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Abstract: For humans and animals to recognise an object, the integration of multiple sensing methods
is essential when one sensing modality is only able to acquire limited information. Among the many
sensing modalities, vision has been intensively studied and proven to have superior performance
for many problems. Nevertheless, there are many problems which are difficult to solve by solitary
vision, such as in a dark environment or for objects with a similar outlook but different inclusions.
Haptic sensing is another commonly used means of perception, which can provide local contact
information and physical features that are difficult to obtain by vision. Therefore, the fusion of vision
and touch is beneficial to improve the robustness of object perception. To address this, an end-to-end
visual–haptic fusion perceptual method has been proposed. In particular, the YOLO deep network is
used to extract vision features, while haptic explorations are used to extract haptic features. Then,
visual and haptic features are aggregated using a graph convolutional network, and the object is
recognised based on a multi-layer perceptron. Experimental results show that the proposed method
excels in distinguishing soft objects that have similar appearance but varied interior fillers, comparing
a simple convolutional network and a Bayesian filter. The resultant average recognition accuracy was
improved to 0.95 from vision only (mAP is 0.502). Moreover, the extracted physical features could be
further used for manipulation tasks targeting soft objects.

Keywords: deep network; haptic exploration; graph neural network; sensor fusion; object perception

1. Introduction

It is a common sense that humans instinctively combine multi-modal sensory data
such as vision, touch, audition, etc., to perceive the surrounding environment. While
some of the sensing modalities are non-contact such as vision and audition, others require
interactive action for perception, such as touch [1]. More narrowly, visual feedback obtains
global scene information containing semantic and geometric object properties, which can
be used for accurate object reaching, while haptic feedback obtains current contact condi-
tions through haptic interactions locally, which can be used for accurate localization and
manipulation control [2]. For object perception and dexterous manipulation tasks, these
two types of sensing modalities are essential and complementary. In effect, the notion that
the interdependence and concurrency of vision and touch aid perception and manipulation
has been proved in neuroscience [3]. Despite the vast advancements in processing and
learning visual data and the huge research interest in evolving the artificial sense of touch,
the optimal integration of visual and haptic information has not yet been achieved.

To solve this dilemma, technologists obtained inspiration from the visual–haptic con-
tribution in human sensorial loops in accordance with the contour following strategy that
humans use for object recognition. From a psychophysics and neuroscience side, many re-
searchers have been trying to explain how tactile and visual information contribute in order for
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humans to interpret their environment. Klatzky et al. suggested that both vision and touch rely
on shape information for object recognition [4]. They also studied different exploratory proce-
dures that humans apply for tactile object recognition [5] and revealed the superiority of tactile
perception in the presence of vision [6]. Demarais et al. studied the performance of visual,
tactile, and bimodal exploration of objects for both learning and testing procedures for object
identification [7]. Calandra et al. proposed an end-to-end action conditional model that
learns re-grasping policies from raw visual–tactile data [8]. Gao et al. designed deep archi-
tectures for haptic classification using both haptic and visual signals [9]. Lee et al. proposed
a novel framework for cross-modal sensory data generation for visual and tactile per-
ceptions [10]. Yu et al. proposed a framework that fuses tactile and visual sensing to
recover the pose and contact formation of an object relative to its environment, for robotic
packaging [11]. Fazeli et al. proposed a methodology based on the hierarchical Bayesian
model to emulate multisensory fusion in a robot that learnt to play Jenga [12]. These stud-
ies tried to integrate visual and haptic data for object recognition, material classification,
manipulation, or grasp control.

Many other works focusing on the integration of vision and touch have been presented,
among which, some are studied for better object perception, such as [13–15], and others for
precise manipulation control, such as [16–18]. For objects which have the same appearance,
but different interior fillers or made from different materials, they become difficult to identify
with vision solely, and if they can deform during interaction, it will become more challenging.
Most of the studies rely on haptics to deal with soft objects. Gemici and Saxena tried to model
and learn the physical properties of deformable food objects through actions that can extract
haptic data. They used the learnt properties to plan appropriate manipulation actions [19].
This also demonstrates the significance of obtaining heterogeneous features of the objects
through different exploratory actions, in turn, the features can serve as guidance for plan-
ning appropriate control strategies. Furthermore, Yim et al. proposed a unified data-driven
framework for modelling and rendering the stiffness and friction of a soft object with haptic
feedback [20]. Other works are shown in [21,22].

