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Abstract: The hand is involved very deeply in our lives in daily activities. When a person loses some
hand function, their life can be greatly affected. The use of robotic rehabilitation to assist patients
in performing daily actions might help alleviate this problem. However, how to meet individual
needs is a major problem in the application of robotic rehabilitation. A biomimetic system (artificial
neuromolecular system, ANM) implemented on a digital machine is proposed to deal with the
above problems. Two important biological features (structure–function relationship and evolutionary
friendliness) are incorporated into this system. With these two important features, the ANM system
can be shaped to meet the specific needs of each individual. In this study, the ANM system is used
to help patients with different needs perform 8 actions similar to those that people use in everyday
life. The data source of this study is our previous research results (data of 30 healthy people and
4 hand patients performing 8 activities of daily life). The results show that while each patient’s
hand problem is different, the ANM can successfully translate each patient’s hand posture into
normal human motion. In addition, the system can respond to this difference smoothly rather than
dramatically when the patient’s hand motions vary both temporally (finger motion sequence) and
spatially (finger curvature).

Keywords: robotic control; computational intelligence; evolutionary learning; self-organizing learning

1. Introduction

The hand, a delicate design, is one of the most important structures of the human body.
Whether its function can work normally will greatly affect our quality of life. However,
in the real world, some people may lose part of their finger functions due to external
factors (such as work accidents, car accidents, surgery) or internal problems (such as aging,
genetic diseases, infections, strokes), which might affect the quality of life of patients.
How to help these people regain their normal activities has become a very important
issue. For patients, proper and timely rehabilitation plays a key factor. However, the loss
of function is different for each hand patient, resulting in different rehabilitation needs
for each individual. Even the same patient may need different rehabilitation treatments
at different times. Facing this problem, how to meet the rehabilitation needs of each
individual is a large challenge. Without a doubt, human-assisted patient rehabilitation is
one of the best solutions. However, this method still has its inherent disadvantages, such as
considerable labor costs and the inevitable possibility of human negligence. Robots, with
motion controllability and measurement reliability, can more or less help to solve some of
the above problems [1].

An analytical review of the literature on the advantages and disadvantages of using
robots for rehabilitation can be found in [2–4]. There is a considerable amount of research on
the use of robotics in rehabilitation. Some studies focus on utilizing robots for upper-body
daily activities, while others focus on lower-body walking gaits. The following literature
review only highlights relevant research on data gloves (or robotic fingers) and hand
exoskeleton devices (or prosthetic hands). Many researchers have developed their data

Biomimetics 2023, 8, 76. https://doi.org/10.3390/biomimetics8010076 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8010076
https://doi.org/10.3390/biomimetics8010076
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://doi.org/10.3390/biomimetics8010076
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8010076?type=check_update&version=2


Biomimetics 2023, 8, 76 2 of 20

gloves to collect and analyze data on people’s fingers in various everyday activities [5–11].
These data are then used to design relevant assistive robots. Unfortunately, there is currently
no unanimous set of rules and procedures for developing these data gloves. The main
difference between them is not only the difference in the sensor materials used but also
the difference in the functions emphasized. In addition, the number of sensors used in
each glove is also different. Some scholars designed a data glove with several times more
sensors than any of the above studies and applied it to explore the characteristics of human
grasping [12]. On the contrary, some other scholars use relatively few sensors to achieve the
same data collection results [13]. In general, too few sensors have the problem of collecting
insufficient data. On the contrary, if there are too many, it may have problems such as
mutual interference of sensors and insufficient space for sensors. In general, the location of
a sensor may greatly affect the accuracy of its collected data. In response to this problem,
some scholars try to optimize the arrangement of sensors in different ways [14]. Not only
does each glove use a different number of sensors, but the placement of the sensors can
also vary widely. Every data glove has its specific design and features and, of course, has
its pros and cons. The above studies emphasize the use of data gloves for data collection
and analysis. In addition, some other studies have emphasized its application in clinical
research [15–17].

In the field of finger-controlled robotics research, there are currently many types
of robotic arms with grasping (gripping) capabilities [18]. If divided from the source
of power, it includes vacuum, pneumatic, electric, and hydraulic. In addition to the
different power sources mentioned above, the arms may also have different numbers
of jaws. At present, most robots are designed with hard materials, but there are still
some robotic arms that choose to use relatively soft materials [19]. Moreover, generally
speaking, the control of the movement of the robotic fingers is accomplished through
close contact, but there are also a group of scholars who control the movement of the
fingers by remote control [20]. Each design has special features suitable for the various
fields of application and different needs.

