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Abstract: The maxilla is generally acknowledged as being more trabecular than the mandible.
Allograft currently available for use in the maxillofacial region is harvested from the hip and long
bones, irrespective of their local characteristics, and grafted onto the jawbones. Other alternative are
autograft or commercially available bone substitutes. Due to their inherent differences, an in-depth
understanding of the bone microarchitecture is important to develop the most compatible graft for use
at the maxilla. This cross-sectional study aimed to determine the microstructures of bone harvested
from different sites of the maxilla, to be used for standard setting. Forty-nine specimens from seven
human cadavers were harvested from the zygomatic buttress, anterior maxillary sinus wall, anterior
nasal spine and anterior palate. Each bone block, measuring of 10 mm × 5 mm, was harvested
using rotary instruments. Bone analysis was performed following micro-computed tomography to
obtain trabecular number (Tb.N), trabecular separation (Tb.Sp), trabecular thickness (Tb.Th), and
bone volume fraction (BV/TV). There were site-related differences, with BV/TV that ranged between
37.38% and 85.83%. The Tb.N was the lowest at the palate (1.12 (mm−1)) and highest at the anterior
maxillary sinus wall (1.41 (mm−1)) region. The palate, however, had the highest trabecular separation
value (Tb.Sp) at 0.47 mm. The TB.Th was the lowest at the anterior nasal spine (0.34 mm) but both
the zygoma and anterior maxillary sinus regions shared the highest Tb.Th (0.44 mm). Except for
having the lowest Th.Sp (0.35 mm), the anterior maxillary sinus wall consistently showed higher
values together with the zygomatic buttress in all other parameters. Concurring with current clinical
practice of harvesting autograft from the zygomatic buttress and anterior maxillary sinus wall, their
bony characteristic serve as the microarchitecture standard to adopt when developing new bone graft
materials for use in the maxilla.

Keywords: material; bone grafting; bone microarchitecture; maxilla; micro-computed tomography;
trabecular bone

1. Introduction

Bone grafts are necessary to bridge bony maxillofacial defects caused by congenital
deformity, pathology, trauma, and to restore bone resorption that occurs following tooth
loss. Bone grafts and bone substitutes can be obtained from various sources using different
techniques [1]. The gold standard is the transplantation of an autograft from another part
of the patient’s body. Alternatives includes an allograft that is sourced from genetically
non-identical members of the same species, a xenograft that is sourced from genetically
non-identical members of different species and alloplastic materials, i.e., synthetic bone
substitutes that negate the use of human or animal products. To date, developing an ideal
substitute for human bone in the oral and maxillofacial region remains the holy grail of
bone graft research [2,3]. Recent advances in biomaterial technology, such as digital light
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processing and partial infiltration, allows researchers to develop bioactive bone substitutes
with the ability to control macroscopic pore size to 100–500 µm, with strong interconnected
porosity [4], but the product is far from being clinically proven.

An autologous bone graft remains the gold standard because of its osteogenic, osteoin-
ductive, and osteoconductive properties. Besides proper surgical technique, its microarchi-
tecture is a crucial parameter for the success of bone grafting. In general, intramembranous
bone is preferred than endochondral bone as it is subjected to less resorption, thus improv-
ing retention and long-term stability, while inducing the body to produce natural bone [5].
A calvarium graft despite being intramembranous of origin, may need to be performed
under sedation or general anaesthesia, which increases cost with higher morbidity [6].
Therefore, more complex surgical procedures involving extraoral sites are the least pre-
ferred method for bone grafting in implant or periodontal therapy in which the volume of
bone needed may be small.

Intraoral donor sites are locations most dentists and dental specialists are familiar with.
These sites are easily reachable, and harvesting can be accomplished under local anaesthesia
in a standard dental office setting. There are usually no scars left behind and intraoral
donor sites have lower morbidity than extraoral sites [7]. Autografts from mandibular
symphysis and ramus are frequently used for intraoral bone reconstruction [8], but these
sites are located on the mandible. Some studies describe the use of autografts from the
maxilla, especially the tuberosity. Other sites of interest are the zygomatic buttress [9,10],
the anterior maxillary sinus wall [11,12], the anterior nasal spine [13,14], and the anterior
palate [15,16]. However, the maxilla is generally acknowledged as being more trabecular
than the mandible, although it also has the benefit of being of intramembranous of origin.
The microarchitecture properties at various sites of the maxilla remain poorly documented
despite its significance to autograft regeneration [17]. This may hinder our efforts to develop
compatible synthetic bone materials that mimics the maxillary bone.

The term “bone quality” has been widely used in the literature to describe different
aspects of bone characteristics. The trabecular bone microarchitecture is an essential
factor determining bone quality [18], in addition to chemical composition. In fact, one
study correlated the type I–IV of bone with various parameters used to determine bone
quality [19]. An in-depth understanding of bone microarchitecture is important to develop
the most compatible graft for use at the maxilla, so as to enhance treatment outcome [20].

