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Abstract: Hydrogels, with 3D hydrophilic polymer networks and excellent biocompatibilities, have
emerged as promising biomaterial candidates to mimic the structure and properties of biological
tissues. The incorporation of nanomaterials into a hydrogel matrix can tailor the functions of the
nanocomposite hydrogels to meet the requirements for different biomedical applications. However,
most nanomaterials show poor dispersion in water, which limits their integration into the hydrophilic
hydrogel network. Mussel-inspired chemistry provides a mild and biocompatible approach in ma-
terial surface engineering due to the high reactivity and universal adhesive property of catechol
groups. In order to attract more attention to mussel-inspired nanocomposite hydrogels, and to
promote the research work on mussel-inspired nanocomposite hydrogels, we have reviewed the
recent advances in the preparation of mussel-inspired nanocomposite hydrogels using a variety of
nanomaterials with different forms (nanoparticles, nanorods, nanofibers, nanosheets). We give an
overview of each nanomaterial modified or hybridized by catechol or polyphenol groups based on
mussel-inspired chemistry, and the performances of the nanocomposite hydrogel after the nano-
material’s incorporation. We also highlight the use of each nanocomposite hydrogel for various
biomedical applications, including drug delivery, bioelectronics, wearable/implantable biosensors,
tumor therapy, and tissue repair. Finally, the challenges and future research direction in designing
mussel-inspired nanocomposite hydrogels are discussed.
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1. Introduction

Hydrogels are three-dimensional (3D) networks of crosslinked hydrophilic polymers,
which are similar to soft tissues owing to their porous structure, high water content,
and controllable properties. Therefore, hydrogels have a great potential in biomedical
applications [1–9]. However, hydrogels usually have weak mechanical properties and
cannot meet the requirements for different biomedical applications. Incorporation of
functional nanomaterials into hydrogels can introduce various new properties to the
hydrogels [10,11]. In addition, hydrogels can also effectively improve the retention effect of
nanomaterials in vivo [12,13]. Nanomaterials can be classified into three main types based
on their dimensionality (size and morphology): zero-dimensional (0D), one-dimensional
(1D), and two-dimensional (2D) [14–16]. The 0D nanomaterials are solid, porous, and
hollow structures, such as mesoporous silica nanoparticles (NPs) [17], metal-organic
frameworks [18], hydroxyapatite NPs [19], iron oxide magnetic NPs [20], silver NPs [21],
and conductive polymer-based NPs [22]. The 1D nanomaterials are nanowires, nanorods,
or nanotubes, with a large length-to-diameter ratio, such as carbon nanotubes (CNTs) [23],
gold nanorods (Au NRs) [24], and cellulose nanofibers (CNFs) [25]. The 2D nanomaterials
are nanosheets with monolayer or multilayer structures and relatively large diameter-
to-thickness ratios, such as graphene oxide (GO) [26], clay [27], talc, phosphate-based
nanosheets, and metal carbides and nitrides [28]. However, it is generally difficult to
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achieve a uniform distribution of nanomaterials in hydrogels due to their weak interactions
with the polymer chains.

In nature, mussels can form a strong adhesion to various substrates in wet or underwa-
ter conditions, which relies on their secreted adhesive proteins containing a catecholic amino
acid (3,4-dihydroxy-L-phenylalanine, DOPA) [29]. This unique adhesive performance of
mussels simulates the mussel-inspired chemistry, which provides a mild and biocompat-
ible approach in material surface engineering due to the high reactivity and universal
adhesive property of the catechol group [30]. The catechol group consists of two adjacent
hydroxyl groups that are attached to an aromatic ring [31], which enables the formation
of catechol-mediated interactions, such as to π–π interactions, cation-π, hydrogen bond,
DOPA-quinone coupling interaction, catechol-metal coordination, catechol -borate complex-
ation, and Michael addition or Schiff-base reactions [32–37]. Since Messersmith et al. [38,39]
reported mussel-inspired multifunctional polydopamine (PDA) coatings, materials con-
taining catechol groups have been widely developed. The catechol-derivative groups
possess high activities and binding affinities that can control the interfacial chemistry of
nanoparticles to improve their dispersion in aqueous conditions [40]. Mussel-inspired hy-
drogels have also been widely studied for applications in regenerative medicine and tissue
engineering [41,42]. For example, catechol groups can endow hydrogels with excellent
adhesive properties, enabling the hydrogel to bind closely to the surrounding tissues after
implantation without the need for surgical adhesives [43]. Furthermore, catechol groups
can promote interactions between hydrogels and cells owing to their good cell affinity,
which is conducive to the growth of biological tissues [44,45]. Moreover, catechol groups
can scavenge free radicals, endowing hydrogels with an anti-oxidative ability [46,47]. Thus,
the combination of catechol groups and functional nanomaterials is crucial for developing
multifunctional hydrogels.

This review summarizes the research progress on mussel-inspired nanocomposite
hydrogels based on 0, 1, and 2D nanomaterials, and their biomedical applications, includ-
ing drug delivery, bioelectronics, wearable/implantable biosensors, tumor therapy, and
tissue repairing biomaterials (Scheme 1). We focused on the major design parameters of
each nanocomposite hydrogel with an emphasis on the principle behind the selection of
the nanofiller, its function when added to the matrix, the gelation mechanism, and the
physicochemical, mechanical, and biological properties of the resulting nanocomposite
hydrogels (Table 1). Furthermore, we discussed the current challenges of mussel-inspired
nanocomposite hydrogels and provided prospects for future research.
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Table 1. Representative nanocomposite hydrogels.

Class Nano-
Materials Modification Strategy Properties Behaviors References

0DM HA NPs Surface coated by PDA Nanograde solid gold particle Osteogenic activity [48–50]
MNPs Surface coated by PDA Nanograde solid gold particle Magnetothermal conversion [51,52]

silica NPs Surface coated or
hybridized by PDA Nano-mesoporous structure Drug-loading capability [53–57]

MOF Surface coated or
hybridized by PDA Nano-Porous structure Drug-loading capability [58–60]

Ag NPs Reduced by PDA Nanograde solid gold particle Antimicrobial ability [61–64]

PDA-NPs Self-oxidized Nanograde solid gold particle Drug-loading capability,
photothermal property [65–71]

CPs NPs Hybridized by PDA Nanograde solid gold particle Electrical conductivity [72–75]

1DM CNTs Surface coated by PDA Hollow fibrous structure
with nano radial size Electrical conductivity [76–78]

Au NRs Surface coated by PDA Linear nano-rods Photothermal property [79,80]

CNFs Surface coated by PDA Cellulose nano-rods Mechanical enhancement
performance [81,82]

2DM Silicate NSs Intercalated by PDA Single or multiple layers Drug-loading capability [83–85]

Graphene oxide NSs Reduced by PDA Single or multiple layers Drug-loading capability,
electrical conductivity [86–88]

Clay NSs Intercalated by PDA Single or multiple layers Drug-loading capability [89,90]
Talc NSs Surface coated by PDA Single or multiple layers Lubricating property [91]

Phosphate-based NSs Surface coated by PDA Single or multiple layers
Drug-loading capability,
photothermal property,
photodynamic property

[92,93]

Metal carbides and
nitrides NSs Surface coated by PDA Single or multiple layers

Drug-loading capability,
photothermal property,
electrical conductivity

[94,95]

2. Mussel-Inspired 0D Nanomaterials-Loaded Hydrogels

Zero-dimensional (0D) nanomaterials have an almost identical size at the nanometer
level (i.e., <100 nm) in all three dimensions. Typical 0D nanomaterials are inorganic nanopar-
ticles, magnetic nanoparticles, metal nanoparticles, and polymer-based nanoparticles.

