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Abstract: Continuously acquired biosignals from patient monitors contain significant amounts of
unusable data. During the development of a decision support system based on continuously acquired
biosignals, we developed machine and deep learning algorithms to automatically classify the quality
of ECG data. A total of 31,127 twenty-s ECG segments of 250 Hz were used as the training/validation
dataset. Data quality was categorized into three classes: acceptable, unacceptable, and uncertain. In
the training/validation dataset, 29,606 segments (95%) were in the acceptable class. Two one-step,
three-class approaches and two two-step binary sequential approaches were developed using random
forest (RF) and two-dimensional convolutional neural network (2D CNN) classifiers. Four approaches
were tested on 9779 test samples from another hospital. On the test dataset, the two-step 2D CNN
approach showed the best overall accuracy (0.85), and the one-step, three-class 2D CNN approach
showed the worst overall accuracy (0.54). The most important parameter, precision in the acceptable
class, was greater than 0.9 for all approaches, but recall in the acceptable class was better for the
two-step approaches: one-step (0.77) vs. two-step RF (0.89) and one-step (0.51) vs. two-step 2D
CNN (0.94) (p < 0.001 for both comparisons). For the ECG quality classification, where substantial
data imbalance exists, the 2-step approaches showed more robust performance than the one-step
approach. This algorithm can be used as a preprocessing step in artificial intelligence research using
continuously acquired biosignals.

Keywords: electrocardiography; signal quality; machine learning; random forest

1. Introduction

Despite the emergence of artificial intelligence (AI) technology in medicine, biosignal-
based AI is relatively unexplored compared to other fields. There are several reasons
as to why it has been difficult to find breakthrough achievements thus far. The first
reason is probably because the size of the data is relatively large compared to data sizes
in other medical areas. The amount of computation required to develop an algorithm
based on biosignals is large, and a complex algorithm is needed to handle these time-
series data. However, another significant obstacle in biosignal research is that a tool is
needed to distinguish acceptable quality data from unacceptable quality data. Despite
the large amount of biosignal data, it is necessary to determine the normally recorded
section in a dataset before proceeding to algorithm development. Even when evaluating
the performance of a biosignal-based algorithm, the quality of the test data should be
guaranteed first to validate the algorithm.
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Among various biosignals, electrocardiography (ECG) is the most important, as it
shows cardiac activity by measuring minute electric potential. ECG signals contain much
information about heart conditions that are still unknown. However, ECG is frequently
contaminated by artifacts such as electrical interference, baseline wander, electromyogram,
or poor electrode contact [1,2]. Occasionally, ECG signals contain pacing spikes caused by
pacemakers that give rise to extremely large amplitudes. Despite state-of-the-art internal
filter algorithms in commercial patient monitors, there are poor-quality ECG recordings
from patient monitors due to external factors beyond our control. Considering the large
amount of data required for developing an AI algorithm, it is impossible to manually select
high-quality data. Automatic ECG quality assessment is an essential prerequisite not only
for algorithm development but also for using the algorithm in clinical practice.

There have been attempts to automate ECG quality assessment. Traditionally, stud-
ies have focused on feature extraction or hand engineering of fiducial and non-fiducial
features [3–8]. ECG denoising-based strategies have focused on suppressing noise and
artifacts in ECG recordings. Generally, denoising methods are capable of suppressing noise
and artifacts from raw ECG signals. However, there are concerns about the distortion of
innate ECG characteristics such as amplitude, duration, and interval [9,10]. A signal quality
index (SQI)-based strategy was introduced before the popularization of feature extraction,
and in this approach, the recorded ECG segments were categorized as having acceptable or
unacceptable quality [11,12].

However, due to the availability of massive biosignal datasets [13–16], researchers have
recently used many deep learning techniques in the analysis of various ECG datasets [17–19].
During the process of developing a noninvasive estimator of arterial blood pressure based
on ECG and other signals, we needed a signal quality classifier for each signal. This was
the most important motivation for this study. In the process of developing a real-time
decision support system based on biosignals, we investigated methods for ECG signal
quality classification using machine learning and deep learning approaches.