In the past, conventional histomorphometry was widely used to investigate the micro-
architectural properties of bone. As well as being an invasive procedure, this technique
is limited to two-dimensional results and is time-consuming. In addition, conventional
histomorphometry is destructive in nature, as the samples are destroyed in the process,
preventing the specimens being studied repetitively [18]. With the advancement of micro-
computed tomography (micro-CT), the three-dimensional microstructure of the human
bone can now be clearly visualized and studied. This non-destructive and high-resolution
method can depict the trabecular network in various shades of grey colour based on
the mineral content. Many studies have routinely applied micro-CT in the structural
evaluations of trabecular microstructure [19,21–40].

The current study aimed to determine the bone quantity and quality at four sites of
interest, namely the zygomatic buttress, anterior maxillary sinus wall, anterior nasal spine
and anterior palate; the first two of which have been recommend as donor sites in clinical
practice. The objective was to obtain their trabecular number (Tb.N), trabecular separation
(Tb.Sp), trabecular thickness (Tb.Th), bone volume fraction (BV/TV), and their correlation
with structure model index (SMI) using micro-CT for standard setting. Findings from this
study will provide much-needed information on the optimum microarchitecture of bone
when developing biomaterial for use in grafting the maxilla.

2. Materials and Methods

This cross-sectional study was conducted at the Department of Anatomy, Faculty
of Medicine, University of Malaya, with the micro-CT study undertaken at the Nuclear
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Agency Malaysia. The study received Institutional Board of Study approvals from the
Faculty of Dentistry, University of Malaya [DF OS1814/0050(P)], and the Medical Research
Ethics Committee, University of Malaya Medical Centre (MRECID.NO: 201865-6360). For
the procurement of human bodies for the purpose of teaching and research in the university,
consent was obtained based on the protocol adopted by the University of Malaya Medical
Centre and approval by the Ministry of Health Malaysia. Seven human cadavers (all
elderly males) previously embalmed and stored in 10% formalin solution (CH2O, 10%,
Fisher Chemical) were obtained from the Department of Anatomy. Embalmed cadavers
were stored between 6–12 months before use for research to ensure the tissues were fully
fixed. The cadavers used in this study were thoroughly checked by the authors at the
Department of Anatomy’s Dissection Hall where the cadavers were kept, to ensure that
the jaw bones were intact and free from any past trauma, malformation or pathology. The
absence of lesion(s), sign of previous surgery, or reconstructive procedures at the areas of
investigation was confirmed. The data collection period commenced in October 2018 and
ended in April 2019. The authors studied all cadavers available at that time and did not
calculate the sample size. This is a limitation of the current study.

We investigated bone microarchitecture at the zygomatic buttress, anterior maxillary
sinus wall, anterior palate, and anterior nasal spine (ANS), as shown in Figure 1. Each bone
block, with a dimension of 10 mm × 5 mm (but different thickness due to difference in
site of origin), was harvested using a fine (0.5 mm) round bur mounted on a rotary hand
piece with the speed of 1200 rpm. A total of 49 bone blocks were obtained, with 42 of them
derived from the first three sites of interest, while only one bone block was retrieved from
the ANS region of each cadaver.
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between the central incisor and the second premolar was approximately 36 mm, based on the mesi-
odistal sum teeth concerned. The average distance between central incisor and root apex of canine 
is approximately 20 mm. (Right) Anatomical scheme of the midface. 

The volume of the bone blocks harvested was measured using Archimedes’ principle 
[44] as this water displacement technique ensures that the air and spaces within them are 
not included. These bone blocks were then dried, preserved, and were subjected to micro-
CT scan (SkyScan 1172, Kontich, Belgium). Only 21 bone specimens were sent for micro-
CT scan due to cost constraints. They were fixed in a cylindrical shaped styrofoam before 
being fitted and mounted onto a holder to minimize movements during scanning. The 
micro-CT scanning parameters were set at 35 μm voxel size, 80 kVp, 124 mA, 0.5 mm 
aluminium filter, angular rotation step 0.70°, 180° scanning, with a total scan duration of 
27 min and 43 s. 

The micro-CT images were exported as TIFF files using NRecon (v 1.6, SkyScan, Kon-
tich, Belgium) software for reconstruction and conversion into BMP images. Following 
this, they were imported into a trabecular bone analysis software, CTAn (v 1.15, SkyScan, 
Kontich, Belgium). The volume of interest (VOI) consisting of trabecular bone in each sam-
ple was delineated. The optimal threshold value for the images was determined using 
histogram analysis. Figure 2 shows a summary of the micro-CT bone analysis process. 

Three-dimensional (3D) analysis was performed to acquire trabecular bone measure-
ments, namely the bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular 
thickness (Tb.Th), trabecular separation (Tb.Sp), and structure model index (SMI). The 
mean and standard deviation values were calculated using Microsoft Excel software (Ver-
sion 2007, Microsoft, Redmond, WA, USA). The correlation of BV/TV, Tb.N, Tb.Th and 
Tb.Sp with structure model index (SMI) was determined. The trabecular bone parameters 
for the microarchitecture assessment are described in Table 1. 

 

Figure 1. (Left) The four sites of interest in this study were the zygomatic buttress (ZYGOMA),
anterior maxillary sinus wall (AMSW), anterior palate (AP), and anterior nasal spine (ANS). The
location of the bone block was determined by using dental morphometrics. The average distance
between the central incisor and the second premolar was approximately 36 mm, based on the
mesiodistal sum teeth concerned. The average distance between central incisor and root apex of
canine is approximately 20 mm. (Right) Anatomical scheme of the midface.