In the field of robotic rehabilitation, another line of scholars starts from the direction
of the exoskeleton of the hand (or prosthetic hand). Research in this line hopes to integrate
advanced technologies in different fields (such as sensors, actuators, mechanical structures,
motion theory, artificial intelligence, algorithms, and control) to assist impaired patients
to restore their motor ability [21–23]. However, these advanced devices are designed
with pre-set ideas and thinking, or it has been pre-determined to solve some specific
problems [24]. However, as previously mentioned, the rehabilitation needs of each hand
patient at each stage are different. Even more challenging is that in some cases, regardless
of how hard patients try, they are still unable to perform movements that healthy people
can easily perform in daily life. In such a case, the role that rehabilitation can play is
limited. How to bridge the finger-action gap between hand patients and healthy people
in daily life is a major issue. It is, thus, the software system that might play a very
important role. Unfortunately, the development of today’s software systems is still based
on how to emphasize the direction of programmatic design. In this direction, people will
be committed to using symbols to represent people and things in computers, and then
use some symbol manipulation methods (i.e., algorithms) to solve specific problems. The
problem challenging the software world is very similar to that of hardware (i.e., it is difficult
to make specific adjustments to a problem). Faced with this problem, artificial intelligence
(or the so-called soft computing) acts as a bridge to deal with some of these problems.

This study hopes to establish a system with an autonomous learning capability that
can provide some kind of assistance to users with special needs in a self-adjusting way. The
ANM system is a biologically motivated system that captures the close structure/function
relationship of biological systems [25,26]. This research team has previously successfully
demonstrated that it has sufficient autonomous learning ability to learn to control the
walking of a quadruped robot [27], the serpentine motion of a snake-like robot [28], and
the human-like rehabilitation movement of a robot arm [29]. These actions are mainly
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achieved by adjusting and controlling the rotation angle and starting time of different
motors by the ANM system. Unlike the above-mentioned research, this study attempts to
superimpose the output signals of the ANM system to generate a wave pattern that controls
finger bending. Our goal is to bridge the gap in daily life finger movements between hand
patients and healthy individuals through the self-learning capabilities of the ANN system
that we demonstrated previously (i.e., building a customizable prosthetic finger control
system). However, it should be added here that the current research stage of this study
is that the control of the prosthetic finger system is verified under a simulated platform,
rather than under a physical operating environment.

2. Materials and Methods
2.1. The Architecture of the ANM System

As mentioned above, the purpose of the whole study is to build a bridge between
the actions of patients and healthy people. To achieve this goal, the ANM system must be
able to make appropriate adjustments according to individual needs (that is, transduce the
patient’s actions into healthy people’s actions). This adjustment is accomplished through
two types of neurons with different functions. One type is a neuron with a gradual
transformation function (called information-processing neurons, IP neurons), and the other
type is a neuron with a function of controlling (selecting) other neurons (called control
neurons, CN neurons). The former is responsible for transducing a series of spatiotemporal
signals into another series of spatiotemporal signals, while the latter selects appropriate
information-processing neurons that engage in signal transduction. Only information-
processing neurons selected by control neurons are allowed to engage in input/output
transduction. The ANM system combines these two types of neurons into a single, closely
integrated architecture (Figure 1).

Figure 1. The architecture of the ANM system.

2.2. Information Processing Mechanism of an IP Neuron

The information processing mechanism of IP neurons is motivated by two physiolog-
ical hypotheses (evidence) [30–33]. One is that a neuron’s internal dynamics control its
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firing behavior. The other hypothesis is that the cytoskeleton may be where information
processing occurs. Physiological evidence shows that the cytoskeleton is composed of
many different types of components (i.e., microtubules, microfilaments, neurofilaments),
which are connected by microtubule- or neurofilament-associated proteins (in this study,
we collectively refer to these proteins as MAPs). In the ANM system, this study hypothe-
sizes that the cytoskeleton plays a role in integrating different spatiotemporal signals and
transforming them into a cascade of spatiotemporal signals. The cytoskeleton is abstracted
as a two-dimensional grid structure (Figure 2). The intra-neuronal dynamics of cytoskeletal
neurons are simulated with two-dimensional cellular automata. The information process-
ing about the cytoskeleton in this study is based on three assumptions. The first is that
the entire cytoskeleton has three different types of basic constituent molecules that play
the role of signal transmission. Each type of molecule has a different transmission speed
and different degrees of influence on each other. The second assumption is that the system
has two types of enzymes (readin and readout) that serve as the input–output interface of
the cytoskeleton. The third assumption is that different signals can influence each other
through MAPs.

Figure 2. A simulated two-dimensional grid structure of an IP neuron.