2. Materials and Methods

The study design is shown in Figure 1. The Institutional Review Board of Seoul
National University Bundang Hospital (SNUBH) (IRB No. B-2109-706-307) and Severance
Hospital (SEVH) (IRB No. 4-2022-0450) approved this study, and individual patient consent
was waived, as prospectively collected vital sign waveform signal databases from both
hospitals were used. This study was conducted in accordance with the Declaration of
Helsinki and the Harmonized Tripartite Guideline for Good Clinical Practice from the
International Conference on Harmonization. All methods were performed in compliance
with the relevant guidelines and regulations.

The deep learning algorithm was developed and tested with Python 3.5.6 (Anaconda
Inc., Austin, TX, USA), including the Keras 2.2.2 and TensorFlow 1.10.0 libraries. Four
approaches were developed and tested: (1) a one-step, 3-class random forest (RF) approach
(1-step RF), (2) a one-step, 3-class 2-dimensional convolutional neural network (2D CNN)
(1-step 2D CNN), (3) a two-step binary sequential RF approach (2-step RF), and (4) a
two-step binary sequential 2D CNN approach (2-step 2D CNN).
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Figure 1. Architecture of the study. SNUBH: Seoul National University Bundang Hospital; ECG: 
electrocardiography; OR: operating room; FFT: fast Fourier transformation; STFT: short-time Fou-
rier transformation. 

2.1. Data Collection 
Training and validation data were collected from 18 patients in the surgical intensive 

care unit of SNUBH from January to February 2022. External test data were collected from 
5 operating rooms in SEVH from December 2021 to January 2022. ECG signals from 18 
patient monitors (IntelliVue MX700, Philips, Amsterdam, The Netherlands) in SNUBH 
and 5 patient monitors (IntelliVue MX700, Philips, Amsterdam, The Netherlands) in the 
operation rooms of SEVH were collected using the Vital Recorder wireless transmission 
and collection system [20]. Either 3 or 5 electrodes were used, and the ECG signals from 
leads II, III, or aVF reconstructed using the patient monitor were obtained at a 250 Hz 
frequency and were segmented into lengths of 20 s. Therefore, a segment was a vector of 
5000 values (250 Hz × 20 s). 

2.2. Annotation by Expert Physicians 
A simple annotation tool with a graphical user interface was developed. The annota-

tion tool was run in Jupyter Notebook. It displayed a 20-second ECG segment with the Y-
axis ranging from −5 mV to 5 mV. Two expert physicians (H.W. Chang and H. J. Kim) 
inspected the shape of the ECG segment and determined which class the segment should 
be categorized into by clicking the buttons shown on the tool. To reduce inter-annotator 
bias, the two experts participated in vigorous discussions to synchronize the annotations. 
The segments where the experts assigned different labels (less than 2% of all segments) 
were separately evaluated in a research meeting, and the final label was determined. 

2.3. Data Cleaning and Preprocessing 
The data cleaning and preprocessing steps were performed using a separate prepro-

cess code (dataingestor.py, Figure 2, Supplementary Material Section S6). Twenty-second 
ECG segments that were fully blank or partially blank for >0.5 s were excluded and did 

Figure 1. Architecture of the study. SNUBH: Seoul National University Bundang Hospital; ECG:
electrocardiography; OR: operating room; FFT: fast Fourier transformation; STFT: short-time
Fourier transformation.

2.1. Data Collection

Training and validation data were collected from 18 patients in the surgical intensive
care unit of SNUBH from January to February 2022. External test data were collected
from 5 operating rooms in SEVH from December 2021 to January 2022. ECG signals from
18 patient monitors (IntelliVue MX700, Philips, Amsterdam, The Netherlands) in SNUBH
and 5 patient monitors (IntelliVue MX700, Philips, Amsterdam, The Netherlands) in the
operation rooms of SEVH were collected using the Vital Recorder wireless transmission
and collection system [20]. Either 3 or 5 electrodes were used, and the ECG signals from
leads II, III, or aVF reconstructed using the patient monitor were obtained at a 250 Hz
frequency and were segmented into lengths of 20 s. Therefore, a segment was a vector of
5000 values (250 Hz × 20 s).

2.2. Annotation by Expert Physicians

A simple annotation tool with a graphical user interface was developed. The an-
notation tool was run in Jupyter Notebook. It displayed a 20-s ECG segment with the
Y-axis ranging from −5 mV to 5 mV. Two expert physicians (H.W. Chang and H. J. Kim)
inspected the shape of the ECG segment and determined which class the segment should
be categorized into by clicking the buttons shown on the tool. To reduce inter-annotator
bias, the two experts participated in vigorous discussions to synchronize the annotations.
The segments where the experts assigned different labels (less than 2% of all segments)
were separately evaluated in a research meeting, and the final label was determined.