The sites of interest were identified using specific landmarks to ensure consistency.
They were determined using the tooth size and dental arch dimension of southeast Asian
Malay men as most of the cadavers were edentulous (Figure 1) [41]. The average distance
from the central incisor to the second premolar was approximately 36 mm, hence the
zygomatic buttress bone block was harvested at this distance bilaterally, 15 mm below the
infraorbital rim. This location also corresponded with the hypothetical site of the bone graft
harvesting site suggested by Lim et al., 2017 [42]. The average distance between central
incisor and root apex of canines is approximately 20 mm, which is the reason the anterior
maxillary sinus wall was identified as 20 mm from the midline. Bone blocks were harvested
at 20 mm bilaterally. For the anterior palate, the bone blocks were harvested bilaterally at
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2 mm from the bony crest, parallel to the tooth axis and 3 mm from the incisive foramen
at the midline, following the description of Hassani et al. [43]. For the ANS region, only
one bone block was harvested from each cadaver at 2 mm below its protrusion to avoid
causing the collapse of the nose, based on descriptions from actual clinical practice.

The volume of the bone blocks harvested was measured using Archimedes’ princi-
ple [44] as this water displacement technique ensures that the air and spaces within them
are not included. These bone blocks were then dried, preserved, and were subjected to
micro-CT scan (SkyScan 1172, Kontich, Belgium). Only 21 bone specimens were sent for
micro-CT scan due to cost constraints. They were fixed in a cylindrical shaped styrofoam
before being fitted and mounted onto a holder to minimize movements during scanning.
The micro-CT scanning parameters were set at 35 µm voxel size, 80 kVp, 124 mA, 0.5 mm
aluminium filter, angular rotation step 0.70◦, 180◦ scanning, with a total scan duration of
27 min and 43 s.

The micro-CT images were exported as TIFF files using NRecon (v 1.6, SkyScan,
Kontich, Belgium) software for reconstruction and conversion into BMP images. Following
this, they were imported into a trabecular bone analysis software, CTAn (v 1.15, SkyScan,
Kontich, Belgium). The volume of interest (VOI) consisting of trabecular bone in each
sample was delineated. The optimal threshold value for the images was determined using
histogram analysis. Figure 2 shows a summary of the micro-CT bone analysis process.

Three-dimensional (3D) analysis was performed to acquire trabecular bone measure-
ments, namely the bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular
thickness (Tb.Th), trabecular separation (Tb.Sp), and structure model index (SMI). The
mean and standard deviation values were calculated using Microsoft Excel software (Ver-
sion 2007, Microsoft, Redmond, WA, USA). The correlation of BV/TV, Tb.N, Tb.Th and
Tb.Sp with structure model index (SMI) was determined. The trabecular bone parameters
for the microarchitecture assessment are described in Table 1.

Table 1. Trabecular bone parameters for the microarchitecture assessment [45].

Abbreviation Variable Description Standard Unit

TV Total volume Volume of the entire region of interest mm3

BV Bone volume Volume of the region segmented as bone mm3

BV/TV Bone volume fraction Ratio of the segmented bone volume to the total volume of
the region of interest %

Tb.N Trabecular number Measure of the average number of trabeculae per unit length mm−1

Tb.Th Trabecular thickness Mean thickness of trabeculae, assessed using direct
3D methods mm

Tb.Sp Trabecular separation Mean distance between trabeculae, assessed using direct
3D methods mm

SMI Structure model index An indicator of the structure of trabeculae none

Statistical analyses were performed using SPSS Statistics 24.0 for Windows (SPSS,
v.24.0, IBM, Chicago, IL, USA). Intra-observer reliability in measuring trabecular microstruc-
ture was performed using the intra-class correlation coefficient (ICC). Shapiro-Wilk test
was done to verify the normality of data. Pearson’s correlation coefficient was used to
assess the relationship between the corresponding measurement parameters. The statistical
differences in the volume of bone harvested from various regions and their measurement pa-
rameters were evaluated by analysis of variance (ANOVA) based on a 5% confidence level.
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Figure 2. An overview of the micro-CT bone analysis process. All the steps were supported by SkyScan software. The steps for the micro-CT bone analysis pathway
were bone scanning using SkyScan 1172, image reconstruction using NRecon, the volume of interest (VOI) selection and 3D morphometry acquisitions using CTAn.
Visualization of the 3D rendered model was performed using CTvox or CTvol.
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3. Results

The mean volume of bone harvested ranged from 0.10 mL to 0.25 mL. Surprisingly,
there was no significant difference in the mean volume of bone harvested from the zygo-
matic buttress (0.15 ± 0.05 mL), anterior maxillary sinus wall (0.16 ± 0.04 mL), anterior
palate (0.14 ± 0.04 mL) and anterior nasal spine region (0.14 ± 0.05 mL), despite their
differences in thickness.