2.1. Hydroxyapatite Nanoparticles (HA NPs)

Hydroxyapatite (HA) is a natural bioceramic material that is an inorganic mineral
component of bone tissue. Nanometre HA refers to the nanometre-sized (1–100 nm) HA
NPs. HA NPs can be used as nanoreinforcing agents to enhance osteoconductivity of
the polymer hydrogel. In order to achieve a uniform distribution of HA NPs inside the
polymer network, a mussel-inspired strategy has been widely used to modify the HA NPs
prior to being incorporated into the hydrogel. For instance, Gan et al. [48] developed a
bilayer hydrogel to repair osteochondral defects (Figure 1a). The upper layer consisted of
a GelMA-PDA hydrogel, which served as the cartilage repair layer, and the lower layer
consisted of a GelMA-PDA/calcium phosphate (GelMA-PDA/HA) hydrogel, which served
as the subchondral bone repair layer. Consequently, the bilayer hydrogel simultaneously
promoted bone and cartilage tissue regeneration after being implanted into a full-layer
cartilage defect of a rabbit knee joint. Liu et al. [49] also prepared an injectable hydrogel
for bone repair by introducing PDA-modified nHA NPs (PHA) into a sodium alginate
(OSA)/gelatin (Gel) hybrid network (Figure 1b). The addition of PHA increased the ul-
timate compressive strength of the hydrogel. In addition, the OSA-Gel-PHA hydrogel
significantly promoted the adhesion, proliferation, and differentiation of bone marrow
mesenchymal stem cells in vitro, and also repaired bone tissue in a rabbit bone defect model.
In another study, Wang et al. [50] designed an injectable mussel-inspired nanocomposite hy-
drogel based on HA NPs, bisphosphonated poly(L-glutamic acid), and aldehyde-catechol
bis-functionalized dextronic anhydride for bone tissue engineering (Figure 1c). The cat-
echol groups, bisphosphate ligands (BPs), and aldehyde groups endowed the hydrogels
with excellent tissue adhesion, while the BP and nHA effectively promoted proliferation,
migration, and osteogenesis differentiation. The results of a rat cranial defect proved the
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bone regeneration ability of the injectable hydrogels. Based on these studies, it can be said
that mussel-inspired addition of HA NPs not only facilitates the distribution of HA NPs, to
enhance the mechanical properties of the hydrogel, but also improves cell/tissue affinity
to stimulate osteogenesis for the nanocomposite hydrogel. Therefore, the HA NPs-loaded
hydrogels could be used for hard tissue engineering for bone grafts.

Biomimetics 2023, 8, x FOR PEER REVIEW 5 of 32 
 

 

 

Figure 1. (a) Illustrative diagram for the preparation of a mussel-inspired GelMA hydrogel with in 

situ mineralization of nano-hydroxyapatite to repair osteochondral defects [48]. (b) Incorporation 

of PDA-modified hydroxyapatite nanoparticles (PHA NPs) into an oxidized sodium alginate/gela-

tin hybrid hydrogel for bone regeneration [49]. (c) Preparation of mussel-inspired bisphosphonated 

injectable nanocomposite hydrogels with adhesive, self-healing, and osteogenic properties [50]. 

2.2. Iron Oxide Magnetic Nanoparticles (MNPs) 

Iron oxide MNPs are classified as magnetic materials, and are generally embedded 

within a polymer network to achieve magnetic-based nanocomposite hydrogels that can 

remotely respond to external magnetic fields and can be used for biosensing, diagnostic, 

and actuators applications [93–96]. However, iron oxide MNPs have limited interactions 

with polymer chains, which requires surface modification prior to fabricating the hydro-

gel. The surface chemistry based on the coordination of catechol-Fe(Ш) is one crucial strat-

egy for the synthesis of magnetic-based nanocomposite hydrogels. For instance, Dai et al. 

[51] reported a catechol-Fe(Ш) coordination hydrogel composed of dopamine-conjugated 

hyaluronic acid (HA-DOPA) and iron oxide MNPs (Figure 2a). The MNPs in the hydrogel 

not only served as a structural crosslinking agent to enhance the hydrogel, but also a mag-

netothermal conversion agent for on demand release of doxorubicin (DOX). Conse-

quently, the HA-DOPA-MNPs/DOX hydrogel exhibited anticancer effects through the 

combined release of DOX and induction of hyperthermia in the tumor cells. In our previ-

ous study [52], we designed a magnetic hydrogel with a high flexibility, self-healing abil-

ity, and tissue adhesiveness by incorporating PDA-grafted-Fe3O4 NPs into a PAM hydro-

gel (Figure 2b). In short, the iron oxide MNPs-loaded hydrogels will generate magnetic 

responses and heat for drug release when they are exposed to an external magnetic field. 

Figure 1. (a) Illustrative diagram for the preparation of a mussel-inspired GelMA hydrogel with in
situ mineralization of nano-hydroxyapatite to repair osteochondral defects [48]. (b) Incorporation of
PDA-modified hydroxyapatite nanoparticles (PHA NPs) into an oxidized sodium alginate/gelatin
hybrid hydrogel for bone regeneration [49]. (c) Preparation of mussel-inspired bisphosphonated
injectable nanocomposite hydrogels with adhesive, self-healing, and osteogenic properties [50].

2.2. Iron Oxide Magnetic Nanoparticles (MNPs)

Iron oxide MNPs are classified as magnetic materials, and are generally embedded
within a polymer network to achieve magnetic-based nanocomposite hydrogels that can
remotely respond to external magnetic fields and can be used for biosensing, diagnostic, and
actuators applications [96–99]. However, iron oxide MNPs have limited interactions with
polymer chains, which requires surface modification prior to fabricating the hydrogel. The
surface chemistry based on the coordination of catechol-Fe(III) is one crucial strategy for the
synthesis of magnetic-based nanocomposite hydrogels. For instance, Dai et al. [51] reported
a catechol-Fe(III) coordination hydrogel composed of dopamine-conjugated hyaluronic acid
(HA-DOPA) and iron oxide MNPs (Figure 2a). The MNPs in the hydrogel not only served
as a structural crosslinking agent to enhance the hydrogel, but also a magnetothermal
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conversion agent for on demand release of doxorubicin (DOX). Consequently, the HA-
DOPA-MNPs/DOX hydrogel exhibited anticancer effects through the combined release
of DOX and induction of hyperthermia in the tumor cells. In our previous study [52],
we designed a magnetic hydrogel with a high flexibility, self-healing ability, and tissue
adhesiveness by incorporating PDA-grafted-Fe3O4 NPs into a PAM hydrogel (Figure 2b).
In short, the iron oxide MNPs-loaded hydrogels will generate magnetic responses and heat
for drug release when they are exposed to an external magnetic field.
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MNPs) [51]. (b) Magnetic hydrogel formed by incorporating PDA-grafted-Fe3O4 NPs into a PAM
hydrogel [52].

2.3. Mesoporous Silica Nanoparticles

Mesoporous silica nanoparticles (silica NPs) are widely used as drug delivery systems
owing to their unique properties, such as high specific surface area, large pore volume,
controllable morphology, and particle size [100–102]. Thus, various nanocomposite hy-
drogels containing silica NPs have been developed for adhesive and drug delivery. For
example, Huang et al. [53] developed an adhesive comprised of polyvinyl alcohol (PVA)
and PDA-hybrid mesoporous silica NPs (MS-PDA-NPs), which was formed based on the
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hydrogen bonding between the functional groups on MS-PDA-NPs and abundant hydroxyl
groups on the PVA chain (Figure 3a). Thus, such a mesoporous silica NP-reinforced PVA
hydrogel can be used for wound closure. A biocompatible bioadhesive was also fabricated
by embedding extra-large pore mesoporous silica NPs into polyacrylamide/polydopamine
(PAM/PDA) hydrogels [54] (Figure 3b). The incorporation of silica NPs enhanced the
mechanical strength and tissue adhesiveness to skin due to molecular interactions between
silica NPs and polymer chains. It was proved that a silica NPs-PAM/PDA hydrogel could
be used as an adhesive patch for transdermal drug delivery. Another tissue adhesive was
reported that used porous silica NPs to reinforce catechol-functionalized polyethylene
glycol [55] (Figure 3c).
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Figure 3. (a) Schematic of preparing a PVA entangled porous nanoadhesive system of PDA/silica
with an ROS scavenging/angiogenesis ability for efficient skin wound closure [53]. (b) Schematic
of adhesive hydrogel patch consisting of PAM/PDA hydrogels embedded with extra-large pore
mesoporous silica nanoparticles (XL-MSNs) [54]. (c) Fabrication of a catechol-containing polyethy-
lene glycol-based adhesive (PEG-DA) formulated with silica NPs to control the released amount
of H2O2 [55]. (d) Fabrication of PDA-coated mesoporous silica NPs that can be stably incorpo-
rated within macroporous µRB scaffolds to allow the tunable release of transforming growth factor
(TGF-β3) [56]. (e) Schematic illustration of combination therapy based on hierarchical PGH@MGPA
composite fibers [57].