As can be seen from the preceding information, visual and haptic integration is vital
and has attracted the interest of an increasing number of researchers with emerging, related
studies. Nevertheless, in the majority of previous studies, for the fusion task, usually a deep
network was used for vision and a simple classifier for haptics, and only the respective
results were fused with simple convolutional networks or machine learning methods. The
vision and haptic features were not integrated properly. This is because traditional neural
networks typically process Euclidean structured data (such as image data), whereas haptic
data often have low dimensions and are difficult to represent in an n-dimensional linear
space, thus making traditional neural networks unsuitable for extracting haptic features.
The non-Euclidean haptic data can be viewed as graphs, and the graph neural network
(GNN) is an emerging method for dealing with such data, as proposed in [23,24].

Based on graph convolution neural networks (GCN), an end-to-end visual–haptic fu-
sion perception method has been proposed. Through which, the vision- and haptic-related
features were properly integrated for improved object recognition and adaptive control.
Specifically, haptic sensing provides more informative features that are difficult to obtain
by vision alone; meanwhile, vision provides not only the initial non-contact perception
to narrow down the identity scope of the object, but also the accurate relative location to
reach for further haptic interaction. The proposed GCN model integrates both the vision
and haptic features, and the object is recognised through a multilayer perceptron (MLP).
The experiment results show that the perception accuracy increased from 0.58 (vision only)
to 0.95 with the fusion of vision and touch. Moreover, a Conv1D network and Bayesian
filer were used as comparisons and the results were improved with the proposed method.
Additionally, it was proven that control can be integrated with perception, which means
that the action controlled (haptic exploration) is used for better perception, while the better
perception will, in turn, facilitate the control to be more adaptive.

Regarding the contribution: first, a method for integrating vision and haptic features
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was designed, which showed higher perception accuracy when dealing with soft objects;
second, a software system was provided that can control the robot for autonomous vision
perception and haptic explorations; third, this method could be easily extended with more
sensing modalities such as audition, smell, etc. Finally, this work could lead to more
complex tasks such as adaptive force or grasp control [25].

This paper is structured as follows: In Section 1, the background and contributions
of this work are shown briefly. Then, the proposed algorithms for handling the percep-
tion tasks via the fusion of vision and haptics is represented in Section 2. After that, the
experimental validations using an assembled robot platform are expressed, and the results
are analysed and discussed in Section 3. Finally, a short conclusion and future work are
provided in Section 4.

2. Materials and Methods

The goal of this work is to recognize objects that are difficult to detect based only
on vision. To target this challenge, an end-to-end visual–haptic fusion method for object
perception was proposed. The overall control flow is expressed in Figure 1. The first part is
the multimodal feature extraction part, in which respective sensors are driven by the robot
platform, and visual and haptic features are extracted through the YOLOv5 network and
haptic explorations, respectively (Sections 2.1 and 2.2). In more detail, the YOLOv5 network
is used for the initial perception of the object and to locate its position for the haptic sensor
to reach. Then, as the key sensor fusion part, the multi-modal features are concatenated
through a GCN model (Section 2.3). In the object-classification part, the features integrated
by the GCN model are transformed into the three-layer MLP. The feature dimension is
reduced to 128 after the first two layers, and after the last layer, the feature dimension is
reduced to (M, 1). After that, a layer of soft-max is connected, and the object identity is
decided, which has the highest probability (the total number of object categories is M = 10
in this study; more details can be found in Section 3.2).

Figure 1. A robot platform utilising a depth camera and a force-torque sensor was assembled. With a
certain field of view, the depth camera obtained the RGB data and transferred the data to the trained
YOLOv5 model. The output included the confidence and bounding box for each object. On the other
hand, the physical properties of the object such as stiffness, surface friction, and roughness were
captured through haptic explorations. A confidence threshold ϑr = 0.8 was set and when the value of
the obtained max confidence was greater than it, the result from the vision was trusted and no fusion
was required; otherwise, the visual and haptic features would be sent to the GCN model for data
integration. Finally, the fused features were sent to the connected multi-layer classifier for recognition,
and the identity of the object was decided among all M objects.

2.1. Vision Perception Model

Using a depth camera, the RGB data containing rich colour information and the depth
data storing the distance information can be obtained. In this work, the RGB colour data
were mainly used for the initial perception and localization of the target object, while
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the depth data provided the required distance for the robot arm to approach the object
and initiate haptic exploration. To better combine these two kinds of information, spatial
alignment was used to attach the corresponding depth value to each colour pixel. Moreover,
to reduce the effects brought about by different lighting conditions, which may downgrade
the perception accuracy, image preprocessing was carried out. As the main step, the
adaptive histogram equalization was applied on the v (value) element after converting the
original RGB data to HSV gamut in order to lower the brightness variation of the object
and environment.