The whole operation process is as follows. When an external signal is sent to a readin
enzyme on the cytoskeleton of a neuron, it will activate the cytoskeletal component at the
same location (note: if there is no molecule in that place, the signal activated by the readin
enzyme is lost). The activated cytoskeleton component will further activate its adjacent
components of the same type (note: adjacent cytoskeleton components of different types
will not be activated). By analogy, it will, in turn, activate the same type of cytoskeletal
components (i.e., generate a signal flow). For example, when an external signal is sent to the
readin enzyme at location (2, 4), a signal flow of the c3 components starting from location
(2, 4) to location (8, 4) will be activated. However, the above-mentioned signal flow will
not have any influence on any other adjacent cytoskeletal components of different types.
However, if there is a MAP that links two different types of cytoskeletal components, it will
have some degree of influence (note: the degree of influence is asymmetric). Therefore, if
the c1 component at (4, 7) is activated, it can affect the c3 component at (4, 8) through MAP.
Similarly, if the c3 component at (4, 8) is activated, it can affect the c1 component at (4, 1)
through the MAP connecting them. However, the former has a greater influence on the
latter (that is, it is easy to stimulate it to generate signal flow). In contrast, the latter only
increases its activation of the former to a certain extent. The above assumption is that the
interaction between two adjacent components of different types is asymmetric. In addition,
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we assume that different types of components transmit signals at different speeds. In
summary, one type of element transmits at the slowest speed but has the highest activation
value for other types of cytoskeletal components. The other transmits the signal at the
fastest speed but has the lowest activation value for other types of cytoskeletal components.
The transmission speed and activation value of the third type of component are between
the former two. When a cytoskeletal signal passes through a readout enzyme, it changes the
activation state of that enzyme. If another type of signal affects the readout enzyme through
the MAP for a short period, the neuron will fire. Of course, if an activated readout enzyme
is not stimulated for a period, its activation state will gradually decay over time. Before
any learning, the cytoskeleton configuration of each IP neuron is randomly determined.
Because of this, each neuron differs in how its initial signals flow, how they interact with
each other, and how they receive input and output signals. Through evolutionary learning,
the above settings will be changed accordingly (the details are explained in Section 2.5).

2.3. Information Processing Networks

The previous section introduced the operation mechanism of an IP neuron. In the
following, we introduce the entire network and its relationship with each other. In the
current implementation, this study assumes the system is comprised of 400 IP neurons.
These neurons are equally divided into eight subnets (each subnet consists of 50 neurons),
forming a competing network. Each of the eight subnets has a neuron with similar intra-
neuron and inter-neuron relationships (we call it a bundle), as described above. These
400 IP neurons can be regarded as 50 bundles if we divide them from the perspective of the
internal structure and external connections of similar neurons across subnetworks. From
the perspective of evolutionary learning (selection, replication, mutation), these are a group
of neurons with similar intra-neuron structures and inter-neuron connection patterns. All
evolutionary learning occurs only in different subnets of neurons belonging to the same
bundle. This feature is important for facilitating evolutionary learning. As mentioned
earlier, one of our goals in the system is to capture biological-like structure/function
relationships. That is, when the structure of a system changes slightly, its function (or
behavior) changes gradually. With this property, given the same input, neurons with similar
intra-neuron structures should behave similarly.

2.4. Control Networks

Although current technology is quite developed and advanced, however, how we
form and store memories is still a mystery that has not been fully solved. It is generally
believed that the hippopotamus is the main location of long-term memory. The control
structure of this study is motivated by the parallel, sequential, and hierarchical structure of
the hippopotamus memory structure. Some related literature can also be found in [34]. In
the ANM system, the CN neuron plays the role of controlling IP neurons to engage in input–
output transduction. The control mechanism is that the synaptic connections between a
reference neuron and cytoskeletal neurons are facilitated if they fire at the same time. The
later firing of the reference neuron will cause all the cytoskeletal neurons controlled by
it to fire. In Section 2.3, we already introduce the entire IP network, which can also be
divided into 8 competitive subnets (or into 50 bundles of neurons). As mentioned above,
this study assumes that not all IP neurons will participate in signal transduction (note:
only IP controlled by CN neurons are allowed to participate). The entire IP network is
controlled (selected) by two layers (high and low) of CN neurons. Each low-level CN
neuron is responsible for controlling a bundle of neurons (this connection relationship is
fixed so that it will not change as the number of learning times increases). Each high-level
CN neuron is responsible for controlling (selecting) several low-level CN neurons (the
selections are not fixed and will change as the number of learning times increases).

The two-level CN neurons, thus, form a hierarchical control architecture whereby
activation of a higher-level CN neuron will fire all lower-level CN neurons controlled by it.
In turn, the firing of one lower-level CN neuron will fire all IP neurons in the same bundle
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(i.e., neurons in different subnets have similar intra-neuronal structures and inter-neuronal
connections). The connections between high-level reference neurons and low-level layers
of reference neurons change during learning. Figure 3 provides a simplified picture (only
two competing subnets are shown, each with 50 IP neurons).

Figure 3. Two-level hierarchical control architecture.

2.5. Evolutionary Learning at the Level of IP Neurons

In the beginning, the internal structure of each IP neuron and the connection between
neurons are randomly determined (the C1, C2, and C3 signal transmission components on
the cytoskeleton, MAP, readin, readout, and the connection with the input relation). Each
cycle of evolutionary learning repeats the following three steps until learning is stopped:

1. Evaluate the suitability of each subnet;
2. Select the subnet with better performance;
3. Copy and mutate from a better-performing subnet to a poorer subnet. The copy

and mutation step occurs between the same bundle of IP neurons (the copying and
mutation of C1, C2, and C3 signal transmission components on the cytoskeleton, MAP,
readin, readout, and pattern of connections with input).