Mesoporous silica NPs are also promising drug delivery carriers. The drugs can be
loaded into the pores of the silica NPs through diffusion with minimal interference with
the biological activity of the drugs. For example, Barati et al. [56] employed PDA-coated
mesoporous silica NPs for the encapsulation of transforming growth factor (TGF-β3), and
then incorporated the TGF β3-loaded silica NPs into gelatin scaffolds to accelerate cartilage
regeneration (Figure 3d). Their results showed that the PDA coating on the surface of the
mesoporous silica NPs prevented the burst release of TGF-β3, and the sustained release
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of TGF-β3 could enhance MSC-based cartilage formation in vivo. The PDA-coated meso-
porous silica NPs were also used for dual drug encapsulation, in which glucose oxidase
was loaded inside the NPs while anoxic-activated prodrug (AQ4N) was adsorbed onto the
surface [57]. Then the drug-loaded NPs were incorporated into polycaprolactone/gelatin
to prepare a biodegradable fiber scaffold (PGH@MGPA) as an implantable drug delivery
system for synergistic cancer therapy (Figure 3e). The porous silica NPs have a high specific
surface area and strong interactions with catechol groups, thus improving the curing rate,
mechanical properties, and bonding strength of the adhesive. In addition, the porous silica
NPs degraded into soluble Si, which promoted cell proliferation.

2.4. Metal-Organic-Framework

Nanocarriers based on MOFs have received significant interest owing to their large
surface area, high porosity, and possibility of designing organic ligands for various applica-
tions. Zeolite imidazole MOF (ZIF-8), synthesized using zinc ions and 2-methylimidazole,
is one of the most widely used and promising MOFs, which can be used as a biocompatible,
degradable, and flexible drug carrier. For example, Han et al. [58] reported producing PDA-
hybridized nanosized ZIF-8 (pZIF-8 nanoMOFs), through catechol-controlled chemistry,
which possessed versatile adhesiveness, a porous structure, high stability under physi-
ological conditions, and pH-/oxidative dual-responsiveness. Thus, pZIF-8 nanoMOFs
were highly efficient for encapsulation of both bone morphogenetic protein-2 (BMP-2) and
cisplatin. Then the drug-loaded pZIF-8 nano-MOFs were assembled with PDA-modified
HA NPs on a 3D-printed gelatin hydrogel scaffold, which achieved on demand release of
the cisplatin, responding to the local tumor microenvironment to inhibit tumor growth,
which enabled the sustained release of BMP-2, to maintain effective long-term osteogenic
effects (Figure 4a). Liu et al. [59] loaded curcumin into ZIF-8 MOFs and obtained nanocom-
posite hydrogels with pH responsiveness and NIR-photosensitive drug release ability, by
incorporating curcumin-ZIF-8 MOFs into PDA-modified cellulose nanofiber hydrogels
(Figure 4b). By being co-incubated with normal buffalo rat liver cells (BRL) and liver
cancer cells (HepG2), the hydrogel had anticancer activity against HepG2 cells, but was
not toxic to normal BRL cells. In order to improve the applicability of ZIF-8 in the powder
crystallization state, and to increase the drug loading of PDA NPs, Liu et al. obtained
PDA@ZIF-8 by in situ growth of ZIF-8 on the surface of PDA NPs, and then mixing
PDA@ZIF-8 into a cellulose nanofibril (CNFs)-based hydrogel (Figure 4c). The PDA@ZIF-8
exhibited a photothermal effect from the PDA NPs, and pH-responsiveness from ZIF-8,
and therefore, the resulting PDA@ZIF-8/CNFs nanocomposite hydrogel achieved pH/NIR
radiation-dependent release of tetracycline hydrochloride [60].
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Figure 4. (a) Schematics of assembling polydopamine (PDA)-hybridized ZIF-8 (pZIF-8 nanoMOFs)
with PDA-modified hydroxyapatite NPs (pHA NPs) on a 3D printed gelatin scaffold, with dual
functions of anticancer and bone formation capabilities [58]. (b) Preparation of a ZIF-8@PCNF
composite hydrogel for on-demand drug release by responding to pH and NIR light irradiation [59].
(c) Fabrication of a PDA@ZIF-8/CNFs composite hydrogel and its drug delivery behavior upon NIR
light irradiation or under pH variation [60].
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2.5. Silver Nanoparticles (Ag NPs)

Silver nanoparticles (Ag NPs) exhibit a high thermal stability and a broad spectrum of
antibacterial activities, which has attracted much attention in the preparation of nanocom-
posite hydrogels [103]. However, the aggregation of Ag NPs results in their uneven
dispersion in a hydrogel network. Mussel-inspired PDA, with catechol and amine groups,
is considered as a reducing or stabilizing agent for preparing Ag NPs in a simple and envi-
ronmentally friendly manner, and the as-prepared Ag NPs serve as nanofillers to endow
the hydrogels with multiple functions. For example, Zhao et al. [61] prepared a hydrogel
(PDA@Ag NPs-CPHs) by incorporating polydopamine-modified Ag NPs into polyaniline-
PVA hydrogel (Figure 5a). The PDA@Ag NPs-CPHs hydrogel exhibited adhesiveness,
conductivity, and antibacterial properties, and can be used in wearable and implantable
biomedical devices. The PDA@Ag NPs-CPHs retained the antibacterial and electroactive
properties and demonstrated significant therapeutic effects on diabetic-foot wounds by
promoting angiogenesis, accelerating collagen deposition, and inhibiting wound infec-
tion. The Ag NPs can also be formed in situ in catechol-groups-modified hydrogels. For
example, a gelatin-tannic acid (Gel-TA) hydrogel was formed through a Michael addi-
tion reaction, and the silver nitrate was reduced in situ by TA to Ag NPs as crosslinking
agents [62] (Figure 5b). The hydrogel thus exhibited excellent wet tissue adhesion and
cytocompatibility, as well as antibacterial and antifungal properties.
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Figure 5. (a) Synthesis of a PDA@Ag NPs-CPH hydrogel and its applications as an epidermal sensor
and diabetic-foot-wound dressing [61]. (b) Tannin-inspired antimicrobial bioadhesives crosslinked
by silver nitrate (SN) [62].

In addition, phenol/catechol groups-chelated Ag NPs can form a dynamic redox
system, which can not only trigger hydrogel gelation but also endow the hydrogel with
long-term tissue adhesiveness. For example, a plant-inspired adhesive hydrogel was
fabricated based on a dynamic catechol redox system created by catechol-containing lignin-
chelated Ag (Ag-Lignin) NPs [63] (Figure 6a). The Ag-Lignin NPs catalyzed ammonium
persulfate to generate free radicals and initiated the polymerization of the hydrogel. The
hydrogel showed long-term repeatable adhesion because Ag-lignin NPs maintained a
dynamic balance of the catechol groups. In another study, Jia et al. [64] reported mussel-
inspired TA-Ag nanozymes by in situ reduction of ultrasmall Ag NPs with tannic acid
(TA) (Figure 6b). The TA-Ag nanozymes exhibited peroxidase activity, which triggered
self-setting of the hydrogel without external stimuli. The as-prepared hydrogel could
be used as an adhesive and antibacterial bioelectrode to detect bio-signals, and also as a
wound dressing to promote the regeneration of skin tissue, with a healing rate of up to 90%
in a rat model of full-thickness skin defect. In mussel-inspired nanocomposite hydrogels
based on Ag NPs, the catechol-containing agents not only serve as reducing agents to



Biomimetics 2023, 8, 128 9 of 31

obtain Ag NPs for achieving antibacterial ability, but also can be used to create a dynamic
redox system inside the hydrogel for maintaining long-term adhesion.
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TA-Ag nanozyme-loaded polyacrylic acid hydrogel (TA-Ag-PAA) with conductive and self-setting
properties [64].

2.6. Polydopamine Nanoparticles (PDA-NPs)

PDA-NPs, formed by self-polymerization of PDA, have been widely used in diagnos-
ing and treating diseases owing to their excellent properties, such as good adhesiveness,
anti-oxidative ability, photothermal conversion ability, drug loading ability, and biocompat-
ibility [104]. PDA-NPs with highly reactive catechol groups can improve the adhesive and
mechanical properties of hydrogels. For example, Liang et al. [65] incorporated PDA-NPs
into a dual-network of polyacrylamide and alginate, thereby enhancing the adhesive ability
of the hydrogel in a seawater environment (Figure 7a). The optimal adhesive strength
of the hydrogel in seawater can be as high as 146.84 ± 7.78 kPa. In addition, we also
prepared a cryogel for wound dressing by incorporating PDA-NPs into a chitosan (CS)
and silk fibroin (SF) hybrid network [66] (Figure 7b). The PDA-NPs endowed the cryogel
with high elasticity and flexibility, cell affinity, and strong antibacterial activity under NIR
irradiation. Consequently, the PDA-NPs-CS-SF cryogel accelerated wound healing under
NIR irradiation.