2.3. Data Cleaning and Preprocessing

The data cleaning and preprocessing steps were performed using a separate prepro-
cess code (dataingestor.py, Figure 2, Supplementary Material Section S6). Twenty-s ECG
segments that were fully blank or partially blank for >0.5 s were excluded and did not enter
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the training or test process. Extremely high or low ECG segment values were set to 0 using
±5 mV cutoff values, as abruptly appearing extreme values (>100 mV or <−100 mV) were
found during the inspection of the data. Additionally, those segments were then interpo-
lated to replace the suddenly appearing single zero values. Only the ECG segments that
passed these preprocessing steps were used for training or testing.
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2.4. Definition of ECG Quality Classes

The patient monitors used in our study were equipped with one of the state-of-the-art
signal filter algorithms. Therefore, the ECG signals used in this study were processed with
the internal filter algorithm of the patient monitor. Nevertheless, not all the baseline sways
or noise could be removed depending on the recording circumstances.

We classified the ECG segments into three quality classes: acceptable, unacceptable,
and uncertain. When a segment was clean and contained almost no flaws in recording,
the segment was categorized as acceptable. A segment that contained a large flaw (i.e.,
extreme baseline sways or noise that rendered the QRS complexes indistinguishable) for
any duration was categorized as unacceptable. The segments that were almost acceptable
in recording quality but had mild degree noise or subtle baseline sways were categorized
as uncertain. In uncertain segments, at least the location of the QRS complexes had to be
discernible in all areas. The presence of noise was a factor in quality classification, but even
a data segment without noise could be classified as unacceptable when the quality of the
recording was poor. Typical examples of each class are shown in Supplementary Material
Section S1.
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2.5. Data Sampling for Training

As described above, only the SNUBH SICU data were used for training and validation.
Data selection for training was completely random. Due to the availability of a large
number of acceptable samples, which led to data imbalance among the 3 classes, training
was performed only on an equal number of training data from each class selected via
random sampling (Figure 3). The training–validation split was set to 0.2.
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2.6. One-Step 3-Class Approaches

The logic of the one-step, 3-class classifier is shown in Figure 3a. For the one-step,
3-class approaches, an RF and a 2D CNN classifier were developed. The RF classifier was
operated on the features extracted with a separate feature extraction algorithm (which is
explained in Section 2.8), and the 2D CNN classifier used the data transformed with a
short-time Fourier transformation (STFT).

2.7. Two-Step Binary Sequential Approaches

We also tested 2-step approaches to address data imbalance. We utilized two binary
classifiers sequentially for the 2-step approaches (Figure 3b). The first classifier was trained
exclusively on unacceptable and acceptable segments (not on uncertain segments), and the
second classifier was trained exclusively on unacceptable and uncertain segments.

During the inference step, a candidate ECG segment was classified into acceptable vs.
other (unacceptable or uncertain) by the first classifier. When the segment was classified as
other, it was then classified as unacceptable or uncertain by the second classifier. As in the
one-step 3-class approaches, RF and 2D CNN classifiers were used in the two-step binary
sequential approaches. The RF classifiers used the extracted features, and the 2D CNN
classifiers used fast Fourier transform (FFT)-applied data as input.

2.8. Feature Extraction

For the one-step and two-step RF approaches, we extracted time and frequency do-
main features. These features were developed and defined based on careful observation of
typical segments from each class. Additionally, concepts of mathematical generalization
approaches that have been used for nonbiological waveform signals were partially adopted.
The fundamental details and pseudocodes for feature extraction are shown in Supplemen-
tary Material Sections S2 and S3. A bandpass filter with cutoff frequency [0.5, 8.0] was
applied to the ECG signals to eliminate very low frequencies prior to peak detection. ECG
peaks were detected using the heartpy python package. FFT and STFT were applied using
the scipy fft and scipy.signal.stft functions to extract frequency domain features. Altogether,
83 features were extracted from each ECG signal. Since the ECG segments were 5000 sam-
ples long, features were extracted using this approach and further aggregated using the
mean and standard deviations (rather than from the entire segment alone). Features were
also extracted by negating the ECG signal for two reasons: (1) Peak detection routines
return only peaks and not troughs. (2) There were sudden changes in the polarity of the
ECG signals.