2.6. Evolutionary Learning at the Level of CN Neurons

As described in Section 2.4., the ANM system controls IP neurons through two layers
of CN neurons (that is, only neurons selected by CN neurons are allowed to process
input/output information). Evolutionary learning occurs between high-level and low-
level to generate different combinations of IP neurons (note: the connection relationship
between low-level CN neurons and IP neurons will not change during learning). In the
beginning, the low-level CN neurons selected by each high-level CN neuron are randomly
determined. Each cycle of evolutionary learning repeats the following three steps until
learning is stopped:

1. Evaluate the fitness of IP neurons selected by high-level CN neurons (via low-level
CN neurons);

2. Select high-level CN neurons with better performance;
3. Copy and make mutations change from high-level CN neurons with better perfor-

mance to relatively poor high-level CN neurons. The copy and mutation step occurs
in the combination of low-level CN neurons selected by high-level CN neurons.
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3. Application Domain

In this section, we first explain the experimental daily actions that we selected. We
then show how to link the inputs and outputs of the ANM system to the problem domain
(hand movement data). Finally, we illustrate how to perform a fitness assessment.

3.1. Experimental Daily Actions

In this study, 8 of the 32 people’s daily life actions listed in [35] were selected as the
experimental actions of this study, as shown in Figure 4. The first action is to make a gesture
of holding a wine bottle but not touch any object (to be referred to as virtual bottle holding),
while the other 7 actions have actual contact with objects. These seven actions are holding
a wine bottle, holding a water bottle, holding a mug, squeezing toothpaste, holding a ping
pong ball, holding a marble, and manipulating the mouse.

Figure 4. Eight daily actions.

As mentioned earlier, the data used in this study were derived from the previous
research of this team. In that study, we made an induction glove and then asked 30 people
with healthy hand actions as well as 4 hand patients to perform the above 8 actions (note:
these subjects were all right-handed). We add here that all data collection in that study
was performed with care. Before the experiment and after a period of the experiment, the
research team conducted a timely reliability and validity analysis on each sensor to ensure
the accuracy of the data. The method we adopted was to use a protractor from 0 to 90,
and then use 15 degrees as a measurement angle interval to make 6 angle lines. For each
angle, we bent the camber sensor to align with the predetermined angle and calculated the
difference. For each angle value, we repeated the test 5 times to ensure that the angle value
collected by the curvature sensor was correct. However, it is emphasized here that the
focus of this article is not to analyze the data of these patients, but to achieve the purpose
of making actions similar to healthy people through autonomous learning. Therefore, this
study here only hopes to present the data of the patients without further analysis of these
data. If it can be proved that there are some differences in the data of these patients, the
ANM system can be used to narrow this gap. This is one of the main purposes of using this
data glove in this study.

Figure 5 shows the time-series data of 8 movements of five fingers of healthy hands.
Figure 6 shows the value of the maximum curvature of each action during the action. From
Figure 6, we can see that among the five fingers, the middle finger has the largest curvature
value, the two adjacent fingers (index finger and ring finger) have the next largest, and the
thumb and little finger have the smallest.
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Figure 5. Time-series data of 8 movements of five fingers in each movement of healthy hands.

Figure 6. The maximum curvature values of five fingers of healthy hands.

Figure 7 shows the time series data of 4 hand patients. Clinically, these four patients
all had a history of “squeeze injury” in their hands. After a long period of doctor treatment
and patients’ rehabilitation, some of their hands still had the sequelae of finger stiffness,
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meaning that these fingers cannot be fully bent or extended. These four patients had
two issues. The first issue was that everyone’s five fingers had different degrees of stiffness.
The second issue was that different actions had different requirements for the degree of
finger bending. For example, it requires a relatively large curvature of the finger movement
when people need to perform a rough grasping action (for example, holding a bottle).
When these two issues are put together, we can see that each patient showed different
finger movements for each action and the degree of finger stiffness was also quite varied
(Figure 7). Taking virtual bottle holding as an example, the curvature of the fingers of the
four patients varied considerably. For some patients (p1 and p2), the index finger and ring
finger were even more curved than the middle finger (note: generally speaking, the middle
finger of a healthy person is the most curved of the five fingers).

Figure 7. Cont.
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Figure 7. Time-series data of 8 actions of 4 hand patients. (a) Virtual bottle holding; (b) holding a
wine bottle; (c) holding a mug; (d) holding a water bottle, (e) squeezing toothpaste; (f) manipulating
mouse; (g) holding a marble; (h) holding a ping-pong ball.