Owing to the excellent photothermal conversion ability of PDA-NPs, thermal re-
sponsive polymers such as poly(n-isopropyl acrylamide) (PNIPAM) are generally used
to develop NIR responsive nanocomposite hydrogels. For a successful example, we
designed a NIR responsive hydrogel by introducing PDA-NPs into a PNIPAM/PAM
hybrid network [67] (Figure 8a). The photothermal effect of the NIR-responsive PDA-
NPs endowed the PNIPAM-based hydrogel with pulsed drug release, NIR drive, and
NIR response-self-healing capabilities, in addition to an improved cell affinity and tis-
sue adhesion. Di et al. [68] also synthesized a nanocomposite hydrogel with excellent
durability and repeatable adhesion based on PDA-NPs, clay, and PNIPAM (Figure 8b).
The hydrogel achieved thermal-responsiveness and local controllable deformation un-
der remote NIR irradiation, owing to the phase transition and volume change of the
PNIPAM network.
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adhesive PAM-Alg-PDA hydrogel [65]. (b) Schematics of mussel-inspired PDA-chitosan-silk fibroin
cryogel as a photothermal patch for promoting wound regeneration [66].

In addition, PDA-NPs have a large number of phenolic hydroxyl groups on their
surfaces, which can be smart nanocarriers for drug loading by combining their pho-
tothermal conversion ability. In a recent report, PDA-NPs were used to load bortezomib
(BTZ) and doxorubicin (DOXO), and then the drug-loaded PDA-NPs were incorporated
into a PNIPAM-co-PAAM hydrogel (Figure 9a). The PDA-NPs served as photothermal
agents, facilitating the controlled release of DOXO to kill the tumor cells under NIR
irradiation [69]. Wang et al. [70] also used PDA-NPs as crosslinking agents for mer-
captoylated four-arms PEG (4-arms-PEG-SH) to form an injectable PDA/PEG hydrogel
for on-demand administration and chemotherapy-photothermal combination therapy
(Figure 9b). The anticancer drug 7-ethyl-10-hydroxycamptothecin (SN38) was loaded
onto PDA-NPs via π-π interactions and hydrogen bonding. Under NIR irradiation, the
PDA/PEG hydrogel achieved the controlled release of SN38 to ablate solid tumors. Using
the same method, ciprofloxacin (Cip) was loaded on PDA-NPs and then the Cip-loaded
PDA-NPs were mixed with ethylene glycol chitosan to form an injectable hydrogel (Gel-
Cip) [71] (Figure 9c). Under NIR irradiation, the Gel-Cip achieved a controlled release of
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Cip. Simultaneously, NIR irradiation activated the photothermal PDA-NPs, resulting in
local high temperatures to damage the bacterial integrity. In a mouse model of skin injury
caused by Staphylococcus aureus infection, the Gel-Cip hydrogel promoted the regenera-
tion of blood vessels and hair follicles, along with epidermal thickening and fibroblast
proliferation, with the assistance of NIR irradiation. In short, the photothermal conver-
sion ability of PDA-NPs has been widely employed for designing thermal-responsive
hydrogel to realize antibacterial, drug responsive release, and tumor killing under
NIR irradiation.
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Figure 8. (a) Incorporating PDA-NPs into a PNIPAM hydrogel to fabricate a PDA-NPs/PNIPAM
hydrogel with NIR responsiveness, self-healing, on-demand drug releasing, and adhesive
properties [67]. (b) Fabrication of a PDA-NPs and laponite-embedded nanocomposite hy-
drogel with stretchability, conductivity, dual light- and thermo-responsive, and adhesive
properties [68].
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Figure 9. (a) Schematic of a multi-stimulus responsive mussel-inspired hybrid hydrogel as a single
platform for synergistic anticancer treatment by combining PTT and multidrug chemotherapy [69].
(b) Preparation of an NIR-responsive hydrogel by using PDA-NPs as a crosslinking agent to crosslink
4-arm-PEG-SH to realize NIR-triggered drug release [70]. (c) Preparation of an NIR light-triggerable
thermo-sensitive hydrogel by mixing ciprofloxacin (Cip)-loaded PDA-NPs with glycol chitosan
(GC) [71].

2.7. Conductive-Polymer Nanoparticles

Conductive polymers (CPs) exhibit unique electronic/ionic conductivity and bio-
compatibility. These mainly include polypyrrole (PPy), poly(3,4-ethylenedioxythiophene)
(PEDOT), polythiophene (PTH), and polyaniline (PANI) [105]. The CPs are designed
in the form of nanoparticles that are then incorporated into a polymer network to form
conductive hydrogels. However, it is challenging to prepare CP nanoparticle-based hy-
drogels because the poor water solubility and hydrophobic nature of CPs has limited their
integration with hydrophilic hydrogel networks. In our group, we reported a mussel-
inspired strategy by using highly hydrophilic and active catechol groups to dope the CPs
during processing, which shed light on how to construct hydrophilic CPs nanoparticles
and prepare adhesive and conductive hydrogels. For example, a transparent, conduc-
tive, stretchable, and self-adhesive hydrogel was designed by the in situ formation of
PDA-doped-PPy nanofibrils in a polyacrylamide (PAM) network [72] (Figure 10a). The
obtained PDA-PPy-PAM hydrogel can be used in self-adhesive biosensors, to be directly
adhered to the human body to detect biosignals about human health. Inspired by the same
mechanism, Chen et al. [73] synthesized a PPy-PDA/polyacrylic acid (PAA) hydrogel,
which possessed excellent tissue adhesiveness, electrical conductivity, and antioxidant
ability (Figure 10b). The hydrogel was used as a wound dressing, as demonstrated in a
rabbit wound model. In another study, plant-derived sulfonated lignin was employed
for doping a variety of CPs to prepare hydrophilic conductive nanoparticles (CP/LS
NPs), and then the CP/LS NPs were incorporated into hydrogels [74] (Figure 10c). In
addition, the CP/LS NPs created a dynamic redox environment to maintain the balance
of catechol and quinone groups, similar to the behavior of mussels, which endowed
the hydrogel with a high and repeatable adhesiveness. This conductive and adhesive
hydrogel has the potential to be used for tissue regeneration and implantable bioelec-
tronics owing to its good electrical activity and biocompatibility. In our recent study,
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conductive and hydrophilic dPEDOT NPs were prepared by confining the polymerization
of 3,4-ethylenedioxythiophene (EDOT) with the assistance of dopamine methacrylate
(DMA) oligomer templates. The dPEDOT NPs were then incorporated into a PAM hydro-
gel, which endowed the hydrogel with high conductivity, brain-level modulus, robust
adhesiveness, and an immune-evasive ability [75]. Consequently, the hydrogel can be in-
tegrated with metallic microcircuits to form nondestructive, and conformal brain-machine
interfaces, enabling long-term and accurate electro-encephalographic signal acquisition
and communication with brain tissue (Figure 10d). In short, the introduction of mussel
inspired strategies to fabricate conductive polymer NPs can not only ensure their conduc-
tivity but also improve their integration with polymer hydrogels, which can be widely
applied in biomedical applications.
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Figure 10. (a) A transparent, conductive, stretchable, and adhesive hydrogel was formed by in-
situ formation of PDA-PPy nanofibrils in a PAM hydrogel [72]. (b) Schematic of the fabrication
processes and application of the PPy-PDA/PAA hydrogels [73]. (c) Preparation of conductive
and adhesive hydrogel based on hydrophilic and redox-active conductive-polymer/sulfonated
lignin (CP/LS) NPs [74]. (d) A bioadhesive ultra-soft brain-machine interface (BMI) was fabri-
cated based on integration of metallic microcircuits with a dopamine methacrylate-hybridized
poly(3,4-ethylenedioxythiophene) nanoparticle (dPEDOT NP)-loaded hydrogel [75].
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3. Mussel-Inspired 1D Nanomaterials-Loaded Hydrogels

Unlike 0D nanomaterials, 1D nanomaterials have a high length-to-diameter ratio
(e.g., nanotubes, nanowires, and nanofibers), and thus exhibit unique physicochemical
properties owing to their distinct structure and size effects.