Figure 3 shows the reconstructed three-dimensional appearance of bone scanned
using micro-CT. Table 2 shows the three-dimension (3-D) microarchitecture evaluation of
the maxillary bone measured at these four different sites of interest. The intra-observer
reliability showed a 0.999 intra-class correlation coefficient (ICC) (CI 0.998 to 0.999; Value
762.853, df 202; p < 0.001), confirming good reliability of the measurements obtained.
The average trabecular thickness (Tb.Th) was 0.42 ± 0.11 mm, with a range of 0.24 to
0.57 mm. Both the zygomatic buttress and anterior maxillary sinus wall had the highest
mean trabecular thickness at 0.44 ± 0.14 mm and at 0.44 ± 0.09 mm, respectively. ANS had
the lowest mean trabecular thickness at 0.34 ± 0.11 mm. Figure 4 presents the comparison
of parameters between bone grafts taken from different donor sites.
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Table 2. Comparison of parameters between bone grafts taken from different donor sites (n = 21).

Donor Site Mean ± SD Minimum Maximum F p-Value

Tissue Volume (mm3) 1.310 0.304
ZYGOMA 102.07 ± 52.83 27.21 199.57
AMSW 76.31 ± 31.92 49.09 135.50
AP 83.56 ± 26.79 51.09 113.23
ANS 50.96 ± 24.63 27.21 76.38
Overall 82.1 ± 38.32 27.21 199.57

Bone Volume (mm3) 2.959 0.062
ZYGOMA 58.98 ± 29.17 23.25 93.17
AMSW 44.31 ± 13.48 29.23 64.21
AP 37.37 ± 12.09 23.27 51.47
ANS 21.29 ± 8.08 15.03 30.40
Overall 43.23 ± 21.41 15.03 93.17

Bone Volume/Tissue Volume (%) 2.179 0.128
ZYGOMA 58.67 ± 21.16 38.59 85.83
AMSW 60.11 ± 9.30 47.38 70.01
AP 44.79 ± 4.43 38.38 52.08
ANS 44.14 ± 9.68 37.38 55.23
Overall 53.04 ±14.31 37.38 85.83

Structural Model Index 3.248 0.048 *
ZYGOMA −2.51 ± 3.60 −7.11 0.46
AMSW −0.80 ± 0.83 −1.47 0.52
AP 0.80 ± 0.31 0.46 1.27
ANS 0.79 ± 0.14 0.63 0.87
Overall −0.63 ± 2.33 −7.11 1.27

Trabecular Thickness (mm)
ZYGOMA 0.44 ± 0.14 0.25 0.57 0.669 0.583
AMSW 0.44 ± 0.09 0.33 0.56
AP 0.41 ± 0.09 0.27 0.53
ANS 0.34 ± 0.11 0.24 0.45
Overall 0.42 ± 0.11 0.24 0.57

Trabecular Number (mm−1) 1.238 0.327
ZYGOMA 1.39 ± 0.36 0.71 1.74
AMSW 1.41 ± 0.36 1.03 1.86
AP 1.12 ± 0.21 0.86 1.40
ANS 1.22 ± 0.03 1.19 1.23
Overall 1.29 ± 0.30 0.71 1.86

Trabecular Separation (mm) 0.692 0.570
ZYGOMA 0.44 ± 0.26 0.22 0.92
AMSW 0.35 ± 0.10 0.23 0.50
AP 0.47 ± 0.06 0.39 0.55
ANS 0.41 ± 0.04 0.39 0.46
Overall 0.42 ± 0.15 0.22 0.92

* Significant at p-value less than 0.05. F = Value of distribution, generated by dividing two mean squares to
determine test significance. Note: the sites of interest in this study are the zygomatic buttress (ZYGOMA), anterior
maxillary sinus wall (AMSW), anterior palate (AP), and anterior nasal spine (ANS).

One of the structure parameters, Tb.N, showed a value ranging from 0.71 to 1.86 mm−1

for the different anatomical sites. The lowest mean value was observed at the anterior
palate, at 1.12 ± 0.21 mm−1 and the highest was at the anterior maxillary sinus wall
(1.41 ± 0.36 mm−1). The anterior palate also had the lowest BV/TV (44.79 ± 4.43%), while
the anterior maxillary sinus wall had the highest BV/TV (60.11 ± 9.30%). This contrasts
with results observed for the Tb.Sp, which ranged from 0.22 to 0.92 mm. The anterior
palate had the highest value of trabecular separation (0.47 ± 0.06 mm) while the anterior
maxillary sinus wall had the lowest value (0.35 ± 0.10 mm). All together, these findings
demonstrated that the anterior palate had the highest trabecular separation with the lowest
trabecular number, and the lowest BV/TV.

All parameters showed no significant difference between different sites, except for
structural model index (SMI) (F (3,17) = 3.248, p = 0.048), when analysed using one-way
ANOVA. The post-hoc Dunnett T3 test revealed that the anterior maxillary sinus wall had
a significantly lower SMI (−0.80 ± 0.83) compared to the anterior palate (0.80 ± 0.31).
Similarly, ZYGOMA showed a significantly lower SMI (−2.51 ± 3.60) compared to the
anterior palate (0.80 ± 0.31). In short, the anterior palate had the highest SMI.
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Figure 4. Comparison of parameters between bone grafts taken from different donor sites. * ANOVA;
p < 0.05. Note: The sites of interest in this study are the zygomatic buttress (ZYGOMA), anterior
maxillary sinus wall (AMSW), anterior palate (AP), and anterior nasal spine (ANS).