3.2. Input/Output Interface

The ANM system consists of 8 competing subnets (each has comparable intra-neuronal
structures and inter-neuronal connections). Figure 8 shows the input/output interface of
one of the eight subnets (the remaining 7 subnets have the same input/output interface).
The main purpose of the whole system is to transduce the patient’s five-finger action data
into five-finger action data, similar to that of healthy people. In terms of input, the time-
series finger data of a certain movement of a patient will be sequentially fed to the ANM
system at a fixed time interval (there are 50 records for each movement, and each record
has the curvature data of 5 fingers). In terms of output, all IP neurons are divided into
five categories, each corresponding to the control of a certain finger. A total of 5 temporal
output data are required for five fingers.

Figure 8. Input/output interface of one of the eight subnets.

3.3. Fitness Function

As mentioned above, each subnetwork of the ANM system has 50 IP neurons. These
neurons are equally divided into five groups according to the classification of the five
fingers. The firing behavior of each group of IP neurons represents the manipulation control
of a certain finger. In the present implementation, we use the time difference between
two adjacent firing neurons of the same group to represent the degree of finger curvature
control. This study further hypothesizes a sigmoid-like waveform relationship between
the time difference and the degree of finger curvature control. In other words, the value of
the degree of finger curvature control increases exponentially with the increase in the time
difference. After many attempts, we decide to use the formula shown in Equation (1). For
example, suppose the time interval between two neuron firings is 0.051205 milliseconds. If
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we enter this value into Equation (1), we obtain a value of 4.6 (as shown in Equation (2)).
If a new waveform is generated shortly after one waveform, the two waveforms will be
processed in a tandem superimposed manner. A double-peak waveform is formed at the
two peaks, and the overlapping area in the middle will be superimposed. The waveforms
generated by the firing behavior of the neurons in the same group are superimposed to
form a relatively large waveform (i.e., the action controlled by the curvature of the finger).

the degree of finger curvature control = (
1

1 + e(−2× ∆t)
− 0.5) × 2× 90 (1)

the degree of finger curvature control = (
1

1 + e(−2× 0.051205)
− 0.5) × 2× 90 = 4.6 (2)

The ANM system superimposes (transduces) all the waveforms generated from the
50 input records into time-series data of hand activities. The final waveform (the time-
series data) will be contrasted with the time-series data of healthy subjects. The fitness is
measured as the difference (called loss) between these two time-series data, as shown in
Equation (3). Loss represents the sum of all the curvature differences of all fingers of the
patient and the healthy person during the action. The smaller the loss value, the better
the fitness of the system. When the loss value is divided by 50-time points for 5 fingers, it
represents the average value of the difference in finger curvature (to be referred to as loss),
as shown in Equation (4).

loss = ∑
i

∣∣∣∣∣ 50

∑
j=1

(
Hij − Pij

)∣∣∣∣∣ (3)

where Hij and Pij represent the curvature data of healthy and patient, respectively; I = thumb,
index, middle, ring, or little finger.

loss =
loss

(50× 5)
(4)

4. Experiments

As mentioned earlier, the purpose of this study is to establish an autonomous learning
platform to assist patients to make actions similar to healthy people. However, we note
that each patient has different hand problems. Therefore, the learning platform must prove
that the time series data of a patient can be successfully translated into those of healthy
people. In other words, the platform must show that it can figure out how to translate
between two different time series data through autonomous learning. At the present stage,
it can be called a success if the system is capable of completing the above-mentioned
transduction. Furthermore, humans are not machines. Even if it is the same action, people
do it more or less differently every time. One is the difference in the degree of bending
of each finger during actuation, and the other is the difference in the timing of finger
movement. Therefore, we must further explore whether the output of the system shows
a smooth or drastic change when this difference occurs. The following experiments are
divided into two parts: adaptive learning and disturbance tolerance. Adaptive learning
is to let the ANM system learn to transduce the actions of each patient into the actions of
healthy people. Fault tolerance is to test the output of a long-term learning system in the
face of different spatiotemporal disturbances to previously learned data.

4.1. Adaptive Learning

We have shown the data of 8 actions of 4 patients in Figure 7. For each patient’s action,
the system must learn to convert it into the data of people with healthy hands (Figure 5).
A total of 32 experiments were performed for 4 patients and 8 actions. Each experiment
was performed independently. Figure 9 shows the learning results for each experiment. It
shows that the system can reduce the loss value to a fairly low level. The learning process
showed that the system can greatly reduce its loss value in the early learning stage and
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become comparatively slow as the number of learning times increases. For example, as
shown in Figure 9, in the early stages of learning, the system can reduce the loss value
by about 80% in less than 10 rounds of learning (note: each round is 32 learning cycles in
the system). In contrast, in the later stages of learning, the system may need many more
rounds of learning to reduce the loss value a little. However, the most important thing
is that it does not show the stagnation of learning. The findings of this study show that
when the system is given a sufficiently long number of learning times, it can still exhibit
progressive learning. In other words, if we continue to extend the learning time, the ANM
system has the opportunity to move closer to completing the assigned task.

Figure 9. Learning progress of the ANM system on the conversion of 4 patient actions.