To detect the object with visual feedback, the YOLOv5 network was selected as the
perception model based on its real-time performance and a lack of dependence upon the
sample size. It originated from the YOLOv1–YOLOv4 models, which were first introduced
by [26] and have been widely used for object recognition. As described in [26], for YOLOv5,
the data were first input to CSPDarknet for feature extraction, and then fed to PANet for
feature fusion. Finally, the detection results were output (object class, confidence score,
bounding box). In this work, the modal was trained, starting from the pre-trained YOLOv5l
modal based on the COCO dataset.

2.2. Haptic Explorations

After the recognition trial through the YOLOv5 network was completed, if the recog-
nition result was incorrect or the confidence score was not satisfied, the haptic features
would be obtained through haptic explorations, and object recognition by processing the
integrated vision and haptic features would be carried out.

2.2.1. Primary Work

To locate the object and guide the robot to approach its surface (or margin) for haptic
interaction, a method was proposed, which is based on the bounding box obtained from
the YOLOv5 detection result. The detailed process is introduced in the following section.

If the YOLOv5 network returned detection results, first, the centre of the box would be
found as the initial centroid of the object. The box contained a large area that did not belong
to the object, therefore, it was extracted as the region of interest (ROI), and the Canny
edge detection was used to find the contour within. Then, the centroid of the contour
was calculated as the centre of the object (red dot in Figure 1). After that, with the spatial
alignment method, the corresponding depth of the centroid (z) was obtained. At last, the
coordinates of the centroid was transformed from the image frame to the world frame, and
the location for the robot arm to reach the object was acquired (Pc).

It is not necessary to start haptic exploration from the centroid of the object, therefore,
the starting point could also been changed by adding offset based on the size of the object.
However, this method requires the object to fully appear in the image; otherwise, the
provided centroid is not the real centroid of the object. Thus, in this work, the reaching
point was fixed to the top middle of the object by adding an W/2 offset from the centroid
of the object, where W is the width of the object.

After reaching the surface of the object, the robot will be controlled to carry out
haptic explorations to extract the corresponding features, for which contact state estimation
is an essential procedure. This is because the current contact location and forces are
essential for determining the next exploration location and interpreting the haptic features
at each step. There are two main frames, the arm base {O} and hemisphere tip frame {E}
(which is attached to the end-effector). In this study, control was based in {O}, while the
contact state estimation was based in {E}. The coordinates of the contact point were set to
PE

c = [xe, ye, ze]T in frame {E}. Based on the equilibrium equation in [27], PE
c was calculated

and PO
c in {O} was obtained through coordinate transformation. It should be noted that

the contact tip used in this work was made by 3D printing and is rigid. Soft tips that can
deform during contacting will be studied in future work.
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2.2.2. Robot Arm Control and Exploration Procedures

As the primary mobile component, the robot arm is controlled in order to carry out
two main actions—the first is to approach the object with the visual feedback and the
second is to implement haptic explorations such as compression, surface following, or
contour following based on the haptic feedback.

After the robot approached the object and the contact position and forces were ob-
tained, the next position to be explored was derived. As proposed in [28], a geometrical
method was used, by which, a force F′N was used to make sure the contact normal force
is under control and a virtual force F′T is used to ensure that the robot arm moves for-
ward following the surface of the object. Then, the direction of a guiding force FG was
obtained based on the correcting force F′N and current contact state, for the surface or edge
following actions. The next exploration location Pnext was decided upon with a velocity
parameter, which can decide the exploration speed. After the next exploration location was
obtained, the control signals for each joint were calculated following the inverse kinematics
of the arm.

For the compression action control, the robot arm is required to move along the normal
direction of the object surface. For this task, the contact tip was controlled to move along
the normal force direction for a distance L. During the process, the forces at the first contact
( f1) moment and after it moved L ( f2) were recorded and the stiffness was calculated by
f2− f1

L at this location. To increase the reliability of the obtained stiffness, it was calculated
repeatedly at five places and the average was computed. For the contour following, the
process was similar to the surface following the action—the only change required was to
locate the contact tip at the edge of the object.

These exploration procedures were carried out to extract the physical properties of
the contacting object as supplementary to visual features. Specifically, the surface friction
and roughness were obtained through the surface following, while the contour following
action gave insights into the external surface curvature, which can also be used for 3D
reconstruction. Furthermore, since the objects used in this work were soft, the compression
action was required to obtain the average stiffness.

2.3. Features Fusion with GCN

With the vision-related and haptic-related features extracted, a method that can in-
tegrate the multi-modal features was required for an improved object recognition perfor-
mance. Traditional neural networks generally process Euclidean structured data, but there
are a lot of data without rules in real life, such as topology, knowledge graphs and so on,
as well as the haptic features obtained. They are not translation invariant, so traditional
CNNs or RNNs are not suitable for processing this type of data.