Lastly, correlation analysis was done between different bone quality parameters [19,29,31].
BV/TV had a strong inverse correlation with trabecular separation (Tb.Sp) (r = −0.673,
p = 0.001). The high negative correlation between BV/TV and Tsp. showed values of
BV/TV higher than 50% squares with bones presenting most of their trabeculae separation
less than 0.40 mm between each sample. BV/TV showed a moderate correlation with
trabecular thickness (Tb. Th) (r = 0.547, p = 0.01). The positive correlation coefficient
between BV/TV and Tb.Th shows a value of BV/TV higher than 50% squares, with bones
presenting most of their trabeculae thicker than 0.40 mm.

SMI represents a measurement of surface convex curvature. There was a strong inverse
correlation between SMI and BV/TV (r = −0.882, p < 0.001). In this study, 90.9% of bone
specimens with BV/TV values lower than 50% showed a positive value of SMI, with a
preponderance of values between 0 and 1 (plate-like trabeculae). Almost forty percent
(38.10%) of bone specimens showed negative bone values, while 61.9% of bone specimens
showed positive values. Only 4.76% of the bone had positive values between 1 and 2, with
equal preponderance of plate-like and rod-like trabeculae.

SMI had a moderate inverse correlation with trabecular number (Tb. N) (r = −0.471,
p = 0.031) and trabecular thickness (Tb. Th) (r =−0.414, p = 0.062). A poor direct correlation
was recorded between trabecular separation (Tb. Sp) and trabecular thickness (Tb. Th)
(r = 0.126, p = 0.587). Correlation studies help to identify the absence or presence of a
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relationship between the trabecular bone parameters, but our findings suggest that there is
no straightforward relationship within the parameters used in the analysis. This is possibly
undermined by the unique characteristics at the four different sites as described above.

In summary, the microarchitecture demonstrated a high value of bone volume fraction,
indicating good bone quality from the four sites of interest. Moreover, the high value of
trabecular number and the normal mean value of trabecular separation indicated good
compact structure at all four sites.

4. Discussion

This study was performed on embalmed cadavers because of the difficulty in obtaining
fresh human cadavers. Due to our tropical climate, which is hot and humid, fresh cadavers
can undergo deterioration rapidly. Therefore, the cadavers were formalin-fixed as soon
as possible after death [46]. Holm and Iazzo [47] highlighted that formalin fixation is still
the most widely used and cost-effective technique for embalming human cadavers for
education and medical research. Although there is evidence that formalin significantly
alters the mechanical/biomechanical behaviour of ligaments, spine, and bone of animals,
the histologic structure, density, and the mineral and lipid parameters do not seem to be
affected [48]. Thus, this preservation method serves the purpose of the current study.

One of the limitations of this study was the lack of individual information on the
donors’ age and medical history. Thus, it was impossible to determine if the microarchitec-
ture of bone blocks studied were affected by age or medical disorders that could alter bone
quantity and quality.

Table 3 summarizes the microarchitecture at various human bone sites. Several studies
have reported that the BV/TV ratio was the most significant parameter in determining
bone quality [32]. Increased BV/TV was found in areas where great masticatory forces
were received, as a result of optimal bone adaptation to the masticatory forces [32]. A
greater value of BV/TV indicates a more compact structure that is able to resist the external
forces transferred via mastication. The bone volume fraction (BV/TV) of the maxilla ranged
from 13.53% to 48.70%, while that in the mandible ranged from 9.24 to 43.74%, depending
on the site of study (see Table 3). The mean value of the BV/TV (53.04 ± 14.31% (range:
37.38–85.53%)) found in the present study was higher than other similar studies. Kim and
Henkin [30], for example, reported the BV/TV values were 14.59 ± 7.68% for maxilla and
27.28 ± 10.19% for mandible with these values ranging from 6.75% to 48.92%. Parsa et al.
attributed this difference to the difference in samples, ROI selections and the scanner system
used [32].

The trabecular bone number (Tb.N), a parameter derived from the endosteal space
architecture, is a good indicator of bone quality. In general, a high trabecular number
suggests a more compact structure. The Tb.N of maxillary bone has been reported to
be between 0.62 to 2.19 mm−1, while values in the mandible range between 0.007 and
2.19 mm−1 (see Table 3). The present study reported a higher mean value that, nevertheless,
falls within the range reported in the literature. However, the range of trabecular number
reported in the literature is inconsistent, and in general were found to be higher in the
Caucasians. One study reported that the cadaveric maxillary posterior regions had greater
trabecular number (1.83 ± 0.25 mm−1) [36], while Kim and Henkin [30] reported greater
values from the maxilla (2.07 ± 0.80 mm−1) and mandible (3.76 ± 1.99 mm−1). These
differences could be attributed to bigger and denser bones among the Caucasians compared
to the Asian population.
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Table 3. Summary of the bony microarchitecture of various sites.