3.1. Carbon Nanotubes (CNTs)

CNTs are tubular forms of carbon with diameters <1 nm and lengths ranging from a
few nanometres to microns. CNTs have been used as excellent nano-reinforcing materials
to endow hydrogels with improved electrical conductivity and mechanical properties. To
promote the uniform distribution of CNTs in the polymer network, the surface of CNTs
can be coated by catechol groups, based on a mussel-inspired functionalization strategy.
Han et al. [76] designed a conductive hydrogel with extreme temperature tolerance by
using PDA-coated CNTs as conducting nanofillers in a binary solvent system comprising
water and glycerol (Figure 11a). Thus, the hydrogel can be used in anti-freezing or anti-
heating bioelectronics and in electronic skin to collect biosignals in extreme conditions,
such as skiing, polar, and desert expeditions. Liao et al. [77] also prepared a self-adhesive,
self-repairing, and conductive hydrogel by incorporating PDA functionalized single-walled
carbon nanotubes (SWCNTs) (Figure 11b) in a supramolecular crosslinked PVA network.
The hydrogel is biocompatible, can be used as a soft strain sensor, and can be combined
with a wireless transmitter to monitor human activities (bending and relaxing fingers,
walking, chewing, and pulse rate). In addition, incorporating 1D nanomaterials into the
polymer network can manipulate the anisotropic properties of the hydrogel. For example,
Liu et al. [78] synthesized a conductive and magnetically responsive anisotropic hydrogel
using CNT-iron oxide composite NPs (PFeCNT), which mimicked the directional biological
tissues (Figure 11c). Based on the metal-ion chelation mechanism, ultra-small iron oxide
NPs were uniformly grown on the surfaces of PDA-coated CNTs in situ to form PFeCNT.
The hydrogel exhibited anisotropic mechanical and electrical properties, which had the
ability to guide the migration and growth of cells under an external electrical stimulation.
Thus, this type of hydrogel can be used as a cell culture platform to provide magnetic
and electrical signals for regulating the targeted growth of cells and tissues in biomedical
applications. In short, the catechol groups on CNTs not only facilitates their uniform
dispersion in hydrogels, but also enable the in situ growth of ultra-small nanoparticles
on their surface to realize the design of more complex materials, thus bringing more
diverse functions.

3.2. Gold Nanorods (Au NRs)

Compared with spherical gold nanoparticles, gold nanorods (Au NRs) show a lower
energy surface plasma band, which is beneficial for photothermal antibacterial and antitu-
mor therapies [106]. For example, Li et al. [79] prepared an antibacterial nanocomposite
hydrogel (PNAGA-Au@PDA) by polymerizing a monomeric solution of N-acrylamide
(NAGA) with PDA-coated gold nanorods (Au@PDA NRs). In a rat model of total skin
defect repair, the PNAGA-Au@PDA hydrogel showed the synergistic effects of targeted
binding to specific bacteria and photothermal-induced antibacterial activity of Au@PDA
NRs, accelerating wound healing without causing secondary injury to the wound during
peeling due to its excellent toughness (Figure 12a). To prevent the removal of Au NRs from
local pathology sites, Zeng et al. mixed PDA-Au NRs with a thermo-sensitive injectable
hydrogel (CGP/Alg-DA/AuNR hydrogels) composed of beta-glycerophosphate-bound
chitosan (CGP) and dopamine-modified-alginate (Alg-DA) [80] (Figure 11b). The PDA-
Au NRs can be fixed at the tumor site by the hydrogel, thus enhancing the efficacy of
photothermal therapy to significantly inhibit the growth of tumor cells under multiple
photothermal treatments.
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Figure 11. (a) Fabrication of a mussel-inspired conductive, adhesive, and anti-freezing/anti-heating
hydrogel by co-polymerization of PDA-modified CNTs with AA and AM in a glycerol-water (GW)
binary solvent [76]. (b) Schematic diagram of the synthesis process of a conductive, healable, and
adhesive hydrogel by incorporation of a conductive PDA-functionalized SWCNTs nanotube into a
dynamic supramolecular crosslinked PVA hydrogel, which can be adhered on the wrist for healthcare
monitoring [77]. (c) Schematic of preparation of an anisotropic hydrogel based on a mussel-inspired
conductive ferrofluid comprised of PDA-mediated conductive and magnetic Fe3O4-CNT nanohy-
brid (PFeCNT). Demonstration of the anisotropic hydrogel simultaneously possessing conductive,
magnetic, and self-adhesive properties [78].

3.3. Cellulose Nanofibers (CNFs)

Cellulose nanofibers (CNFs) are biodegradable, green, and eco-friendly nanoscale
building blocks for constructing high-performance nanocomposite hydrogels. For example,
Chen et al. [81] successfully prepared hydrogels with antibacterial, antioxidant, and high-
temperature resistance by using Ag NPs/TA-loaded-CNFs (Ag/TA-CNFs) to trigger free-
radical polymerization of PAA and PVA (Figure 13a). The Ag/TA-CNFs in the hydrogel
network facilitated dynamic reactions between the catechol and quinone groups, resulting
in the repeatable adhesion property of the hydrogel. Pan et al. [82] also synthesized a
guar gum (GG)-based hydrogel, which contained proanthocyanins (PC)-coated CNFs in a
glycerin-water system (Figure 13b). The PC was rich in polyphenol groups, which endowed
the hydrogel with excellent adhesive properties and an efficient UV-shielding ability. Thus,
the hydrogel can be used in non-invasive electrodes, strain sensors, and dressings. In
short, the CNFs are usually self-assembled into dense layers. The mussel-inspired strategy
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may be a simple, controllable, and effective method to prepare 3D composite scaffolds by
uniformly dispersing the CNFs nanofibers in the hydrogel’s 3D network.
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Figure 12. (a) Fabrication of nanocomposite antibacterial hydrogel with high strength and toughness
by one-pot polymerization of N-acryloyl glycinamide (NAGA) mixed with polydopamine-coated
gold nanorods (Au@PDA NRs) [79]. (b) Preparation of thermosensitive CGP/Alg-DA/AuNR hydro-
gels with photothermal activity for tumor therapy [80].
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Figure 13. (a) Design strategy of a multifunctional hydrogel by co-polymerizing acrylic acid (AA),
polyvinyl alcohol (PVA), and silver /TA-CNF in a glycerol-water binary solvent [81]. (b) Preparation
of a PC-CNF-GG-glycerol hydrogel [82].
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4. Mussel-Inspired 2D Nanomaterials-Loaded Hydrogels

The 2D nanomaterials have garnered increasing research interest since 2004 because of
the availability of mechanically stripped graphene. The 2D nanomaterials have sheet-like
shapes, with high surface-to-volume ratios (two dimensions >100 nm and an ultra-thin
layer), which gives them astounding electronic properties, ultrahigh specific surface ar-
eas, and excellent mechanical properties [107]. Typical examples of 2D nanomaterials
include silicate nanosheets, graphene/graphene-derived nanosheets, layered double hy-
droxides, and phosphate-based nanosheets, which are generally employed to prepare 2D
nanomaterials-loaded hydrogels with a variety of interesting properties.

4.1. Silicate Nanosheets

Layered silicates (also called layered alkali silicates or layered polysilicates) with skele-
tons comprised of SiO4, exhibit rich intercalation chemical reactions because of the presence
of silanol groups. For example, Chen et al. [83,84] designed a series of adhesive hydrogels
using a mussel-inspired adhesive mechanism. In their studies, silicate nanosheets induced
the oxidization of dopamine to form PDA-intercalated silicate (PDA-silicate), and then the
PDA-silicate was incorporated into the hydrogel, which led to outstanding adhesiveness
(Figure 14a,b). Li et al. [85] synthesized Janus silica nanosheets (SiO2@PDA/PMAUPy JNs)
by grafting 2-(3-(6-Methyl-4-oxo-1,2,3,4-tetrahydropyrimidin-2-yl)ureido)ethyl methacry-
late (MAUPy) onto the PDA-modified silicon spheres (SiO2 JHs) using the Pickering
emulsion method, and then the prepared Janus silica nanosheets were further applied to
prepare nanocomposite PAA hydrogels (Figure 14c). The resulting hydrogels showed
self-healing (healing ratio of 92.6%) and impressive mechanical properties (strain of
about 411.0%, stress of about 4.1 MPa), showing their potential applications as smart
flexible sensors.
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Figure 14. (a) The fabrication of multifunctional sandwich-like NF-HG based on polydopamine-
intercalated silicate nanoflakes (PDA-Silicate) [83]. (b) The formation of an underwater adhesive
and stretchable hydrogel by incorporation of PDA-Silicate nanosheets [84]. (c) Fabrication of the
SiO2@PDA/PMAUPy Janus nanosheets by using an emulsion interfacial self-assembled sol-gel
process [85].