2.9. Training of the Classifiers

In both the one-step and two-step approaches, we used the RF classifier in the sklearn
python package. The RF classifiers were trained on the features selected with scipy’s
SelectKBest method, where k was set to 43. In the RF classifiers, the n_estimators parameter
of the RF model was incremented in each training step by 50 to update the model with
new samples selected from the acceptable class. The bootstrap and out-of-bag sample
parameters were set to True, and the warm_start parameter was set to True. The list of the
43 selected features is shown in Table 1. The simplified codes for training the RF classifier
can be found in Supplementary Material Section S6.

The 2D CNN classifiers in the one- and two-step approaches were partially inspired
by the approach shown in the paper by Yoon et al. [18]; this approach is a 1D CNN
binary classifier. The structure of the 2D CNN classifier in the one-step 3-class approach is
illustrated in Figure 4a. The structure of a binary classifier in the 2-step binary sequential
2D CNN approach is illustrated in Figure 4b. Using a sliding window size of length 10 and
an overlap of 5 samples, every 20-s ECG segment was converted into a 2D matrix and
reshaped into the dimension (80, 100). The architecture consisted of sequentially stacked
convolutional layers with a geometrically decreasing number of feature maps starting from
100 down to 25, with correspondingly decreasing kernel sizes. Average pooling was used
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in descending order of the pool size, i.e., 10, 5, and 3, and the stride was set to 3. The ReLU
function was used in all the convolutional layers with the alpha parameter set to 0.002. The
keep probability for the dropout layers was set to 0.5. Outputs from the final convolutional
layer were passed through three dense layers stacked with a decreasing number of neurons
(128, 64, 32, 16) followed by the final dense layer with the softmax function to obtain the
3-class or binary classification output. L2 regularization was used in the convolutional
and dense layers, and alpha was set to 0.01. Categorical and binary cross entropy were
selected as the loss functions for the 1-step and 2-step approaches, respectively. The Adam
optimizer was used with a default learning rate of 0.001, a batch size set to 50 and epoch
number set to 100 to train the models.

Table 1. List of the 43 features selected using scipy’s KBest algorithm in the RF approaches. Features
extracted from the negated signals are indicated with the subscript neg. Features 1–34 are time
domain features, while features 35–43 are frequency domain features. The fundamental details and
pseudocodes for feature extraction can be found in Supplementary Material Sections S2 and S3.

No. Feature Name Description

1 mean(slopes) Mean slope
2 stddev(slopes) Standard deviation of the slope
3 max(zscore(peakamplitude)) Max value of the z score of the peak amplitude
4 min(zscore(peakamplitudeneg)) Min value of the z score of the peak amplitude obtained from the negated signal
5 max(zscore(peakamplitudeneg)) Max value of the z score of the peak amplitude obtained from the negated signal
6 max(peakamplitude) Max value of the peak amplitude
7 max(peakamplitudeneg) Max value of the peak amplitude of the negated signal
8 stddev(mean(peakamplitude)) Standard deviation of the mean peak amplitude
9 stddev(max(peakamplitude)) Standard deviation of the max peak amplitude
10 stddev(min(peakminamplitude)) Standard deviation of the min peak amplitude
11 mean(autocorr) Mean of the auto correlation
12 stddev(autocorr) Standard deviation of the auto correlation
13 mean(autocorrneg) Mean of the auto correlation of the negated signal
14 stddev(autocorrneg) Standard deviation of the auto correlation of the negated signal
15 mean(crosscorr) Mean of the cross correlation of 2 nonoverlapping 4 s segments of the signal
16 stddev(crosscorr) Standard deviation of the cross correlation of 2 nonoverlapping 4 s segments of the signal
17 mean(crosscorrneg) Mean of the cross correlation between 2 nonoverlapping 4 s segments of negated the signal

18 stddev(crosscorrneg) Standard deviation of the cross correlation between 2 nonoverlapping 4 s segments of the
negated signal