The results showed that regardless of which of the eight movements, the ANM system
is able to successfully translate each patient’s hand movements into movements close to
those of healthy people after a period of training. Taking patient 1’s virtual bottle holding
action as an example, its initial loss value is 27.0 degrees. This means that the curvature
of each finger differs by 27 degrees at each time point between patient 1 and the healthy
subjects. In other words, the movement of patient 1 is quite different from that of the healthy
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subjects (the average difference is 27 degrees). With the help of the ANM system, the loss
value can be reduced to 3.9 degrees (85% improvement). Through the help of the ANM
system, we can reduce this difference to 3.9. In other words, if patient 1′s finger actions are
assisted by the control of the ANM system, it can make actions close to those of a healthy
person. Likewise, with the assisted control of the ANM system, the difference between
patient 2 and the healthy subjects could be reduced from 22.8 degrees to 5.3 degrees, patient
3 from 22.0 degrees to 3.5 degrees, and patient 4 from 27.0 degrees to 4.0 degrees. As shown
in Table 1, the result shows that each patient can perform actions close to those of healthy
people with the assistance of the ANM system control (the average difference in curvature
of each patient from healthy people is within 5 degrees).

Table 1. The loss value before and after learning.

P1 P2 P3 P4

Before After Before After Before After Before After

Virtual bottle holding 27.0 3.9 22.8 5.3 22.0 3.5 27.0 4.0
Holding a wine bottle 18.2 3.4 21.8 3.4 21.4 3.9 21.1 3.5
Holding a water bottle 19.0 3.0 16.8 2.1 15.3 2.8 24.4 3.4

Holding a mug 35.3 4.7 27.2 3.5 28.7 4.8 32.1 2.7
Squeezing toothpaste 15.8 3.6 18.6 3.3 10.6 3.4 14.5 3.2
Manipulating mouse 23.2 2.3 21.7 3.0 22.4 2.4 25.3 1.9

Holding a marble 14.3 2.2 16.7 2.1 14.8 2.8 15.1 2.1
Holding a ping-pong 10.4 1.4 15.5 1.4 17.0 1.6 17.2 1.4

Table 2 shows the difference between patients (including between each patient and
healthy people) before learning using the ANN system. From Table 2, we can see that
the gap between them (in terms of loss value) is quite large. However, after learning, the
difference between patients and healthy people significantly improves (Table 3). While the
gap between patients does not improve as much as the gap between patients and healthy
people, it does show some improvement. This result is that ANM systems are designed to
improve the gap between each patient and healthy people (not between patients). However,
each patient still has its sequelae that are different from others. In this way, they will all
improve toward the same learning goal, but there is no doubt that each still has its problems.

Table 2. The difference between patients (including between each patient and healthy people) before
using the ANN system (in terms of loss value).

Virtual Bottle Holding Holding a Wine Bottle
p1 p2 p3 p4 Healthy p1 p2 p3 p4 Healthy

p1 0 9171 5014 6712 6742 p1 0 6666 5746 6753 4550
p2 0 6600 7870 7686 p2 0 5282 5988 5441
p3 0 5840 6327 p3 0 5675 5359
p4 0 6370 p4 0 5270

healthy 0 healthy 0
Holding a mug Holding a water bottle

p1 p2 p3 p4 healthy p1 p2 p3 p4 healthy
p1 0 7327 8448 5811 8821 p1 0 4316 4379 3922 4756
p2 0 6533 4810 6794 p2 0 3854 4849 4310
p3 0 5367 7266 p3 0 4511 3835
p4 0 7533 p4 0 6112

healthy 0 healthy 0
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Table 2. Cont.

Virtual Bottle Holding Holding a Wine Bottle
Squeezing toothpaste Manipulating mouse

p1 p2 p3 p4 healthy p1 p2 p3 p4 healthy
p1 0 5765 6669 5759 3948 p1 0 5138 4763 5131 2601
p2 0 5551 6181 4661 p2 0 3768 4337 3879
p3 0 5129 2661 p3 0 4228 4259
p4 0 3625 p4 0 4307

healthy 0 healthy 0
Holding a marble Holding a ping-pong ball

p1 p2 p3 p4 healthy p1 p2 p3 p4 healthy
p1 0 7243 5313 6941 3587 p1 0 6324 5365 6372 5809
p2 0 5150 7094 4174 p2 0 4846 6227 5425
p3 0 7022 3698 p3 0 6562 5600
p4 0 3775 p4 0 6326

healthy 0 healthy 0

Table 3. The difference between patients (including between each patient and healthy people) after
using the ANN system (in terms of loss value).