4.2. Graphene Oxide Nanosheets

Graphene is a promising 2D material in the preparation of high multifunctional com-
posites owing to its large specific surface area, high modulus, good conductivity, and
biocompatibility [108]. However, graphene nanosheets tend to aggregate in aqueous solu-
tion, which causes an uneven distribution in the hydrogel network. Graphene oxide (GO)
nanosheets have abundant functional groups (hydroxyl group, carboxyl group, and epoxy
group), which can be evenly dispersed in an aqueous solution, and therefore GO nanosheets
are widely used for the preparation of composite hydrogels with improved mechanical
properties. However, GO nanosheets exhibit poor electrical conductivity compared with
graphene. Thus, synthesizing hydrogels with good mechanical and desirable electrical
properties at the same time is challenging. Mussel-inspired dopamine is a green reducing
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agent to obtain reduced graphene oxide (rGO) nanosheets with high compatibility with
hydrophilic polymers. Composites of conductive nanosheets and hydrogels are promising
candidates for the next generation of soft bioelectronics, which have the potential to be used
in artificial intelligence, human-computer interaction, and wearable personal healthcare
devices. For instance, Han et al. [86] reported a mussel-inspired strategy to partially reduce
GO nanosheets to conductive pGO nanosheets, and then designed a conductive hydrogel
with integrated stretchability, self-adhesiveness, and self-healablility (Figure 15a). They
demonstrated the application of the hydrogel in self-adhesive motion sensors and as self-
adhesive electrodes for stable signal detection. Jing et al. [87] also developed a stretchable,
flexible, and highly sensitive hydrogel strain sensor by incorporating pGO into a strong
and stable polyacrylic acid (PAA) network (Figure 15b). The hydrogels thus exhibited
strain sensitivity owing to an electrical pathway provided by the pGO, and detected a wide
range of human movements. Gan et al. [88] employed pGO nanosheets as templates for
the self-assembly of PEDOT to form highly conductive and sandwich-structured PSGO
nanosheets (Figure 15c). The PSGO nanosheets were rich in hydrophilic groups, which
were further incorporated into a PAM network to form a PSGO-PEDOT-PAM hydrogel with
excellent electrical conductivity and tissue adhesiveness. This hydrogel was successfully
used as an adhesive electronic skin for detecting electrocardiogram, electroencephalogram,
and electromyogram signals.
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Figure 15. (a) Preparation of a conductive, self-adhesive, and self-healable hydrogel by introducing
PDA-partially-reduced GO (pGO) nanosheets into a PAM hydrogel [86]. (b) Incorporating pGO into
a PAA network to form a mussel-inspired conductive nanocomposite hydrogels [87]. (c) Fabrication
of the hydrophilic, conductive, and redox-active sandwich-like PSGO-PEDOT nanosheet and its
incorporation into a PAM network to form a hydrogel with high conductivity, adhesiveness, and
stretchability [88].

In addition, the pGO nanosheets composite hydrogels have the potential to be used
in tissue engineering of electroactive tissues (heart tissue, skeletal muscle, and nerves).
For example, Tang et al. [109] incorporated PDA-reduced graphene oxide (pGO) into a
chitosan/silk fibrin interpenetrated network to fabricate a biopolymer-based composite
pGO-CS/SF hydrogel scaffold as a wound dressing (Figure 16a). The introduction of pGO
nanosheets enhanced the mechanical properties of the hydrogel. Second, the uniformly
distributed pGO provided an electrical pathway in the hydrogel. Third, the pGO in the
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hydrogel acted as antioxidants to remove reactive oxygen species (ROS). Consequently,
such an electroactive and antioxidative pGO-CS/SF scaffold effectively promoted wound
healing in the rat models of full-thickness skin defects. Jing et al. [110] also prepared a
self-adhesive, self-healing, and conductive hydrogel by incorporating pGO into a chitosan
(CS) network (Figure 16b). As a result, the electrical conductivity of the hydrogel was
similar to that of the natural myocardium. Furthermore, the pGO promoted the adhesion
of cardiomyocytes. The cardiomyocytes that adhered again, exhibited a high spontaneous
beating rate.
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Figure 16. (a) Preparation of a dual-crosslinked pGO-CS/SF scaffold for repairing skin wound
defects [109]. (b) Schematic of preparation of a CS-DA-GO composite hydrogel. Primary cardiomy-
ocytes derived from human embryonic stem cells were seeded onto CS-DA-GO composite hydrogels
to evaluate the biocompatibility of the hydrogels for cardiac tissue engineering [110].

4.3. Clay Nanosheets

In contrast to carbon-based 2D nanomaterials, clay nanosheets are primarily com-
posed of minerals that are present in the human body. Clay nanosheets exhibit excellent
biocompatibility and biodegradability under physiological conditions. Generally, clay
nanosheets have a layered structure with negative charges on each face and positive
charges along the edge of the nanosheet, which give them a high drug loading ability, water
stability, and enhanced interactions with biological components, such as biopolymers, pro-
teins, biomolecules, and cells [111–113]. For example, Becher et al. [114] loaded cisplatin,
4-fluorouracil, and cyclophosphamide into Laponite nanocomposite hydrogels, and then
evaluated the drug release behavior of the resulting nanocomposite hydrogels in a breast
cancer model and an ovarian cancer model. To prevent bacterial infection from occurring
on the implant surface, Wang et al. [115] prepared a multilayer film based on MMT and
hyaluronic acid (HA) for on-demand release of antibiotics (gentamicin). The films exhibited
high gentamicin loading capacities due to the high adsorption ability of the positively
charged MMT. In our group, we fabricated a tough hydrogel with repeatable and long-
lasting adhesiveness based on PDA-intercalated clay nanosheets, in which DA molecules
were partially oxidized between the confined domain space of clay nanosheets, resulting in
the retention of abundant catechol groups [89] (Figure 17a). The resulting hydrogel also
possessed a high affinity for cell attachment and proliferation, which means it can be used
as a dressing material to accelerate skin wound healing. An et al. [90] also prepared a
wet-adhesive nanocomposite hydrogel comprised of gelatin, nano-clay, and dopamine, and
they utilized the hydrogel as a mucosal dressing and drug delivery system (Figure 17b).
The hydrogel loaded with dexamethasone effectively enhanced the healing effect of an oral
ulcer, as demonstrated in a rat model of oral ulcer.



Biomimetics 2023, 8, 128 21 of 31Biomimetics 2023, 8, x FOR PEER REVIEW 22 of 32 
 

 

 

Figure 17. (a) Design strategy for the preparation of a mussel-inspired adhesive polydopamine-clay-

polyacrylamide (PDA-clay-PAM) hydrogel by the confined oxidation of dopamine [86]. (b) Fabri-

cation of a mussel-inspired Janus mucosal dressing with a tough and adhesive hydrogel composed 

of gelatin, polydopamine, and nano-clay to achieve drug release [87]. 

4.4. Talc Nanosheets 

Talc is a 2D layered, low-cost, environmentally friendly, and stable naturally abun-

dant mineral [116]. Talc nanosheets easily shear and exhibit good self-lubrication proper-

Figure 17. (a) Design strategy for the preparation of a mussel-inspired adhesive polydopamine-
clay-polyacrylamide (PDA-clay-PAM) hydrogel by the confined oxidation of dopamine [89].
(b) Fabrication of a mussel-inspired Janus mucosal dressing with a tough and adhesive hydrogel
composed of gelatin, polydopamine, and nano-clay to achieve drug release [90].
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4.4. Talc Nanosheets

Talc is a 2D layered, low-cost, environmentally friendly, and stable naturally abun-
dant mineral [116]. Talc nanosheets easily shear and exhibit good self-lubrication prop-
erties through the weak binding of the van der Waals cambium lamellar structure. In
addition, 2D talc nanosheets have high crystallinity, electrical conductivity, high ther-
mal stability, and good adsorption properties, and so can be employed as functional
nanofillers to fabricate nanocomposite hydrogels. For example, Jing et al. [91] synthe-
sized a self-healing adhesive hydrogel by adding PDA-coated talc nanosheets to a PAM
hydrogel, which is used as a strain sensor for human movement monitoring (Figure 18).
Talc-induced partial oxidation of dopamine and PDA-modified talc particles were uni-
formly dispersed in the PAM hydrogel, which significantly enhanced the mechanical and
adhesive properties of the hydrogel. When assembled as a strain sensor, the hydrogel
accurately detected various human movements, such as finger, knee, elbow bending,
and even deep breathing.
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4.5. Phosphate-Based Nanosheets

Phosphate-based 2D nanosheets, such as black phosphorus (BP), silicon phosphide,
and germanium phosphide (GeP), have received significant interest in recent years owing
to their excellent physical properties in electronic and energy devices. In addition, most
phosphate-based nanosheets can eventually be degraded in physiological environments,
and their degradation products are harmless to the human body [117–119]. Therefore,
phosphate-based nanosheets are promising biodegradable multifunctional nanomaterials
for use in therapeutic diagnostics and tissue engineering. Among them, BP has been em-
ployed in a variety of biomedical applications, including smart drug carriers for cancer ther-
apy, photothermal reagents, photodynamic therapy reagents, reactive oxygen scavengers,
and bioactive materials for bone regeneration [120–122]. For example, Xu et al. [92] syn-
thesized a conductive hydrogel by incorporating PDA-modified BP nanosheets (BP@PDA)
into a GelMA hydrogel for repairing electroactive tissues (Figure 19). Their results showed
that the PDA on the surface of the BP nanosheets not only preserved the cell affinity but
also improved the biostability of the BP nanosheets in the physiological environment.
Consequently, such a BP@PDA-GelMA hydrogel exhibited excellent biocompatibility, con-
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ductivity, and biodegradability, which enhanced the differentiation of mesenchymal stem
cells into the neural-like cells under electrical stimulation.
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Figure 19. Schematics of GelMA-BP@PDA hydrogels. The surface modification of BP nanosheets
by PDA. Incorporation of the PDA-BP (BP@PDA) nanosheets into a GelMA network. Schematic of
regulating the growth and differentiation of MSCs by conductive GelMA-BP@PDA hydrogel under
external electrical stimulation [92].