19 mean(skew) Mean of the signal skew
20 mean(skewneg) Mean of the negated signal skew
21 stddev(skew) Standard deviation of the signal skew
22 stddev(skewneg) Standard deviation of the negated signal skew
23 mean(kurtosis) Standard deviation of the signal kurtosis
24 mean(kurtosisneg) Mean of the negated signal kurtosis
25 stddev(kurtosis) Standard deviation of the signal kurtosis
26 stddev(kurtosisneg) Standard deviation of the negated signal kurtosis
27 mean(he) Mean of the Hurst exponent
28 stddev(he) Standard deviation of the Hurst exponent
29 mean(heneg) Mean of the Hurst exponent of the negated signal
30 stddev(heneg) Standard deviation of the Hurst exponent of the negated signal
31 mean(dtw) Mean of distances obtained by dynamic time warping
32 stddev(dtw) Standard deviation of the distances obtained by dynamic time warping
33 mean(dtwneg) Mean of distances obtained by dynamic time warping of the negated signal
34 stddev(dtwneg) Standard deviation of the distances obtained by dynamic time warping of the negated signal
35 mean(maxpower) Mean of the maximum value of the power obtained after the fast Fourier transform
36 stddev(maxpower) Standard deviation of the max power obtained after the fast Fourier transform
37 mean(maxpowerneg) Mean of the max power obtained after the fast Fourier transform of the negated signal
38 stddev(maxpowerneg) Standard deviation of the max power obtained after the fast Fourier transform
39 stddev(meanpowerdiff) Standard deviation of the maximum difference in the power values
40 stddev(meanfreqdiff) Standard deviation of the maximum difference in the frequency values
41 mean(abs(stft)) Mean of the absolute value of the short-time Fourier transform
42 std(abs(stft)) Standard deviation of the short-time Fourier transform
43 stddev(se) Standard deviation of spectral entropy
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The training scheme of the three classifiers (the three-class classifier in the 1-step
approach, the first-step classifier in the 2-step approach, and the second-step classifier in
the 2-step approach) are shown in Figure 5. During training, the same number of data were
randomly sampled repeatedly (nRepetitions = 20) from each class, and 20% of the training
data were set aside for cross-validation in every iteration of the training step.
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2.10. Training Stop Condition of the 2D CNN

The early stopping criterion monitoring function val_loss was used to stop 2D CNN
training with restore_best_weights set to True. Precision and recall scores on the validation
data were computed in each training step. The model with the maximum precision and
recall scores on the held-out training data was chosen as the final model.

2.11. Performance Test on the External Data

The four algorithms developed using SNUBH data were tested on the SEVH data. The
data from SEVH were preprocessed in the same way. Moreover, features were extracted
for RF approaches, and STFT or FFT were applied for the 2D CNN approaches. Confusion
matrices for the original three-class classification model (3 × 3) were drawn for all four
approaches. As the most important goal of the algorithm was to obtain the highest precision
in choosing the data that are ‘usable’ for the development of the other AI-based tools, we
thought that the performance should be evaluated by merging the acceptable and uncertain
classes if we consider the proximity in the data quality of these two classes. Therefore,
additional 2 × 2 confusion matrices were drawn; the 2 × 2 confusion matrices assumed
that there were two classes (acceptable + uncertain and unacceptable). Precision, recall,
and accuracy were calculated from the 3 × 3 and 2 × 2 confusion matrices.

3. Results
3.1. Preprocessing and Data Class Balancing

In the training and validation datasets, 2487 of 33,614 segments (7.4%) were excluded
by preprocessing, and 275 of 10,054 segments (2.7%) were excluded in the external test
dataset (Figure 1). The distributions of the classes were significantly different between the
training/validation and test datasets; a distribution of 29,606/828/693 was used in the
training/validation dataset, and a distribution of 8135/711/933 was used in the test dataset
for the acceptable/unacceptable/uncertain classes, respectively (p < 0.001).
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3.2. Training of the 2D CNN Classifiers

All three 2D CNN classifiers (the one-step, three-class classifier and the first and
second binary classifiers in the two-step approach) reached the training stop condition in
less than 20 training steps. The loss graphs can be found in Supplementary Material Section
S4. The codes for 2D CNN training can be found in Supplementary Material Section S6.