As the research continued, graph neural networks (GNNs) have been proposed to deal
with non-image data or so-called graphs. A graph represents the relationships (edges) be-
tween a set of entities (nodes) and has three basic attributes, node attributes, edge attributes,
and global attributes, as shown in Figure 2. Xiao et al. summarized and generalized the
existing models of graph neural networks to provide a generic structure [23]. Seenivasan et
al. tried to use a graph network for surgical scene understanding [29].

Since the experimentally obtained haptic data often have characteristics such as low
dimensionality and data irregularity, GNNs can be used to analyse such data. Many
related methods have been proposed in recent years. The following methods are available:
graph generative adversarial networks (GAN) [30], graph auto-encoders (GAE) [31], graph
attention networks (GAT) [24], and graph convolution neural networks (GCN). In this study,
the GCN method was selected, which is a cleverly designed method to extract features
from graph data, and can then be used to perform node classification, graph classification,
and link prediction on the graph data.
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Figure 2. (a) The coloured circles represent node attributes, the lines between two circles represent
edge attributes, and the whole graph represents the global attribute. In (b,c), there are directed and
undirected edges to distinguish different graphs. The edges can be directed, where an edge e has a
source node vsrc and a destination node vdst. In this case, information flows from vsrc to vdst. They
can also be undirected, where there is no notion of source or destination nodes, and information
flows in both directions.

Thus, a graph convolution model was built, and specifically, the network has twelve
layers. The first layer uses GCNConv convolution, the second layer uses BatchNorm for the
normalization function, the third layer uses ReLU for the activation function, and the fourth
layer uses TopKPooling for the downsampling function. These four layers are combined
together as one block, with a total of three blocks. A general overview of the network is
shown in Figure 3.

Norm TopKPoolingSAGEConvEmbedded 
Graph

Figure 3. This figure shows the overview of the graph convolution model. These 4 layers form one
block of the network, and in total, there are 3 blocks with the same layers.

For the integration task based on the GCN, the obtained visual features through
the deep network and the interpreted haptic features need to be modelled to a graph as
G = (N, E), among them N = {ni}, are the nodes representing the features vector incor-
porating all the multi-modal features (ni = [T, V]), E =

{
eij
}

, and eij is the edge weight
between the nodes.

For this purpose, first, the data were projected into Euclidean space and the Euclidean
distance between every two nodes was calculated. The calculated Euclidean distance
was fed into the sigmoid non-linear activation function (which presents the value of the
Euclidean distance between [0–1]) and its output was used as the edge weights between
the nodes. The vector representation of the edges is shown in Equation (1) .

E = Concat(
n=C2

r

∑
n=1

σ(
√
(x2 − x1)2 + (y2 − y1)2)) (1)

where r represents the total number of nodes, C2
r represents the number of combinations

between r nodes, σ represents the sigmoid non-linear activation function, (x2, x1) and
(y2, y1) represents the x and y coordinates of two nodes projected into a two-dimensional
linear space, respectively. The Concat operation represents the stitching together of nodes
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and edge weights between nodes to obtain a C2
r -dimensional vector.

The global attributes (g) are determined by a vector of points (N) and a vector of
edges (E) together. A learnable parameter λ is assumed to represent the weight of the point
vectors and 1− λ is the weight of the edge vectors. At first, λ = 0.5 is assumed, and the
value of λ changes with the number of training iterations. The global vector g is defined as

g = (λ)N + (1− λ)E (2)

After defining the point features, edge features and global features, the entire graph is
encoded, and the encoded features are shown in Equation (3).

G′ = E ‖ N ‖ g

G = MLP(G′)
(3)

where G′ ∈ <(g+E+N) is the concatenated representation of g, E, and N; MLP ∈ <128×(g+E+N)

is one linear transformation which embeds the spatial relation information (g + E + N)
into a 128-dimensional representation, and transforms G′ into the scalar G.

After the GCN modal has been decided, the edge weights connecting the nodes need
to be trained and learnt. For this purpose, the features {ni} of the proposed spatial modality
graph are refined iteratively l times as follows:

n(l+1)
i = n(l)

i + σ(W(l)(∑
i 6=j

α
(l)
ij e(l)ij )) (4)

where n(l+1)
i ∈ <D indicates the feature of the ith graph node at time step l, and α

(l)
ij is the

learnable normalized edge weight between node i and j at time step l, which is given by:

αl
ij =

exp(eij)

∑k 6=j(eij)
(5)

The weights αij will be decided through training. Formally, the loss is defined using
the cross entropy (CE) loss, during the learning process. The proposed graph G changes
dynamically during reasoning from one iteration to another, to make it easier to understand,
Figure 4 is shown. The final output nl of the iterative reasoning module is fed to the
classification module to classify M candidate objects (shown in Figure 1).