Authors (Year) Population Mean Age
(Range) n */N ** Method Site(s) Variable (If Any) BV/TV (%) Tb.N (1/mm) Tb.Th (mm) Tb.Sp (mm)

Muller et al., 1998 [21] American 68 ± 16
(23–92) 70 micro-CT Transiliac bone 14.48 ± 5.34 - 0.11 ± 0.02 0.77 ± 0.35

Giesen & Van Eijden, 2000 [22] Dutch 72.6 ± 11.2
(56–89) 99 (11) micro-CT Condyles 17.00 ± 5.00 1.66 ± 0.26 0.10 ± 0.02 0.52 ± 0.13

Moon et al., 2004 [23] Korean 55.1
(29–75) 10 micro-CT Mandible (Alveolar Bone) 43.74 ± 16.04 1.27 ± 0.24 0.31 ± 0.08 0.51 ± 0.14

Mandible (Basal Bone
superior to mandibular
canal)

20.39 ± 6.45 0.90 ± 0.23 0.28 ± 0.09 0.88 ± 0.20

Mandible (Basal Bone
inferior to mandibular
canal)

9.24 ± 7.11 0.70 ± 0.20 0.22 ± 0.05 1.31 ± 0.42

Kato et al., 2005 [24] Japanese 79.6 56 (28) micro-CT Jugale 23.2 ± 4.3 0.16 ± 0.05 1.53 ± 0.48 0.56 ± 0.20
Middle point 19.9 ± 5.4 0.15 ± 0.05 1.38 ± 0.33 0.62 ± 0.28
Zygomaxillae 20.5 ± 6.5 0.15 ± 0.06 1.49 ± 0.40 0.58 ± 0.20

Siddiqi et al., 2013 [25] New Zealander
80 (65–94) 16 micro-CT Median Palate Palate 42.9 ± 13.8 1.1 ± 0.3 0.4 ± 0.2 7.5 ± 4.7

Maxillary Premolar Premolar 38.1 ± 12.5 1.0 ± 0.6 0.5 ± 0.3 8.1 ± 5.6
Ulm et al., 2009 [26] Austrian 77.58 ± 10.09 278 (128) micro-CT Mandible (lateral incisor) Female 30.70 ± 9.91 1.50 ± 0.34 0.19 ± 0.05 0.46 ± 0.14

Male 36.90 ± 12.40 1.77 ± 0.39 0.21 ± 0.06 0.38 ± 0.14

Mandible (first premolar) Female 24.50 ± 8.45 1.47 ± 0.43 0.17 ± 0.04 0.57 ± 0.20
Male 35.90 ± 13.62 1.58 ± 0.32 0.22 ± 0.06 0.82 ± 0.27

Mandible (first molar) Female 20.90 ± 9.65 1.22 ± 0.37 0.17 ± 0.04 0.72 ± 0.28
Male 24.50 ± 7.93 1.38 ± 0.30 0.17 ± 0.04 0.58 ± 0.18

Blok et al., 2012 [27] Dutch 73.7 ± 12.5 10 micro-CT Maxilla 24.0 ± 13.0 1.57 ± 0.56 0.20 ± 0.05 0.69 ± 0.24
Mandible 37.0 ± 18.0 1.50 ± 0.42 0.29 ± 0.11 0.71 ± 0.25

Kim et al., 2013 [28] Korean NA 69 (4) micro-CT Anterior Maxilla 21.35 ± 5.18 0.99 ± 0.23 0.22 ± 0.05 0.72 ± 0.16
Posterior Maxilla 17.68 ± 6.21 0.89 ± 0.27 0.20 ± 0.07 0.79 ± 0.14
Anterior Mandible 23.87 ± 7.68 0.72 ± 0.312 0.33 ± 0.05 0.85 ± 0.13
Posterior Mandible 18.46 ± 9.44 0.78 ± 0.26 0.23 ± 0.07 0.82 ± 0.27

González-García & Monje,
2013 [29] Spanish 51.56 ± 13.78

(20–79) 52 (31) micro-CT Maxilla 48.70 ± 17.85 2.19 ± 0.71 0.22 ± 0.06 0.31 ± 0.10

Kim & Henkin, 2015 [30] American NA 34 (12) micro-CT Maxilla 14.59 ± 7.68 2.07 ± 0.80 0.10 ± 0.02 0.63 ± 0.18
Mandible 27.28 ± 10.19 3.76 ± 1.99 0.09 ± 0.02 0.42 ± 0.18

Bertl et al., 2015 [31] Austrian NA 36 (12) micro-CT Anterior Maxilla 27.15 ± 7.90 1.051 ± 0.20 0.26 ± 0.04 0.59 ± 0.13
Posterior Maxilla 13.54 ± 3.40 0.624 ± 0.14 0.22 ± 0.03 0.89 ± 0.14
Zygoma 26.79 ± 7.40 1.024 ± 0.20 0.26 ± 0.04 0.63 ± 0.13

Parsa et al., 2015 [32] Dutch NA 20 micro-CT Mandible micro-CT 32.35 ± 18.81 - - -
CBCT CBCT 36.79 ± 23.17 - - -

Kim et al., 2015 [33] Korean NA 68 (4) micro-CT Maxilla Imaging Protocol

Mandible
19.37 µm 18.53 ± 8.17 0.24 ± 0.07 0.77 ± 0.27 0.83 ± 0.17
96.87 µm 18.15 ± 8.60 0.38 ± 0.11 0.47 ± 0.17 0.95 ± 0.19
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Table 3. Cont.