3.3. Performance Metrics on the External Data

The confusion matrices obtained by applying four different approaches on the test
dataset are shown in Figure 6. The raw numbers can be found in Supplementary Material
Section S5. The 3 × 3 confusion matrices were drawn by using the original three classes
(acceptable, unacceptable, and uncertain), and the 2 × 2 confusion matrices were drawn
assuming there were only two classes (acceptable + uncertain and unacceptable). The
precision and recall scores of each class and the overall accuracy were calculated from the
3 × 3 and 2 × 2 confusion matrices.
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Figure 6. Test results of the one-step approaches on the external data: (a) one-step, three-class RF;
(b) one-step, three-class 2D CNN; (c) two-step binary sequential RF approaches; (d) two-step binary
sequential 2D CNN approaches. The left panels show the 3 × 3 confusion matrices for the original
three classes, and the right panels show the 2 × 2 confusion matrices after merging the acceptable
and uncertain classes.
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The performance metrics from the 3 × 3 confusion matrices are shown in Figure 7a.
In the 3 × 3 confusion matrix, the overall accuracy was higher for the 2-step approaches,
but the most important metric—precision in the acceptable class—was above 0.9 for all
four approaches. However, the next important measure, recall in the acceptable class,
was generally higher for the two-step approaches: 1-step (0.77) vs. 2-step RF (0.89) and
1-step (0.51) vs. 2-step 2D CNN (0.94) (p < 0.001 for both comparison). Precision in
the unacceptable class was also higher for the two-step approaches, but the recall in the
uncertain class was lower for the two-step approaches.
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The performance metrics for the 2 × 2 confusion matrices are shown in Figure 7b. In
the 2 × 2 confusion matrix, the overall accuracy was similar in the four classes, and the
most important metric—precision in the acceptable + uncertain class—was above 0.95 for
all four approaches. The next important measure, recall in the acceptable + uncertain class,
was also above 0.9 for all four approaches. However, precision in the unacceptable class
was generally higher for the two-step approaches: one-step (0.47) vs. two-step RF (0.72)
and one-step (0.37) vs. two-step 2D CNN (0.71) (p < 0.001 for both comparisons).
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4. Discussion

Biosignal data from wearable devices or continuous patient monitoring systems used
in hospitals need to determine the ‘data usability’ before the data are used for training an
AI-based algorithm or for inference by the developed algorithm. The data of interest in this
study are continuously collected ECG signals. According to the expert annotation, 80–90%
of the 20-s ECG segments were categorized as acceptable (almost flawless recordings) in
both the training/validation and test datasets. However, approximately 10–20% of the data
were almost completely unusable or had flaws to varying degrees. Such defects occur for
various reasons, and a number of studies have already been conducted on artifacts that
degrade the quality of ECG data. However, before listing complex engineering terms, such
problems in ECG recordings are quite natural considering the acquisition environment
of continuously collected ECG signals. Patients do not remain still but move actively or
passively. During nursing or bedside procedures, some ECG electrodes are often detached
or placed in a poor contact state.

Therefore, this has been a very important problem in the development of AI algorithms
for ECG signals. There have been several studies on this subject [21]. Most of the previous
studies applied beat-by-beat segmentation or defined data segments with lengths of 3–5 s
or up to 10 s. When beat-by-beat segmentation is used, the expected ECG unit shape is
relatively fixed, so it may be slightly easier to determine the quality of the signal. However,
the tolerance of beat-by-beat segmentation to various arrhythmias that can be encountered
in the hospital setting is low. In other words, beat-by-beat segmentation can determine
the usability of ECG data on the premise that more than 99% of the input data are from
nonarrhythmic subjects. Therefore, it might not be appropriate to perform beat-by-beat
segmentation for ECG signals obtained in hospital settings. Furthermore, using ECG data
with segments that are less than 10 s in length might still be an option for the evaluation
of ECG signals. However, if other biosignals are used together with ECG signals, such a
short signal unit may cause problems. Biosignals obtained from patient monitors have
time differences, and in the case of other biosignals, it is often not easy to determine the
usability from only a segment that is less than 10 s. Then, how can the usability of a
longer segment be determined based on the continuously appearing ‘usable’ determination
of short segments? In fact, this method cannot adequately respond to artifacts that may
exist at both ends of short data segments. To ensure that high quality signal recording
was maintained steadily for a sufficiently long period, we use a period of 20 s for each
ECG segment.

