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Abstract: Neuron, synapse, and learning circuits inspired by the brain comprise the key components
of a neuromorphic chip. In this study, we present a conductance-based analog silicon synapse circuit
suitable for the implementation of reduced or multi-compartment neuron models. Compartmental
models are more bio-realistic. They are implemented in neuromorphic chips aiming to mimic the
electrical activities of the neuronal networks in the brain and incorporate biomimetic soma and
synapse circuits. Most contemporary low-power analog synapse circuits implement bioinspired
“current-based” synaptic models suited for the implementation of single-compartment point neuron
models. They emulate the exponential decay profile of the synaptic current, but ignore the effect
of the postsynaptic membrane potential on the synaptic current. This dependence is necessary to
emulate shunting inhibition, which is thought to play important roles in information processing
in the brain. The proposed circuit uses an oscillator-based resistor-type element at its output stage
to incorporate this effect. This circuit is used to demonstrate the shunting inhibition phenomenon.
Next, to demonstrate that the oscillatory nature of the induced synaptic current has no unforeseen
effects, the synapse circuit is employed in a spatiotemporal spike pattern detection task. The task
employs the adaptive spike-timing-dependent plasticity (STDP) learning rule, a bio-inspired learning
rule introduced in a previous study. The mixed-signal chip is designed in a Taiwan Manufacturing
Semiconductor Company 250 nm complementary metal oxide semiconductor technology node. It
comprises a biomimetic soma circuit and 256 synapse circuits, along with their learning circuitries.

Keywords: biomimetic synapse circuit; shunting inhibition; synaptic reversal potential; adaptive
STDP; spike pattern detection; neuromorphic computing; synaptic resolution

1. Introduction

The human brain has been officially designated as the most complex object encoun-
tered in our known universe. The endeavor to “understand” it is complemented by the
dream of designing an intelligent machine. The research fields of neuroscience and ar-
tificial intelligence (AI) are dedicated to these “understanding” and “application” goals,
respectively. One of the neuroscientific approaches is a bottom-up approach based on the
mathematical modeling of the brain’s elementary computational units—neuronal cells,
and synapses. Models using this approach simulate neuronal circuitries designed based
on observed connectivity patterns or to specifically test a hypothesis, thereby improving
our understanding of the neuronal pathway(s) in question [1,2]. However, this approach
is not scalable, and runs into computational problems as the size of neuronal circuitry
increases. In pursuit of the “application” goal, artificial neural network (ANN)-based deep
learning models currently dominate the field of machine intelligence and have achieved
human-level performance in tasks such as image classification and game playing [3,4].
They are inspired by the brain but represent the electrical activity of neuronal cells in an
abstract sense. Spiking neural networks (SNNs), in contrast, are much more similar to the
brain. These third-generation neural networks use spiking neuron models similar to those
used in neuroscience studies. They represent information using spike timings or spike rates.
They have been demonstrated to perform well in various benchmark tasks, such as spike
pattern classification and image classification [5–7], and their performance approaches that
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of ANNs [8,9]. Moreover, with neuromorphic hardware, SNNs are more power-efficient
than ANNs.

Neuromorphic researchers have designed dedicated hardware platforms that mimic
and/or are inspired by the computational architecture of the brain. These chips (generally
fabricated using complementary metal oxide semiconductor (CMOS) technology) primarily
comprise silicon neurons and synapse circuits for emulating the electrical activity of the
neuronal cells and synapses in the brain. One of their goals is to deepen our understanding
of the brain through the real-time emulation of neuronal circuits. They can replicate the
electrical activity of neuronal cells in real time via the implementation of multi-compartment
neuron models [10,11] that are computationally expensive to simulate. In addition to
modeling the electrical behavior of the soma (as is done in single-compartment neuron
models), multi-compartment models also incorporate the spatiotemporal structures of
dendritic trees by modeling them as separate compartments. These compartments are
connected via resistors, mimicking the spatial profile of the cell being modeled. Reduced-
compartment neuron models are a trade-off between the single-compartment point neuron
model (that completely ignore dendritic computation) and detailed multi-compartment
models. They generally have fewer compartments (two to four) and ignore the detailed
spatial structures of the dendritic trees. They aim to replicate neuronal dynamics at the
soma by capturing the somatodendritic interactions occurring in neuronal cells [12–14].

Neuromorphic chips that mimic neuronal activity use biologically plausible neuron
and synapse circuits. Many such silicon neuron circuits (conductance-based or qualitatively
modeled) have been implemented in low-power analog very large-scale integration-based
neuromorphic chips [15–17]. In contrast, most low-power analog synapse circuits imple-
ment a “current-based” synapse model rather than a conductance-based one. The former
ignores the effect of the postsynaptic membrane potential on the synaptic current. This
dependence is incorporated in conductance-based models and is critical to emulate the
phenomenon of shunting inhibition, which is thought to play important roles in informa-
tion processing in the brain [18–20]. Shunting inhibition involves blocking the transmission
of excitatory or inhibitory synaptic signals without strongly influencing the membrane
potential of the soma. The interaction between the excitatory and shunting inhibitory
synapses at different locations on the dendritic tree has also been suggested to enhance
computational capability by realizing non-linear operations between their currents [19], or
by virtual compartmentalization of the cell [20].