Authors (Year) Population Mean Age
(Range) n */N ** Method Site(s) Variable (If Any) BV/TV (%) Tb.N (1/mm) Tb.Th (mm) Tb.Sp (mm)

Lee et al., 2017 [19] Korean 75.7 116 micro-CT Maxilla Bone Density
(67–96) (30)

Mandible
D1 37.29 ± 17.96 1.21 ± 0.45 0.30 ± 0.08 0.59 ± 0.22
D2 27.46 ± 9.58 0.99 ± 0.24 0.28 ± 0.06 0.68 ± 0.14
D3 18.40 ± 10.20 0.71 ± 0.26 0.25 ± 0.05 0.82 ± 0.19
D4 9.83 ± 8.02 0.41± 0.27 0.22 ± 0.06 1.20 ± 0.48

Suttapreyasri et al., 2018 [35] Thailand >20 62 (41) micro-CT Maxilla Location
CBCT

Mandible

Anterior Maxilla 35.23 ± 10.68 - - -
Posterior Maxilla 36.11 ± 9.15 - - -
Anterior Mandible 63.25 ± 19.85 - - -
Posterior
Mandible 46.74 ± 13.14 - - -

Kulah et al., 2019 [36] Turkish NA 17 micro-CT Maxilla 32.65 ± 7.46 1.83 ± 0.05 0.28 ± 0.05 0.57 ± 0.13
Kivovics et al., 2020 [49] Hungarian 54.7 ± 6.5 16 (9) micro-CT Maxilla * Augmented sinus micro-CT 12.25 - 0.15 0.88

CBCT (grafted with allograft) CBCT 81.29 - 1.82 0.85
Ibrahim et al., 2021 [37] Dutch NA 25 micro-CT Mandible micro-CT

Anterior
Posterior

0.008 ± 0.003
0.007 ± 0.004

0.005 ± 0.008
0.004 ± 0.001

0.007 ± 0.008
0.009 ± 0.001

-
-

CBCT CBCT
Anterior
Posterior

0.006 ± 0.002
0.005 ± 0.003

0.007 ± 0.002
0.006 ± 0.002

0.009 ± 0.003
0.010 ± 0.004

-
-

Tabassum et al., 2022 [38] Malaysian 26.6 ± 5.9
(22–43) 20 CBCT Mandible CBCT 44.40 ± 14.77 0.44 ± 0.15 1.25 ± 0.55 2.05 ± 0.75

Tayman et al., 2022 [39] Turkey NA 12 micro-CT
CBCT

Posterior
mandible

Micro CT (Std)
Micro CT (Hi)
CBCT (Std)
CBCT (Hi)

46.01 ± 8.48
44.28 ± 8.47
57.13 ± 11.10
54.45 ± 11.98

2.05 ± 0.46
2.04 ± 0.47
1.43 ± 0.25
1.43 ± 0.29

0.24 ± 0.06
0.23 ± 0.06
0.46 ± 0.09
0.44 ± 0.09

0.53 ± 0.11
0.51 ± 0.11
0.48 ± 0.12
0.46 ± 0.12

El-Gizawy et al., 2023 [40] USA 21 4 (1) micro-CT Distal femoral condyle 21.01 ± 4.72 - 1.25 ± 0.55 0.35 ± 0.03
Current study Malaysian Elderly 49 (7) micro-CT Maxilla Location

Zygoma 58.67 ± 21.16 1.39 ± 0.36 0.44 ± 0.14 0.44 ± 0.26
AMSW 60.11 ± 9.30 1.41 ± 0.36 0.44 ± 0.09 0.35 ± 0.10
AP 44.79 ± 4.43 1.12 ± 0.21 0.41 ± 0.09 0.47 ± 0.06
ANS 44.14 ± 9.68 1.22 ± 0.03 0.34 ± 0.11 0.41 ± 0.04
Mean 53.04 ±14.31 1.29 ± 0.30 0.42 ± 0.11 0.42 ± 0.15

* n is the number of specimens. ** N is the number of cadavers. CBCT = cone-beam computed tomography. NA = data (age) not available. Note: The sites of interest in this study are the
zygomatic buttress (ZYGOMA), anterior maxillary sinus wall (AMSW), anterior palate (AP), and the anterior nasal spine (ANS).
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The trabecular thickness (Tb.Th) of the maxillary bone has been reported to be between
0.10 to 0.50 mm, while values in the mandible range between 0.004 and 0.31 mm (see Table 3).
In comparison to natural bone, the Tb.Th has been reported to be significantly thinner in the
areas augmented with an allograft [50]. Values reported in the current study lean towards
the higher end of the range, and are higher than the figures reported for the mandible.