There are several open biosignal datasets, including MIMIC III [14]. Such datasets
help researchers develop algorithms, but it is somewhat questionable whether these data
are in the same raw data format as those obtained directly from patient monitoring devices.
Whether algorithms developed using such datasets can be generalized to modern real-
world datasets around the globe has not yet clearly been established. Hence, we developed
an algorithm from the raw data phase obtained from patient monitoring devices. When an
ECG signal obtained from a patient monitoring device was segmented into 20-s intervals,
3–7% of the data were discarded during preprocessing due to a blank section of at least
0.5 s of the 20-s signal. These data can be regarded as unacceptable without being evaluated
by the algorithm. In the preprocessing step, abruptly appearing spikes were removed,
and interpolation was applied. This preprocess is as important as the algorithm itself and
must be included as a part of the development of an AI algorithm that uses continuously
monitored ECG data in the future.

The second difficulty was extreme class imbalance. Even though the experts made
more than 30,000 annotations on the training/validation dataset, most of the data belonged
to the acceptable class, and less than 5% of the data were in the unacceptable and uncertain
classes. This caused difficulty in improving the performance on the test dataset. First,
we developed one-step, three-class approaches, but as shown in Figure 7a, recall in the
acceptable class, precision in the unacceptable class, and precision in the uncertain class
were all unsatisfactory. The precision in the unacceptable and uncertain classes for the
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one-step, three-class approaches was severely affected by the higher number of acceptable
segments that were misclassified as unacceptable or uncertain. Even for the metrics recal-
culated by merging the acceptable and uncertain classes, the performance of the one-step
approaches was unsatisfactory, and the precision scores of all unacceptable classes were less
than 0.5. Although the previous literature has attempted to address data imbalance in ECG
datasets [22,23], these studies have specifically addressed arrythmia and adopted heartbeat
segmentation-based approaches. For these reasons, we devised a two-step approach.

In the two-step binary sequential approaches, the first step used a classifier that
distinguished between the acceptable class and the other classes; to do this, the classifier
was trained with only acceptable and unacceptable class data, that is, the classes that are
more clearly different from each other. Data from the uncertain class were not used for the
training of this classifier. This is one of the reasons we categorized the data into three classes
rather than two classes (acceptable vs. unacceptable). The number of previous studies
that utilized three-class classification is relatively small [6]. There is a clearly discernible or
distinguishable difference between the acceptable and unacceptable classes, but there is
a clear gray zone between them. In our pilot study, data labeling was binary, acceptable
and unacceptable. From the labeling physician’s viewpoint, the presence of ambiguous
data that were difficult to categorize into either an acceptable or unacceptable class was a
considerable issue. This adversely affected the accuracy and consistency of labeling. The
uncertain class data are those that are similar to the acceptable class data but have small
flaws in recording. We found that including uncertain class data disturbs the training of the
first classifier in the two-step approaches in the preliminary experiment. We believe that
this discrepancy is reasonable, as the purpose of this classifier was to distinguish acceptable
class data from the rest, and for that purpose, there was no rule that data of all three classes
must be used during training.

As mentioned earlier, the most important performance indicator of this algorithm was
the precision score of the acceptable class, and the recall score of the acceptable class was the
next important metric. The importance of the precision score of the acceptable class arises
from the purpose of this algorithm. When the algorithm receives a new dataset as input and
determines the usability, it is most important to minimize the amount of data that are not
actually usable but categorized as usable (false usable). If there is a substantial amount of
unusable data among the data categorized as ‘usable’, it can become a significant problem
when developing a diagnostic support algorithm using these training data. The recall score
of the acceptable class was the next important measure, as we wanted to maximize the
utilization of the usable data.

In the performance evaluation of an algorithm, it is very important to use separate
test data that do not overlap with the training data. The simplest and most reliable
way to achieve separation is to use test data from another hospital. Separating the train-
ing/validation data from the test data can reduce the influence of overfitting that can arise
from pattern recognition by patient overlap or hospital-specific environments. Perhaps the
greatest strength of this study lies here.

After developing four three-class classification algorithms, we combined the acceptable
and uncertain classes of the three-class results so that the performance of the algorithms
could be evaluated in the form of binary classifiers (Figures 6 and 7). We did this because
the criterion for the decision of an acceptable class was too strict. If this strict criterion
was applied in the determination of ‘usable’ data, all the uncertain class data with very
small flaws would be discarded. This is impractical because the purpose of this study is to
correctly select as much usable data as possible. Therefore, we also evaluated the precision
and recall scores of the merged acceptable + uncertain class.

