6/0 0/0/6 0/6/0 0/3/3 0/6/0
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Table 16. Mean and standard deviation of HV values on power electronics problems of RWMOPs; ’NAN’ indicates that no feasible solution was found; best result is
highlighted in yellow.

Problem MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA CMOCPA
RWMOP30 NaN (NaN)− NaN (NaN)− NaN (NaN)− 5.7608e-1 (1.18e-1) ≈ NaN (NaN)− 5.6748e-1 (1.05e-1) ≈ NaN (NaN)− 4.8258e-1 (2.16e-1)
RWMOP31 NaN (NaN)− NaN (NaN)− NaN (NaN)− 4.9581e-1 (2.99e-1) ≈ NaN (NaN)− 4.3421e-1 (2.71e-1) ≈ NaN (NaN)− 3.1568e-1 (3.25e-1)
RWMOP32 NaN (NaN)− NaN (NaN)− NaN (NaN)− 7.2496e-1 (1.06e-1) + NaN (NaN) 6.6083e-1 (1.92e-1) + NaN (NaN) 4.0098e-1 (3.12e-1)
RWMOP33 NaN (NaN)− NaN (NaN)− NaN (NaN)− 0.0000e+0 (0.00e+0) ≈ NaN (NaN)− 0.0000e+0 (0.00e+0) ≈ NaN (NaN)− 0.0000e+0 (0.00e+0)
RWMOP34 NaN (NaN)− NaN (NaN)− NaN (NaN)− 0.0000e+0 (0.00e+0) ≈ NaN (NaN)− 0.0000e+0 (0.00e+0) ≈ NaN (NaN)− 0.0000e+0 (0.00e+0)
RWMOP35 NaN (NaN)− NaN (NaN)− NaN (NaN)− 4.6596e-1 (1.49e-1) + NaN (NaN)− 4.8053e-1 (1.21e-1) + NaN (NaN)− 3.2464e-1 (1.62e-1)
+/− / ≈ 0/6/0 0/6/0 0/6/0 2/0/4 0/6/0 2/0/4 0/6/0

Table 17. Mean and standard deviation of IGD values on power system optimization problems of RWMOPs; ’NAN’ indicates that no feasible solution was found;
best result is highlighted in yellow.

Problem MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA CMOCPA
RWMOP36 NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈
RWMOP37 NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈
RWMOP38 NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈
RWMOP39 NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈
RWMOP40 NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈
RWMOP41 NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈
RWMOP42 NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈
RWMOP43 NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈
RWMOP44 NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈
RWMOP45 NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈
RWMOP46 NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈
RWMOP47 NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈
RWMOP48 NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈ NaN (NaN) ≈
RWMOP49 NaN (NaN) − NaN (NaN) − NaN (NaN) − NaN (NaN) − NaN (NaN) − NaN (NaN) − NaN (NaN) − 2.8979e+0 (2.70e+0)
RWMOP50 NaN (NaN) − NaN (NaN) − NaN (NaN) − 1.1224e+3 (6.88e+2) ≈ NaN (NaN) − 1.4319e+3 (9.11e+2) ≈ NaN (NaN) − 9.9820e+2 (4.11e+2)
+/− / ≈ 0/2/13 0/2/13 0/2/13 0/1/14 0/2/13 0/1/14 0/2/13
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Table 18. Mean and standard deviation of HV values on power system optimization problems of RWMOPs; ’NAN’ indicates that no feasible solution was found;
best result is highlighted in yellow.