Germanium phosphide (GeP) is another emerging 2D nanomaterial, which theo-
retically exhibits higher thermodynamic stability, higher carrier mobility, and a wider
adjustable band gap than BP nanosheets [123]. Xu et al. [93] also employed PDA to
enhance the biostability and biocompatibility of GeP nanosheets (GeP@PDA), and
then prepared a biohybrid hydrogel by integration (GeP@PDA) into a horseradish
peroxidase (HRP)/H2O2 cross-linked HA-DA network (Figure 20). The resulting HA-
DA/GeP@PDA hydrogel was injectable, biodegradable, conductive, and adhesive, which
means it could regulate immune response, and promote angiogenesis and neurogenesis
to improve the recovery of motor function, as demonstrated in a rat spinal cord injury
complete transection model.
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4.6. Metal Carbides and Nitrides Nanosheets

Mxene is a layered two-dimensional transition metal material, including transition
metal carbide, nitride and carbonitride, expressed as Mn + 1Xn, where M is a transition
metal, such as Ti or Nb, and X is carbon and/or nitrogen [124]. Mxene nanosheets have
also been widely studied in the biomedical field due to their unique chemical and physi-
cal properties, such as electrical conductivity, photothermal conversion ability, and drug
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loading ability. For example, Ye et al. [125] exploited their electrical conductivity in a
conductive heart patch (ECP) developed based on a cryogel composed of MXene Ti2C,
dopamine-N′,N′-methylene-diacrylamide (DOPA-MBA), methacrylate-gelatin (MA-G),
and polyethylene glycol diacrylate. The introduction of dopamine and MXene Ti2C en-
dowed the cryogel with strong adhesion and a good retention ability to heart cells, excellent
mechanical properties, and a high electrical conductivity, to match the natural heart mus-
cle. Jin et al. [94] utilized the photothermal conversion ability of Mxene nanosheets and
integrated the Mxene nanosheets into a dopamine-hyaluronic acid hydrogel (H) to de-
velop a near-infrared photothermal responsive band-aid that can control the release of
VEGF (Figure 21a). The band-aid achieved scarless wound healing in a mouse model of
back wound. Li et al. [95] fabricated an injectable hydrogel based on dopamine-grafted
hyaluronic acid (HA-DA) and PDA-coated Ti3C2 MXene nanosheets through the oxida-
tive coupling of catechol groups (Figure 21b). The PDA-coated-MXene nanosheets in the
hydrogel could kill bacteria through their photothermal conversion ability and scavenge
ROS to relieve oxidative stress. In addition, catechol groups endowed hydrogels with
anti-inflammatory properties and regulated macrophage polarization. Finally, the hydrogel
accelerated the healing of infected diabetic wounds, as demonstrated by a full-thickness
cutaneous injury mouse model.
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Figure 21. (a) Preparation of a MNFs@V-H@DA hydrogel, and wound healing process treated
by the MNFs@V-H@DA hydrogel [94]. (b) Fabrication of HA-DA/MXene@PDA hydrogel and its
therapeutic effects on infected diabetic wound healing, including supplying O2, scavenging ROS,
eradicating bacteria, and inhibiting inflammation [95].

In short, the common 2D nanomaterials, including silicate nanosheets, GO nanosheets,
clay nanosheets, talc nanosheets, phosphate-based nanosheets, metal carbide and nitride
nanosheets are summarized. These 2D nanomaterials can prevent the overoxidation of
catechol groups by using their limited layered space to retain enough active groups. In
addition, the addition of these 2D nanomaterials provides the hydrogels with conductivity,
drug loading ability, lubrication, or photothermal conversion properties, enhancing the
applicability of nanocomposite hydrogels in a variety of complex environments.
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5. Conclusions and Outlook

Developing nanocomposite hydrogels with desired functionalities is critical for meet-
ing the requirements of the ultimate applications, such as regenerative medicine and drug
delivery, etc. This review has summarized the recent advances of nanocomposite hydrogels
from the aspects of the dimensions of different nanomaterials (0, 1, and 2D nanomateri-
als). The review systematically discussed the incorporation of nanomaterials, including
porous/solid/hollow nanoparticles, nanofibers, nanosheets, nanowires, nanotubes, and
nanofibers into polymeric hydrogels based on a mussel-inspired strategy. In addition to
PDA, the ability of a series of natural polyphenols with the same or similar functional
groups to modify or hybridize nanomaterials for the fabrication of nanocomposite hydro-
gels blocks was also discussed. The catechol or polyphenol groups are primarily introduced
in three ways: (1) combining with nanomaterials; (2) combining with the hydrogel matrix;
(3) introducing into the nanocomposite hydrogel as an independent unit in the form of a
PDA. The introduction of catechol or polyphenol groups significantly enhances the func-
tional diversity of the nanocomposite hydrogels, such as ROS clearance, cell affinity, tissue
adhesion, or the ability to enhance nanozyme activity inside the hydrogel. Although the
basic properties of catechol and polyphenol groups, such as adhesive and anti-oxidative
abilities, have been extensively studied, novel biological functions resulting from these
properties are yet to be developed in disease-specific environments. In addition, the
catechol/polyphenol-functionalization of nanomaterials offers the application of various
nanomaterials that would otherwise not bind to hydrogels. The combination of catechol or
polyphenol groups with nanomaterials studied thus far is relatively simple. More complex
nanocomposite systems should be designed to make the functionality of catechol groups
more widely discovered and explored.
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102. Knežević, N.Ž.; Durand, J.O. Large Pore Mesoporous Silica Nanomaterials for Application in Delivery of Biomolecules. Nanoscale
2015, 7, 2199–2209. [CrossRef]

103. Li, H.; Qu, J. Mussel-Inspired Synthesis of Silver Nanoparticles as Fillers for Preparing Waterborne Polyurethane/Ag Nanocom-
posites with Excellent Mechanical and Antibacterial Properties. Polym. Int. 2022, 71, 146–153. [CrossRef]

104. Tang, Y.; Tan, Y.; Lin, K.; Zhu, M. Research Progress on Polydopamine Nanoparticles for Tissue Engineering. Front. Chem. 2021,
9, 727123. [CrossRef] [PubMed]

105. Guo, B.; Ma, Z.; Pan, L.; Shi, Y. Properties of Conductive Polymer Hydrogels and Their Application in Sensors. J. Polym. Sci. 2019,
57, 1606–1621. [CrossRef]

106. Nikoobakht, B.; El-Sayed, M.A. Preparation and Growth Mechanism of Gold Nanorods (Nrs) Using Seed-Mediated Growth
Method. Chem. Mater. 2003, 15, 1957–1962. [CrossRef]

107. Hu, T.; Mei, X.; Wang, Y.; Weng, X.; Liang, R.; Wei, M. Two-Dimensional Nanomaterials: Fascinating Materials in Biomedical
Field. Sci. Bull. 2019, 64, 1707–1727. [CrossRef]

108. Li, G.; Zhao, Y.; Zhang, L.; Gao, M.; Kong, Y.; Yang, Y. Preparation of Graphene Oxide/Polyacrylamide Composite Hydrogel and
Its Effect on Schwann Cells Attachment and Proliferation. Colloid Surf. B Biointerface 2016, 143, 547–556. [CrossRef]