For the RF approaches, features were extracted based on observing hundreds of seg-
ments from all three classes. In general, the acceptable segments tended to be very regular
and evenly spaced with no or very few extremely high or low values, while unacceptable
segments tended to be very irregular and unevenly spaced with several extremely high
and low values. Uncertain segments tended to be a mixture of acceptable and unacceptable
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subsegments with a higher proportion of the former. Time domain features were extracted
primarily based on the above observations using peak amplitude and peak position values
returned by the heartpy package. Many other extracted features, such as the first and
second derivatives, dynamic time warping, Hurst exponent, autocorrelation, and cross-
correlation, are popular features useful for time-series data analysis [24–27]. Frequency
domain features were extracted based on the observation that the acceptable segments
tend to have similar power frequency spectra, while unacceptable segments tend to have
dissimilar power frequency spectra across subsegments. The maxpower, meanfreqdiff,
and meanpowerdiff features extracted differences in frequency and power between sub-
segments based on FFT. In addition, FFT and STFT were applied to extract changes in
frequency over time using a Hanning window, where the window size was set to 100 [28].

Future improvements should address the following points. Although k is set to 43 in
our study, the selection of k in the SelectKBest algorithm is best achieved using GridSearch
to select the best k value that provides the highest precision and recall scores in the held-out
training data. Exhaustive and varied feature selection techniques, such as recursive feature
elimination and principal component analysis, should be explored [29,30]. Severe data
imbalance in the unacceptable and uncertain classes should be addressed using advanced
data augmentation techniques specific to time series [31]. Many models were developed
during this research that performed very well in terms of precision or recall on any one or
two of the three classes. An ensemble approach to classification, such as a voting classifier,
may boost accuracy. Valid data augmentation techniques for ECG signals can be applied
to increase the sample sizes of unacceptable and uncertain signals. For example, vertical
flipping can be a valid augmentation method, as ECG signals frequently flip vertically
along the time axis due to sudden changes in polarity. Finally, in the future study, it will
be necessary to secure objectivity by increasing the number of physicians for data labeling
and to conduct verification on multicenter data.

Even with the very large imbalance in the test dataset, the performance of our ap-
proaches was still reasonably good when compared to the performance of other published
approaches. Most published work does not deal with more than two classes, and the
published approaches used open datasets where imbalance is not a large problem. In
papers where imbalance is addressed, the test set is not from an external location.

5. Conclusions

There was a very large class imbalance in the quality classification of continuously
monitored ECG data. In the classification of ECG quality, where a substantial data imbal-
ance exists, the two-step approaches showed more robust performance than the one-step
approach. This algorithm can be used as a preprocessing step in artificial intelligence
research using continuously acquired biosignals.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomimetics8010119/s1, Section S1. Examples of each quality
class; Figure S1a: acceptable class segments; Figure S1b: unacceptable class segments; Figure S1c:
uncertain class segments; Section S2. Fundamentals of feature extraction; Section S3. Feature extrac-
tion algorithms; Figure S2a: algorithms to extract time domain features (pseudocode); Figure S2b:
algorithms to extract frequency domain features (pseudocode); Section S4. Loss graphs of the 2D
CNN approaches; Figure S3a: loss graphs of the one-step, three-class 2D CNN (acceptable, unac-
ceptable, and uncertain); Figure S3b: loss graphs of the first-step binary 2D CNN classifier of the
two-step approach (acceptable vs. unacceptable + uncertain); Figure S3c: loss graphs of the second-
step binary 2D CNN classifier of the two-step approach (unacceptable vs. uncertain); Section S5.
Confusion matrices of the raw test data for the four approaches: 3 × 3 and 2 × 2; Figure S4a: the
one-step, three-class random forest approach; Figure S4b: the one-step, three-class 2D CNN approach;
Figure S4c: the two-step binary sequential random forest approach; Figure S4d: the two-step binary
sequential 2D CNN approach; Section S6. Source Codes; File S1a: Dataingestor.py (preprocess);
File S1b: FeatureExtractor.py (feature extraction codes for the random forest model), File S1c: code
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for training random forest model for differentiation between acceptable and unacceptable; File S1d:
code for training of 2D CNN (binary classifier for unacceptable vs. uncertain).
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