...

vector representation vector representation vector representation

Figure 4. The five nodes in the figure represent the fused visual and haptic features. The line between
every two nodes is used as the edge weight. Take vertex ni and vertex nj for example, at step: 0, the
edge weight between these two nodes is eij. The vector of node ni has no information interaction,
its feature representation is still original (in blue). At step: 1, the edge weight eij is added with a
new learnable normalisation parameter αij (the colour of the line from node ni to the another node
represents a different normalisation parameter), node ni starts interacting with the other nodes and
the weight parameter is updated. Its representation will change to different colours, as shown in the
right figure. The cycle continues until the step: l (l = 50) is completed.
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3. Experimental Validations

The proposed method has been experimentally tested using an integrated robot plat-
form. To better verify its advantages, deceptive and relatively complex tasks were designed.

3.1. Robot Platform and Task Description

An experimental robot platform was assembled, which mainly consists of an Aubo i3
robot arm with a 6-axis force-torque sensor attached, a 3D printed hemisphere contact tip,
a Realsense D435i RGBD camera, and different objects for validation. The software system
was built based on ROS (www.ros.org (accessed on 23 December 2022)) in the Ubuntu
system. The PC communicates with the force-torque sensor through the Ethernet, with a
200 Hz refresh rate under ROS. Meanwhile, to deal with soft objects, which can deform
during haptic interaction, real-time force-torque feedbacks are essential. The feedbacks
are further used to calculate contact locations and forces, which are used for position and
velocity control of the robot arm. Specifically, the tactile sensing toolbox (TST) introduced
in [32] was used for obtaining the necessary data at 100 Hz.

Regarding the tasks, the method was proposed to recognise the objects at satisfied
accuracy with multiple sensing modalities. When detection results (such as confidence)
that are obtained through the deep learning method using solely visual feedback are not
satisfactory, additional perception strategies with extra features are required. New actions
that extract features which belong to another sensing modalities will be executed. For
example, when different objects have similar appearances, but have varied fillers, or are
made from different materials, classifying the objects with only visual feedback is likely
to fail. In such situations, features such as stiffness or surface friction will be more useful
for recognising the object. For this purpose, the robot will be guided by vision to reach the
object and carry out haptic explorations to extract the required features such as stiffness,
surface friction, etc. With the proposed fusion method based on GCN, the visual features
and haptic features are incorporated for improved object recognition. Moreover, to evaluate
the advantages of the proposed integration method, a Conv1D method and a Bayesian
filter were used as the comparisons during the experiments.

3.2. Objects Creation and Vision Model Training

For recognition tasks, different sets of objects were created. Moreover, objects with a
similar surface and appearance but different interior materials (such as organs) were used
to make visual perception more difficult. Meanwhile, the objects were soft and able to
deform when force was applied during haptic interactions. As can be seen in Figure 5, all
the objects are soft, for objects 0 and 6–9, the same soft cube was used with different fillers
such as plasticine, silicone, and sponge.

Figure 5. This figure shows the objects that were created for experiments. As can be seen, they are
soft, and no. 1–5 are cuboid, cylinder, eraser, paper box, and black foam, respectively. While no. 0 and
6–9 are different cubes, no. 0 is the original cube, and no. 6–9 are cubes with different fillers covered
with the same stiff paper. The interior fillers are silicone, plasticine, soft plasticine, and sponge. The
object-* is filled with white sponge and has a metal object inside.

www.ros.org
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The visual data of the objects were obtained through the D435i camera and labelled
manually. In total, 1000 pictures were used for training and 600 for validating. After
training the data for 500 epochs, the F1, recall–precision curves, and the mAP of each
object were obtained. As shown in Figure 6, for objects such as the cuboid, paper box, or
cylinder, which are unique, the average precisions are very high, with the highest being
0.989. However, for the created cubes that have a similar appearance, the average precision
is only 0.502, which is not satisfactory for practical usage.

Figure 6. The validation results of YOLOv5 network after 500 epochs with 600 pictures. The mAP
of all classes is 0.717. The accuracy and F1 score of the cubes with different fillers are relatively low
(the lowest is only 0.301 and average is 0.502) due to their similar appearances. This indicates the
necessity of adding haptic-related features for perception.

3.3. Implementation Procedures

After the vision perception modal was obtained, to verify the effectiveness of the
proposed fusion method, a number of controlled experiments were carried out. The
following steps were taken to implement the experiments, and Figure 1 can be referred for
more details.