109. Tang, P.; Han, L.; Li, P.; Jia, Z.; Wang, K.; Zhang, H.; Tan, H.; Guo, T.; Lu, X. Mussel-Inspired Electroactive and Antioxidative
Scaffolds with Incorporation of Polydopamine-Reduced Graphene Oxide for Enhancing Skin Wound Healing. ACS Appl. Mater.
Interfaces 2019, 11, 7703–7714. [CrossRef]

http://doi.org/10.1016/j.eurpolymj.2021.110580
http://doi.org/10.1002/smll.201601916
http://doi.org/10.1016/j.carbon.2018.04.065
http://doi.org/10.1002/adfm.201907678
http://doi.org/10.1021/acsnano.6b05318
http://doi.org/10.1016/j.actbio.2022.07.016
http://doi.org/10.1021/acsami.8b06475
http://www.ncbi.nlm.nih.gov/pubmed/29863322
http://doi.org/10.1002/adfm.202000177
http://doi.org/10.1002/adfm.202104440
http://doi.org/10.1016/j.bioactmat.2022.03.006
http://www.ncbi.nlm.nih.gov/pubmed/35415283
http://doi.org/10.1021/acsnano.1c10575
http://doi.org/10.3389/fchem.2020.00124
http://doi.org/10.1016/j.carbpol.2022.119665
http://doi.org/10.1002/adtp.201900143
http://doi.org/10.1002/adfm.201201708
http://doi.org/10.1016/j.mser.2019.01.001
http://doi.org/10.3389/fchem.2022.823785
http://www.ncbi.nlm.nih.gov/pubmed/35372272
http://doi.org/10.1039/C4NR06114D
http://doi.org/10.1002/pi.6295
http://doi.org/10.3389/fchem.2021.727123
http://www.ncbi.nlm.nih.gov/pubmed/34552912
http://doi.org/10.1002/polb.24899
http://doi.org/10.1021/cm020732l
http://doi.org/10.1016/j.scib.2019.09.021
http://doi.org/10.1016/j.colsurfb.2016.03.079
http://doi.org/10.1021/acsami.8b18931


Biomimetics 2023, 8, 128 31 of 31

110. Jing, X.; Mi, H.-Y.; Napiwocki, B.N.; Peng, X.-F.; Turng, L.-S. Mussel-Inspired Electroactive Chitosan/Graphene Oxide Composite
Hydrogel with Rapid Self-Healing and Recovery Behavior for Tissue Engineering. Carbon 2017, 125, 557–570. [CrossRef]

111. Dawson, J.I.; Oreffo, R.O. Clay: New Opportunities for Tissue Regeneration and Biomaterial Design. Adv. Mater. 2013, 25,
4069–4086. [CrossRef] [PubMed]

112. Wang, S.; Zhou, L.; Zheng, Y.; Li, L.; Wu, C.; Yang, H.; Huang, M.; An, X. Synthesis and Biocompatibility of Two-Dimensional
Biomaterials. Colloid Surf. A Physicochem. Eng. Asp. 2019, 583, 124004. [CrossRef]

113. Rezanejad Gatabi, Z.; Heshmati, N.; Mirhoseini, M.; Dabbaghianamiri, M. The Application of Clay-Based Nanocomposite
Hydrogels in Wound Healing. Arab. J. Sci. Eng. 2022, 1–14. [CrossRef]

114. Becher, T.B.; Mendonça, M.C.; de Farias, M.A.; Portugal, R.V.; de Jesus, M.B.; Ornelas, C. Soft Nanohydrogels Based on Laponite
Nanodiscs: A Versatile Drug Delivery Platform for Theranostics and Drug Cocktails. ACS Appl. Mater. Interfaces 2018, 10,
21891–21900. [CrossRef]

115. Wang, B.; Liu, H.; Sun, L.; Jin, Y.; Ding, X.; Li, L.; Ji, J.; Chen, H. Construction of High Drug Loading and Enzymatic Degradable
Multilayer Films for Self-Defense Drug Release and Long-Term Biofilm Inhibition. Biomacromolecules 2018, 19, 85–93. [CrossRef]
[PubMed]

116. Zhao, J.; Gao, T.; Dang, J.; Cao, W.; Wang, Z.; Li, S.; Shi, Y. Using Green, Economical, Efficient Two-Dimensional (2D) Talc
Nanosheets as Lubricant Additives under Harsh Conditions. Nanomaterials 2022, 12, 1666. [CrossRef]

117. Hou, J.; Wang, H.; Ge, Z.; Zuo, T.; Chen, Q.; Liu, X.; Mou, S.; Fan, C.; Xie, Y.; Wang, L. Treating Acute Kidney Injury with
Antioxidative Black Phosphorus Nanosheets. Nano Lett. 2020, 20, 1447–1454. [CrossRef]

118. Huang, K.; Wu, J.; Gu, Z. Black Phosphorus Hydrogel Scaffolds Enhance Bone Regeneration Via a Sustained Supply of Calcium-
Free Phosphorus. ACS Appl. Mater. Interfaces 2019, 11, 2908–2916. [CrossRef]

119. Comber, S.; Gardner, M.; Georges, K.; Blackwood, D.; Gilmour, D. Domestic Source of Phosphorus to Sewage Treatment Works.
Environ. Technol. 2013, 34, 1349–1358. [CrossRef]

120. Guo, J.; Huang, D.; Zhang, Y.; Yao, H.; Wang, Y.; Zhang, F.; Wang, R.; Ge, Y.; Song, Y.; Guo, Z. 2D Gep as a Novel Broadband
Nonlinear Optical Material for Ultrafast Photonics. Laser Photon. Rev. 2019, 13, 1900123. [CrossRef]

121. Liu, X.; Miller, A.L.; Park, S.; George, M.N.; Lu, L. Two-Dimensional Black Phosphorus and Graphene Oxide Nanosheets
Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds. ACS Appl. Mater. Interfaces 2019, 11,
23558–23572. [CrossRef] [PubMed]

122. Yang, B.; Yin, J.; Chen, Y.; Pan, S.; Yao, H.; Gao, Y.; Shi, J. 2D-Black-Phosphorus-Reinforced 3D-Printed Scaffolds: A Stepwise
Countermeasure for Osteosarcoma. Adv. Mater. 2018, 30, 1705611. [CrossRef] [PubMed]

123. Yu, T.; Nie, H.; Wang, S.; Zhang, B.; Zhao, S.; Wang, Z.; Qiao, J.; Han, B.; He, J.; Tao, X. Two-Dimensional Gep-Based Broad-Band
Optical Switches and Photodetectors. Adv. Opt. Mater. 2020, 8, 1901490. [CrossRef]

124. Davis, R.; Urbanowski, R.A.; Gaharwar, A.K. 2D Layered Nanomaterials for Therapeutics Delivery. Curr. Opin. Biomed. Eng. 2021,
20, 100319. [CrossRef]

125. Ye, G.; Wen, Z.; Wen, F.; Song, X.; Wang, L.; Li, C.; He, Y.; Prakash, S.; Qiu, X. Mussel-Inspired Conductive Ti2C-Cryogel Promotes
Functional Maturation of Cardiomyocytes and Enhances Repair of Myocardial Infarction. Theranostics 2020, 10, 2047. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.carbon.2017.09.071
http://doi.org/10.1002/adma.201301034
http://www.ncbi.nlm.nih.gov/pubmed/23722321
http://doi.org/10.1016/j.colsurfa.2019.124004
http://doi.org/10.1007/s13369-022-06959-3
http://doi.org/10.1021/acsami.8b06149
http://doi.org/10.1021/acs.biomac.7b01268
http://www.ncbi.nlm.nih.gov/pubmed/29191005
http://doi.org/10.3390/nano12101666
http://doi.org/10.1021/acs.nanolett.9b05218
http://doi.org/10.1021/acsami.8b21179
http://doi.org/10.1080/09593330.2012.747003
http://doi.org/10.1002/lpor.201900123
http://doi.org/10.1021/acsami.9b04121
http://www.ncbi.nlm.nih.gov/pubmed/31199116
http://doi.org/10.1002/adma.201705611
http://www.ncbi.nlm.nih.gov/pubmed/29333689
http://doi.org/10.1002/adom.201901490
http://doi.org/10.1016/j.cobme.2021.100319
http://doi.org/10.7150/thno.38876
http://www.ncbi.nlm.nih.gov/pubmed/32104499

	Introduction 
	Mussel-Inspired 0D Nanomaterials-Loaded Hydrogels 
	Hydroxyapatite Nanoparticles (HA NPs) 
	Iron Oxide Magnetic Nanoparticles (MNPs) 
	Mesoporous Silica Nanoparticles 
	Metal-Organic-Framework 
	Silver Nanoparticles (Ag NPs) 
	Polydopamine Nanoparticles (PDA-NPs) 
	Conductive-Polymer Nanoparticles 

	Mussel-Inspired 1D Nanomaterials-Loaded Hydrogels 
	Carbon Nanotubes (CNTs) 
	Gold Nanorods (Au NRs) 
	Cellulose Nanofibers (CNFs) 

	Mussel-Inspired 2D Nanomaterials-Loaded Hydrogels 
	Silicate Nanosheets 
	Graphene Oxide Nanosheets 
	Clay Nanosheets 
	Talc Nanosheets 
	Phosphate-Based Nanosheets 
	Metal Carbides and Nitrides Nanosheets 

	Conclusions and Outlook 
	References