Virtual Bottle Holding Holding a Wine Bottle
p1 p2 p3 p4 Healthy p1 p2 p3 p4 Healthy

p1 0 5044 3328 2992 862 p1 0 5802 5065 5923 549
p2 0 3958 3195 1325 p2 0 5225 4906 1135
p3 0 3152 884 p3 0 4568 1180
p4 0 989 p4 0 884

healthy 0 healthy 0
Holding a mug Holding a water bottle

p1 p2 p3 p4 healthy p1 p2 p3 p4 healthy
p1 0 4936 5364 5765 1178 p1 0 3490 4033 5454 719
p2 0 4630 5626 869 p2 0 3403 4513 643
p3 0 4598 1196 p3 0 4310 934
p4 0 684 p4 0 1140

healthy 0 healthy 0
Squeezing toothpaste Manipulating mouse

p1 p2 p3 p4 healthy p1 p2 p3 p4 healthy
p1 0 4677 6126 5405 905 p1 0 6999 6194 6834 338
p2 0 6429 5462 819 p2 0 6163 6936 358
p3 0 4916 854 p3 0 5297 389
p4 0 804 p4 0 356

healthy 0 healthy 0
Holding a marble Holding a ping-pong ball

p1 p2 p3 p4 healthy p1 p2 p3 p4 healthy
p1 0 6712 5149 7606 563 p1 0 5801 4826 5124 578
p2 0 5892 6409 519 p2 0 5097 6047 755
p3 0 7738 697 p3 0 6817 602
p4 0 528 p4 0 470

healthy 0 healthy 0

Figure 10 shows the actuation of five fingers per patient (time series output) with the
assistance of the ANM system. That is, after the conversion of the ANM system, the general
results of each finger operation of each patient are very similar. This result proves that
the ANM system can successfully transduce each of the original movements of the four
patients into the movements of healthy people.
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Figure 10. Time-series outputs of the five fingers of each patient with the control of the ANM system.
(a) virtual bottle holding; (b) holding a wine bottle; (c) holding a mug; (d) holding a water bottle;
(e) squeezing toothpaste; (f) manipulating mouse; (g) holding a marble; (h) holding a ping-pong ball.
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To understand the learning performance of the ANN system, the work of this study
is further compared with one of state-of-art systems learning systems—MLP (multilayer
perceptron). Table 4 shows the comparison of the learning results of the ANN system
and MLP. It shows that in a total of 32 cases (4 patients with 8 actions), there are 21 cases
that the ANN system performs with a better learning effect than MLP (about 67.7%). We
noted there are still 11 out of these 32 cases (about 32.3%) where MLP has a better learning
performance than the ANN system. As most of the neurons in the ANN system have
internal dynamic processing functions, the amount of computational time required to
simulate this type of data processing with a digital computer is relatively large (especially
using a sequential processing machine to simulate a parallel processing system). This
greatly limits the number of neurons that the ANN system can currently simulate, resulting
in some cases where its performance is not as good as MLP. In contrast, MLP (or other
state-of-art systems) can use relatively large networks for information processing because
there is no such limitation. When more neurons with intrinsic motivation are allowed in the
ANM system, its information processing repertoire will increase accordingly. We add that
the ANM system has been successfully demonstrated in different, previous experimental
domains where it had the capability of continuous learning [27,28]. As a consequence,
when the processing speed for simulating these operations is significantly improved in the
future, ANN systems can most likely perform better than MLPs by allowing more neurons
with intrinsic dynamics.

Table 4. Comparison of the learning performance of the ANN system and MLP (in terms of loss
value). The red color in the table highlights that MLP has a better performance than the ANN system.

Virtual Bottle
Holding

Holding a
Wine Bottle

Holding a
Mug

Holding a
Water Bottle

Squeezing
Toothpaste

Manipulating
Mouse

Holding a
Marble

Holding a
Ping-Pong Ball

ANM MLP ANM MLP ANM MLP ANM MLP ANM MLP ANM MLP ANM MLP ANM MLP

p1 861 1278 548 823 1177 947 760 919 905 639 338 1361 562 1510 578 519
p2 1325 1504 854 674 869 2061 643 934 818 401 358 984 518 1051 754 455
p3 884 1324 986 639 1195 1276 706 1053 853 757 388 1088 696 1121 601 493
p4 988 1295 883 680 684 712 841 1137 803 512 355 601 527 1623 469 592

4.2. Noise Tolerance

We all know that in real life, no one performs the same action the same every time.
More precisely, the degree of curvature of the fingers and the sequence of finger actions
will be more or less changed each time. In dealing with this problem, the approach adopted
in this study is to use the ANM system after substantial learning, then make a series of
changes to each action data of each patient, and compare the results under different degrees
of change. It should be noted that the so-called serial change means that in the degree
of change, we adopt a method of gradually increasing the range, but the real value is
generated randomly. The ranges of change currently used are 1, 2, 3, 4, 5, 10, 15, 20, 25,
30, 35, 40, 45, and 50%. The so-called random here refers to using a random number to
determine whether to change the size and order of the curvature of the fingers within the
specified range of variation. In addition, the sequence of random numbers used is also
randomly determined. In this case, although the magnitude of the change is the main factor
of the change, the results are not proportional. However, we can be sure that when the
number of tests increases, the results are positively correlated.