Problem MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA CMOCPA
RWMOP37 (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈
RWMOP38 (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈
RWMOP39 (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈
RWMOP40 (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈
RWMOP41 (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈
RWMOP42 (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈
RWMOP43 (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈
RWMOP44 (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈
RWMOP45 (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈
RWMOP46 (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈
RWMOP47 (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈
RWMOP48 (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈ (NaN) ≈
RWMOP49 (NaN) − (NaN) − (NaN) − (NaN) − (NaN) − (NaN) − (NaN) − 0.0000e+0 (0.00e+0)
RWMOP50 (NaN) − (NaN) − (NaN) − 1.1690e-2 (6.20e-4) ≈ (NaN) − 1.1492e-2 (5.81e-4) ≈ (NaN) ≈ 1.1622e-2 (9.08e-4)
+/− / ≈ 0/2/13 0/2/13 0/2/13 0/1/14 0/2/13 0/1/14 0/2/13
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5. Conclusions and Future Work

As a plant-based algorithm, CPA has demonstrated strong performance in solving
single-objective optimization problems. To extend its capabilities to CMOPs, this paper
introduces a new algorithm called CMOCPA. The algorithm adopts a multi-population and
multi-stage framework that combines the Lévy flight-based cross-pollination of carnivorous
plants with the quasi-reflection learning mechanism. These enhancements improve the
algorithm’s ability to jump out of local optima, increase convergence efficiency and accuracy,
and make local search more effective using quadratic interpolation methods.

To verify the stability, convergence accuracy, and optimality finding capability of
CMOCPA, experiments were conducted on six test suites, including DC-DTLZ, FCP, DASC-
MOP, ZDT, DTLZ, and RWMOPs with eighty-two test problems. The experimental results
show that CMOCPA performs well in terms of diversity and convergence, especially on the
FCP problem, where it outperforms all other algorithms. CMOCPA also achieves better
results for other problems, indicating that the proposed strategy are effective in improving
the optimization performance of CMOCPA.

Given the effectiveness of CPA in solving CMOPs, future work will explore further
applications of plant-based algorithms in this area.
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Appendix A

Figure A1. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on DC1-DTLZ1.



Biomimetics 2023, 8, 136 28 of 38

Figure A2. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on DC1-DTLZ3.

Figure A3. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on DC2-DTLZ1.

Figure A4. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on DC2-DTLZ3.
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Figure A5. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on DC3-DTLZ1.

Figure A6. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on DC3-DTLZ3.
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Figure A7. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on FCP1.
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Figure A8. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on FCP2.
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Figure A9. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on FCP3.
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Figure A10. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on FCP4.
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Figure A11. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on FCP5.

Figure A12. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on DASCMOP1.

Figure A13. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on DASCMOP2.
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Figure A14. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on DASCMOP3.

Figure A15. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on DASCMOP4.

Figure A16. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on DASCMOP5.
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Figure A17. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on DASCMOP6.

Figure A18. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on DASCMOP7.

Figure A19. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on DASCMOP8.
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Figure A20. Population with median IGD value among 30 runs obtained by BiCo, CAEAD, C-TAEA,
ICMA, PPS, ToP, Trip, and CMOCPA on DASCMOP9.
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Figure A21. Population with median IGD value among 30 runs obtained by MOEAD, eMOEA,
MOPSO, NSGAII, SPEA2, KnEA, GrEA and CMOCPA on ZDT1.
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Figure A22. Population with median IGD value among 30 runs obtained by MOEAD, eMOEA,
MOPSO, NSGAII, SPEA2, KnEA, GrEA and CMOCPA on ZDT3.
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Figure A23. Population with median IGD value among 30 runs obtained by MOEAD, eMOEA,
MOPSO, NSGAII, SPEA2, KnEA, GrEA and CMOCPA on ZDT4.
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Figure A24. Population with median IGD value among 30 runs obtained by MOEAD, eMOEA,
MOPSO, NSGAII, SPEA2, KnEA, GrEA and CMOCPA on ZDT6.
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Figure A25. The display of HV indicators obtained by BiCo, CAEAD, C-TAEA, ICMA, PPS, ToP, Trip,
and CMOCPA on DC-DTLZ.
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Figure A26. The display of HV indicators obtained by BiCo, CAEAD, C-TAEA, ICMA, PPS, ToP, Trip,
and CMOCPA on FCP.
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Figure A27. The display of HV indicators obtained by BiCo, CAEAD, C-TAEA, ICMA, PPS, ToP, Trip,
and CMOCPA on DASCMOP.
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