1. Initialise all the required variables. Check whether the robot has returned to the “work
position”; if no, return it to that position. If yes, move it to the “vision position” and
detect the object using the RGB data through the obtained YOLOv5 model, and record
the results (confidence score, boxes and object identity).

2. Check if the maximum confidence exceeds the pre-set threshold; if yes, output the
corresponding object identity. If no, detect the reaching position of the object with the
RGBD data and calculate the control angles for the robot arm joints.

3. Control the robot arm to reach the object surface (“touch position”). Implement the
compression action at five random locations and record the force changes. Then,
return the robot to the top middle of the object to carry out the surface following
within the object surface and record the contact forces and locations. After that,
calculate the average stiffness and surface friction (mean and standard deviation).

4. Normalise the collected features to fix the data between [0,1]. Carry out the data
embedding with the normalised data and feed the embedded data into the GCN net-
work, which is then connected with a three-layer MLP classifier. Using the classifier to
process the integrated features, output the object identity with the highest probability.
More details will be introduced in the following sections.

5. Check whether the new confidence is satisfied. If “yes”, inform that the object has
been detected successfully and print out the result. If “no”, return to the first step
and repeat the perception process. In either case, the robot arm must return to the
“work position”. Please check the Supplementary Video S1 for more details about
the experiemnts.
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3.3.1. Data Processing

The vision perception model was introduced in Section 2.1 and the results including the
confidence score, bounding boxes, and object class were obtained. The haptic explorations
were introduced in Section 2.2, which extracted the stiffness, surface friction, and roughness
of the object. To visualise the haptic features, and to prove that they are not regular
Euclidean data, 500 samples for each feature of object no. 6–9 were recorded and plotted
in Figure 7. Then, the vision and haptic fusion method based on the GCN was used to
integrate the multi-modal features before the data were required to be processed.
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m
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Figure 7. This figure shows the raw data of the haptic features extracted through the haptic explo-
rations using the robot platform, 500 samples for 4 objects, and 125 per object. In practice, the values
of the haptic features change as the object changes. For example, when the robot tries to detect the
stiffness of an object, the larger the resistance to the compress force, the larger the stiffness. As shown
in the figure, the obtained stiffness values for the same object is a straight line with certain vibrations
due to the noise of the arm and sensor. Stepwise changes can be seen, showing the variation of the
stiffness of different objects. The data samples also indicate that the haptic features are not structured
and linear.

After all the features were obtained, a data matrix D with a size of S ∗ 6 (S is the
number of all samples) was constructed, in which the attributes in the first five columns
included confidence, bounding box, object stiffness, surface friction and roughness, and
the attribute in the sixth column was the object identity (ID). For a better view, examples
of the features values are shown in Table 1. After that, the features values were required
to be normalised to map the original data to a normal distribution with a mean of 0 and a
standard deviation of 1.

Table 1. Sample example of feature values for each object.

Object I Confidence Bounding Box Stiffness Surface Friction Roughness

0 0.85 (0.96,0.45,0.58,0.69) - - -
1 0.90 (0.36,0.65,0.21,0.47) - - -
2 0.87 (0.18,0.57,0.38,0.79) - - -
3 0.88 (0.26,0.35,0.88,0.69) - - -
4 0.95 (0.06,0.25,0.58,0.79) - - -
5 0.638 (0.66,0.25,0.38,0.59) 0.753 0.255 0.091
6 0.394 (0.16,0.55,0.61,0.87) 10.014 0.394 0.108
7 0.301 (0.38,0.47,0.68,0.59) 12.059 0.052 0.034
8 0.468 (0.36,0.65,0.78,0.89) 6.817 0.114 0.056
9 0.708 (0.16,0.05,0.88,0.49) 1.859 0.034 0.052
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To explore the optimum number of nodes in this model, experiments were carried
out. The recognition results when using different number of features are shown in Table 2.
During the experiments, first, the visual features were all used; then, one haptic feature was
fused; after that, two haptic features were fused; and finally, all the three haptic features
were fused. As shown in the table, with the fusion of haptic features, the accuracy rate
increased. On the other hand, when all the haptic features were used, first, one visual
feature was added, and then, two visual features were fused. As a result, when all the
visual and haptic features were used, the recognition accuracy rate was the highest (up
to 0.95).

Table 2. The recognition results when using different number of features.

Accurary Confidence Bounding Box Stiffness Surface
Friction Roughness

0.72 X X X - -
0.73 X X - X -
0.73 X X - - X
0.80 X X X X -
0.82 X X X - X
0.83 X X - X X
0.63 X - X X X
0.62 - X X X X
0.95 X X X X X

As mentioned in Section 2.3, the features were integrated using a GCN modal G = (N, E);
among them, N was the features vector of the five nodes representing both the vision and
haptic features. To train the GCN modal, the five obtained features were extracted from
D(St, (1˜5)) as learning samples; D(St, 6) as the ground truth object label, St represents the
data number for training.