Trabecular separation (Tb.Sp) is another indicator of bone quality. The trabecular
separation (Tb.Sp) of maxillary bone has been reported to be between 0.31 to 0.89 mm, while
values in the mandible has a range between 0.007 and 1.31 mm (see Table 3). By comparison,
the value of trabecular separation found in the present study was lower than the D1 bone
reported by Lee et al. [19], but had similar values to those reported by Kim and Henkin [30]
for the mandibular region (0.42 ± 0.18 mm). As the trabecular separation reported here
leaned towards D1 bone values, it can be concluded that the trabeculae were in close
proximity, forming a compact trabecular bone structure. It is interesting that other authors
reported greater trabecular separation value in the maxilla region (0.63 ± 0.18 mm) [28]
and maxillary posterior region (0.57± 0.13 mm) [36], suggestive of variability in human jaw
bone quality. The Tb.Sp value found in the present study is within the range of the optimal
pore size for bone ingrowth (150–600 µm) [51]. This pore size is associated with better
osteoconductivity, another important factor that cannot be overlooked when developing
new biomaterials.

The parameter of SMI was described by Hildebrand & Rüegsegger (1997) to determine
the 3D morphology of trabecular bone [52]. SMI represents a measurement of surface
convex curvature by dilation of the 3D voxel model, that is, artificially adding one voxel
thickness to all binarised object surfaces [52]. SMI is derived as follows:

SMI = 6×
(

S′ ×V
S2

)
where S is the object surface area before dilation and S′ is the change in surface area caused
dilation. V is the initial, undilated object volume.

This parameter is crucial in osteoporotic degradation of trabecular bone that is char-
acterized by the presence of rod- and plate-like structures in various configurations [53].
An ideal plate, cylinder and sphere have SMI values of 0, 3 and 4 respectively. In contrast,
cylindrical and spherical cavities have SMI of −3 and −4 respectively [54]. The concave
surfaces of closed cavities demonstrate the negative convexity for the calculation of SMI.
Hence, bony regions containing greater numbers of enclosed cavities (usually regions with
BV/TV >50%) may have negative SMI values. In the current study, the mean value of
SMI is −0.62 ± 2.33, with a range of −7.11 to 1.27. The negative value of SMI seen in the
zygomatic buttress (−2.51 ± 3.60) and anterior maxillary sinus wall (−0.80 ± 0.83) can be
explained by the fact that these bones are solid and have a compact structure with a percent
volume (BV/TV) above 50%. Negative convexity to the SMI parameter was found in 38.10%
of bone specimens among our series, indicating their origin from a denser bone [29,54].
Only 4.76% of the bone had positive values between 1 and 2, with equal preponderance of
plate-like and rod-like trabeculae.

Bone quality at both the donor and recipient sites dictates treatment outcome in
human donor autograft procedures. However, bone quality is independent of bone mass,
as observed in bone with pathological disorder [55]. Therefore, the alternative is to use
allograft, xenograft or synthetic bone material [1]. However, allografts currently available
for use in dentistry are harvested from the hip and long bones and are grafted onto the
jawbones irrespective of their local characteristics. The micro-architecture of trabecular
bone has been proven to be among the crucial elements of bone quality, as it determines
the bone healing rate. However, emulating this in synthetic material remains problematic.

Apart from particulate autogenous bone, demineralised freeze-dried bone allografts,
deproteinized bovine bone allografts, synthetic β-tricalcium phosphate (β-TCP), anhydrous
dicalcium phosphate (monetite), synthetic biphasic calcium phosphate (BCP), magnesium-
enriched bioceramic, coralline-derived biomaterials, and porous titanium granules have
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been studied clinically, with their microarchitecture analysed using micro-CT [49] However,
all these bone graft materials have been shown to differ from the normal microarchitecture
of the recipient sites in the maxilla and mandible in various microarchitecture parameters.

Therefore, the three-dimensional evaluation of human cadaver maxillary bone mi-
croarchitecture in this study allows for better understanding of the qualitative differences
between the trabecular parameters among different sites, allowing researchers to appreciate
their unique characteristics that differ from the mandible [56]. Concurring the current
clinical practice of harvesting autografts from the zygomatic buttress and anterior maxillary
sinus wall, their bony characteristic serve as the microarchitecture standard to adopt when
developing new bone graft materials for use in the maxilla.

5. Conclusions

The quantity and quality of bone harvested from the zygomatic buttress, anterior
maxillary sinus wall, anterior palate and anterior nasal spine were determined by a wa-
ter displacement technique and a micro-CT scan, respectively. There was no significant
difference in all bone parameters, with the exception of the SMI. Each site has its unique
combinations of parameters. The BV/TV ranged between 37.38% and 85.83%, with an-
terior maxillary sinus wall > zygoma > palate > anterior nasal spine. The high values of
bone volume fraction indicated good bone quality at the four sites of interest. The high
value of trabecular number and the normal mean value of trabecular separation indicated
good compact structure at all four sites. Except for having the lowest Th.Sp (0.34 mm),
the anterior maxillary sinus wall consistently showed higher values together with the
zygomatic buttress in all other parameters. Concurring with the current clinical practice of
harvesting autografts from the zygomatic buttress and anterior maxillary sinus wall, their
bony characteristic serve as the microarchitecture standard to adopt when developing new
bone graft materials for use in the maxilla.
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