The results (Figure 11) show that the loss value of the ANM system varies correspond-
ingly as the degree of patient action changes increases. However, it must be emphasized
that the rate of increase does not present a steep change, but a near-smooth increase.
Among the eight actions, when compared with the other five, the three actions (holding
a mug, holding an empty wine bottle, and squeezing toothpaste) increase faster. This is
because these three actions generally require a relatively large finger bend, especially when
holding a mug (sometimes the finger bend is required to exceed 90 degrees). For patients,
these actions are relatively difficult to achieve. Thus, they are more sensitive to noise. In
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addition, grasping marbles and table tennis are two that require relatively low curvature.
Correspondingly, the sensitivity to noise is also low. For patients, these actions are also
relatively difficult to achieve because of the large curvature requirements of the action.
Therefore, their sensitivity to motion disturbances is relatively high. In contrast, catching
marbles and table tennis are two actions that have relatively low curvature requirements,
so they are relatively less sensitive to noise. Based on the above results, the ANM system
used in this study can successfully transduce the patient’s actions into those of healthy
people. As the degree of noise increases, the output of the system (loss value) also changes
smoothly (that is, there is a gradually changing relationship between the two).

Figure 11. The loss value of the ANM system increases correspondingly as the degree of patient
action changes increases.

5. Discussion

In daily life, a pair of healthy hands allows us to easily and naturally complete the
actions we want. However, we can only truly understand how inconvenient it is when
people lose the function of their hands, even if only a small part. How to help these
people to recover hand function as much as possible is an important issue. In recent
years, advances in kinematics, motion theory, sensors, and artificial intelligence algorithms
have brought hope for people to use hand-assistive devices to restore the motor ability of
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impaired patients. If the above technologies are well elaborated together, it may be possible
to meet the needs of some patients. However, how to design a software and hardware
system to meet the needs of different patients at different times is an open issue.

In this study, the four patients all have a history of clinically so-called “crushing
injury” in the hand. Each of them had different hand injuries and sequelae and, therefore,
considerable variation in the degree to which the fingers were bent. These patients all
have their needs for using machines to assist individuals, and how to meet these needs is a
problem that cannot be solved by sophisticated design in advance. We note that the data
used in this study were not collected through very high-precision instruments. Without
a doubt, the data themself cannot 100% reflect the real hand information of the patients.
However, the purpose of this study is not to apply it to a patient immediately, but to
demonstrate its ability to transduce one time-series data point into another time-series
data point. Under such considerations, the authenticity of data may not be the focus of
the discussion, but rather whether a successful transduction mechanism exists. This study
calls it a “success” if appropriate transduction can be made under any two different sets
of time series data. Furthermore, the ultimate goal of this research is not only to close
the gap between the movement of patients and healthy people but also to hope that this
gap can change smoothly as the movement of patients varies. Under this premise, when
discussing the pros and cons of a system, the combination of different time series should
be considered instead of judging only by the results of a single time series. In response to
this problem, the current system performance is analyzed under the assumption that the
data are disturbed in different degrees of time and space. Therefore, this study designs two
different experiments, one of which is about adaptive learning and the other about fault
tolerance. According to the author’s understanding, the current research in this direction is
quite limited.

In this study, the ANM system with autonomous learning capability is used to suc-
cessfully transduce each patient’s movements into those of healthy people. This means
that the system has a customization function, which can be used to generate the necessary
input/output conversion according to individual needs. It must be emphasized again
here that the entire non-linear conversion mechanism is completed by the system in a
self-changing manner. Furthermore, this study not only shows that the learning curve of
the whole system presents a smooth improvement method, but also, more importantly,
its learning presents a situation of continuous improvement (there is no phenomenon of
complete stagnation of learning). This result suggests that when we allow the system to
learn long enough, it can move toward complete problem-solving.

In addition to proving that the system can meet individual needs (customization),
a very important point is that it must be capable of dealing with noise. In other words,
when the patient’s motion changes slightly, the output of the system can show relative
changes (rather than produce drastic changes). This study explored this issue by varying
the magnitude of finger flexion and the timing of finger actuation in patients. The results
show that the system can gradually change as the level of disturbance increases.

6. Conclusions

The rich dynamics of the ANM system used in this study enable us to use evolutionary
learning mechanisms to deal with relatively complex problems. The richness of the system
is based on the internal dynamics of neurons and is achieved in a functionally comple-
mentary manner through two types of neurons with different characteristics (information
processing and control neurons). In terms of the internal dynamics of the system, the
ANM system is completed through three elements: weak interaction, redundancy, and
compartmentalization [25]. In addition, the multilayered structure of the system makes it
possible to experiment with the interplay of evolutionary changes at different levels [26]
(i.e., evolution at one level opens up possibilities for evolution at other levels and vice
versa). Such interactions are a universal feature of living things and other complex systems.
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This study is currently only a preliminary study of finger curvature. There is no doubt
that it is not fully mature. In the future, this study should recruit more participants with
different types of hand injuries to explore the ability of system customization. In addition
to curvature research, acupressure can also be considered in the future to meet more clinical
needs and develop a wider application space.
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