In this paper, the PyTorch deep learning tool was used to assist in the training of both
the YOLOv5 modal and the GCN model, and the NVIDIA GeForce RTX 3080Ti graphics
card was used for GPU acceleration during training. For training the GCN model, the
Adam optimizer was used, the batch size was set to 32, the learning rate was set to 0.002,
the rest of the parameters were set to default, and the number of epochs was set to 50. The
training and test loss of the model are shown in Figure 8.
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Figure 8. This figure shows the training result of the GCN modal. The peach line represents the
train loss and the green line represents the test loss. As seen from the figure, the train loss decreases
sharply in the first 25 epochs, and slowly in the last 10 epochs until the loss value reaches 0.0098 after
40 epochs. The test loss decreases sharply in the first 20 epochs, and the loss value reaches 0.13 after
45 epochs, and the loss value of the last 3 epochs increases slightly.
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3.3.2. Object Recognition Tests

In order to verify the robustness and advantage of the proposed method, object recog-
nition tests were carried out with a simple convolutional network (Conv1D) and a Bayesian
filter for comparisons.

First, a control experiment was designed, in which only the network structure was
modified from the graph neural network to a three-layer Conv1D network, while the
other parameters were unchanged. The three-layer Conv1D network parameters are
[[32, 64, 3, 2], [64, 128, 3, 2] and [128, 32, 2, 1]], respectively. After setting up the network archi-
tecture, the same configuration as the GCN modal was used for training, and the number
of epochs for training was set to 50. After training, the analysis results were plotted and
are shown in Figure 9. As shown in the figure, the average accuracy increased from 0.502
(vision) to 0.85 with the Conv1D method, and 0.95 with the proposed GCN modal using
50 testing samples for each object.

Moreover, a Bayesian filter, and KNN and SVM methods were utilised as the control
methods, which were trained using the same training samples. With the same testing sam-
ples, the resultant recognition accuracies were 0.83, 0.81, and 0.82, respectively, which were
similar with the Conv1D method (detailed experimental results are shown in Table 3). This
also proves that the proposed method had a better performance. However, the Bayesian
method has a better real-time performance and can be extended to an improved interaction
method with an information-gain approach in future work.

Table 3. Resultant recognition accuracy of different methods.

Method Accurary

SVM 0.82
KNN 0.81

Bayesian filter 0.83
Conv1d Model 0.87
Graph Model 0.95
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Figure 9. This figure shows the testing results of the GCN and Conv1d modal, with the left axis
representing the training loss and the right axis showing the recognition accuracy. As seen from
the figure, the train loss of the GCN modal decreases sharply in the first 25 epochs, and slowly in
the last 10 epochs until the loss value reaches 0.0095 after 40 epochs. The train loss of the Conv1d
model decreases sharply in the first 10 epochs, and the loss reaches 0.0518 after 45 epochs. From
the comparison, it can be concluded that the GCN model has three advantages: (1) the initial loss is
lower, (2) the model converges more quickly, (3) the total loss is lower.
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Additionally, with the feedback from both vision and haptics, it is possible to acquire
extra information of the object. For object-*, which has a metal object inside, its stiffness
map was captured through the help of a vision guide and compression action. As shown
in Figure 10, grids were drawn to make it easier to see the location of the metal object. In
practise, the robot follows the visual guide to reach the initial position, and during the
procedure, it relies on it to correct the location error. It can be seen that the stiff object inside
the object was located, which proves the potential of using haptic exploration to locate
interior objects with a distinctive stiffness that cannot be seen directly.

Figure 10. Picture on the left is the inner view of the object-*, picture in the middle shows the grids
drew on its surface. The picture on the right shows the stiffness map of object-* represented with a
heat-map. The values inside the picture are the stiffness at each location. During the test, the grids of
0–4 and 0–7 (vertical) were compressed. Compared with the left picture, it can be seen that the robot
was able to locate the stiff object inside the sponge through haptic exploration and a vision guide.

However, there were several wrong detections for the objects 0 and 6–9. They were
considered to be caused by the unsteadiness of the robot arm and the force-torque sensor
during the movement and data collecting procedures. Furthermore, more features will
be added to improve the robustness of the model and increase recognition accuracy and
universality for more objects. This can be carried out by adding more haptic exploration
actions and features extracted with other sensing modalities.

3.4. Perception for Adaptive Force Control

This recognition method based on the fusion of vision and haptics can help the robot to
classify objects more precisely and obtain additional physical information, such as stiffness
or friction. In practise, this information can be further used to realise adaptive force control.
For instance, the information can help the robot to decide the correct holding force when
using a soft gripper with controllable grip force (like the hand shown in [33]), which will
help to avoid damage to the object while avoiding slippage. To verify this, a corresponding
experiment has been carried out.

As shown in Figure 11, the soft cubic box was used as the object and a DH-AG95
gripper was used to hold the box. The gripping force is controllable using the gripper with
an impedance control method, and the force applied is divided into 20% to 100% of the
maximum permissible force. The degree of closure of the gripper can also be controlled.
The maximum permissible force has been calculated to be 30 N (on one side) when the
closure degree is 30% of the maximum stroke (95 mm).

As mentioned in Section 3.2, the mean stiffness of the box was obtained to be
1.92 N/mm. Therefore, when the holding force is set to 20% (6 N) and the degree of
closure is fixed to 30% (28.5 mm in total and 14.25 on one side) of the maximum stroke, the
deformation of the object should be close to 3mm (due to the hardware limit, the smallest
force is 20% of the maximum). As the force increased, the deformation of the box became
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larger, as shown in (b) and (c) of Figure 11. However, due to the holding location on the
object, although the force increased, there was a smaller deformation change in parallel to
the holding direction, while the defamation perpendicular to the holding direction became
larger (c). This result shows that the perception of the stiffness and holding location can
help the gripper to apply the right force and degree of closure.

Figure 11. These figures show the deformation of the soft cubic box under different holding forces
using the DH-Ag95 gripper. The degree of closure was fixed to 30% (28.5 mm in total and 14.25 on
one side) during the test. The yellow lines represent the deformation of the box under different forces,
and the red dot lines express the deformation of the box under 20% of maximum force.

4. Conclusions

In this work, an object recognition method integrating vision and haptics has been
proposed. Moreover, it has been validated using an assembled robot platform with testing
and comparative methods, and the results verified that the proposed method had a better
performance. Despite the promising results, improvements are necessary to extend its
robustness and universality due to the fact that the objects used are limited in numbers and
classes. For this purpose, the addition of new features and other sensing modalities will be
the main focus in the next steps. Another limitation of the proposed approach is that the
type of contact during haptic exploration is point contact, which limits the data volume
and reliability during sampling because only one set of data is obtained at each step and it
is difficult to guarantee that contacts occur at the same location during each exploration.
This can be improved by using soft tactile arrays or multiple contact tips, which will be
envisioned. Moreover, in-depth research of the GCN model will be carried out. As the
volume of samples becomes larger, information protection will be added, and extension
methods such as injective aggregation and de-noising aggregation will be used in future
work [34].

With the integration of vision and haptics, the perception of deformable objects and
the localization of foreign bodies inside the object are available, which can be used to locate
internal tumours inside the organ. Moreover, the control manner of manipulators can be
extended to not only position (decided by visual feedback), but also force (magnitude and
direction decided by haptic feedback), or both. This can be used for surgical operations and
intelligent manufacturing. Taking this as a foundation, by adding other types of sensory
information, the perception ability of robots can be closer to that of humans; however, this
requires the accuracy of each sensing module to meet the requirements.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomimetics8010086/s1. Video S1: Vision-touch.mp4.
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34. Dong, W.; Wu, J.; Zhang, X.; Bai, Z.; Wang, P.; Woźniak, M. Improving performance and efficiency of Graph Neural Networks by
injective aggregation. Knowl.-Based Syst. 2022, 254, 109616. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TOH.2016.2571690
http://dx.doi.org/10.1109/TOH.2016.2612635
http://dx.doi.org/10.1177/0278364920918299
http://dx.doi.org/10.1007/s00138-021-01251-0
http://dx.doi.org/10.1177/0278364919887447
http://doi.org/10.5281/zenodo.4679653
http://dx.doi.org/10.1007/s10514-015-9425-4
http://dx.doi.org/10.1007/s10514-019-09896-7
http://dx.doi.org/10.3390/biomimetics7020068
http://dx.doi.org/10.1137/130914218
http://dx.doi.org/10.3390/biomimetics7040171
http://www.ncbi.nlm.nih.gov/pubmed/36278728
http://dx.doi.org/10.1016/j.knosys.2022.109616

	Introduction
	Materials and Methods
	Vision Perception Model
	Haptic Explorations
	Primary Work
	Robot Arm Control and Exploration Procedures

	Features Fusion with GCN

	Experimental Validations
	Robot Platform and Task Description
	Objects Creation and Vision Model Training
	Implementation Procedures
	Data Processing
	Object Recognition Tests

	Perception for Adaptive Force Control

	Conclusions
	References