Implementing of a conductance-based synapse circuit requires a resistor-like circuit to
incorporate the effect of the postsynaptic membrane potential on the synaptic current. In a
few neuromorphic chips, the resistor-like circuit is implemented either using a transcon-
ductance amplifier [21–23] or switched-capacitor circuits [24,25]. However, these circuits
operate in the above-threshold domain (of the metal oxide semiconductor (MOS) transistor),
and thus consume a relatively high amount of power. In the subthreshold domain (of the
MOS transistor), a low-power synapse circuit partially incorporates the desired effect of
the postsynaptic membrane potential by using a transconductance-like circuit at the output
stage of a differential pair integrator (DPI) synapse [26]. However, this implementation is
not biologically plausible because the circuit does not implement a resistor-like element,
and thus cannot reverse the polarity of the induced synaptic current necessary to replicate
shunting inhibition. In [27], a subthreshold transconductance circuit was used to implement
the resistor-like element. However, because of fabrication mismatch, it induced a high
leakage current (static current when the circuit is inactive) into the post-synaptic node that
disturbs the spiking dynamics of the soma circuit. Compensation for this leakage current
required additional circuits that increase the overall power consumption of the neuron.

To address this gap, we propose a new low-power conductance-based synapse circuit
and demonstrate the shunting inhibition on the fabricated chip. The required resistor-like
element is designed using an oscillator and a switching capacitor-like circuit. It addresses
the issues in the circuits described above. This circuit is intended for neuromorphic
implementation of low-power biologically realistic neuronal networks in reduced or multi-
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compartment configurations. To demonstrate that its oscillatory output current has a
similar effect on information processing as a non-oscillatory synapse circuit, it is applied to
a spike pattern detection task [28,29] that is a very basic, biologically realistic information
processing model. The same task was solved by non-oscillatory synapse circuits [30] and
our results empirically show that both oscillatory and non-oscillatory synapse circuits have
similar performance.

The remainder of this manuscript is organized as follows. The next section begins
with a description of the phenomenon of shunting inhibition, followed by the details of
the synapse, neuron, and learning circuits and the spike pattern detection task. Three
experimental results, the characteristics of the proposed synapse circuit, a demonstration
of shunting inhibition, and the spike pattern detection task are presented in the Results
section. Finally, a discussion of the results and conclusions derived from this study are
provided.

2. Materials and Methods
2.1. Shunting Inhibition

Based on a detailed kinetic model of synaptic transmission [31], a phenomenological
model of the postsynaptic current in a neuronal cell can be described as follows:

Isyn(t) = gsyn(t) ·
(
Vmem(t)− Esyn

)
, (1)

where Vmem, gsyn, and Esyn are the postsynaptic membrane potential, synaptic conductance,
and synaptic reversal potential, respectively. This description is phenomenological, and
in the relevant voltage ranges, the induced synaptic current exhibits an approximately
linear dependence on the difference between Vmem and Esyn. In the simplest models, the
time-dependent synaptic conductance gsyn (t) has a bi-exponential profile similar to that of
an alpha function. From Equation (1), it can be seen that the polarity of the synaptic current
induced in the neuronal cells depends not only on the synaptic receptor involved (that fixes
Esyn), but also on the instantaneous Vmem. Synapses with their Esyn significantly higher
(lower) than the resting Vmem have excitatory (inhibitory) effects; upon activation, they
depolarize (hyperpolarize) the postsynaptic neuronal cell membrane. Synapses with their
Esyn close to the resting Vmem are called shunting inhibitory synapses. Most contemporary
low-power analog synapse circuits [26,32] implement a current-based synapse model that
mimics the bi-exponential profile of the synaptic current, but ignores its dependence on
the difference between the instantaneous Vmem and Esyn. As is clear from Equation (1), the
circuit implementation requires a resistor-like element between Vmem and Esyn.

A simplified schematic illustration of a neuronal cell is shown in Figure 1. A group
of excitatory and shunting inhibitory synapses distal and proximal to the soma impinge
on a dendritic branch. In line with generally measured neurophysiological values [33], the
resting Vmem of the cell, synaptic reversal potential of the excitatory synapses (Esyn_e), and
that of shunting inhibitory synapses (Esyn_i) are approximately −70 mV, 0 mV (typical for
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) synapses), and −65 mV
(typical for GABAa (γ-aminobutyric acid type A) synapses), respectively. Upon the stan-
dalone activation of the excitatory synapses, the induced current depolarizes the local
membrane and drives its potential towards Esyn_e. This disturbance travels as a gradually
attenuating excitatory postsynaptic potential (EPSP) towards the soma and causes it to
spike (if the depolarizing current is strong enough). The standalone activation of the shunt-
ing inhibitory synapses has a negligible depolarization effect on the neuronal membrane,
but increases the local membrane conductance around the soma (as Esyn_i is close to Vmem).
However, when both excitatory and shunting inhibitory synapses are activated together,
the EPSPs generated by the excitatory synapses are attenuated by the shunting inhibitory
synapses when the traveling EPSPs reach near the soma. If the inhibition is strong enough,
the depolarization induced by the excitatory synapses is completely silenced and the soma’s
membrane potential remains undisturbed; this phenomenon is called shunting inhibition.



Biomimetics 2022, 7, 246 4 of 23

Biomimetics 2022, 7, x FOR PEER REVIEW 4 of 22 
 

 

together, the EPSPs generated by the excitatory synapses are attenuated by the shunting 

inhibitory synapses when the traveling EPSPs reach near the soma. If the inhibition is 

strong enough, the depolarization induced by the excitatory synapses is completely si-

lenced and the soma’s membrane potential remains undisturbed; this phenomenon is 

called shunting inhibition. 

 

Figure 1. A schematic illustration of a neuronal cell with excitatory and shunting inhibitory synap-

ses. The EPSP generated by excitatory synapse attenuates as it reaches the soma. 

The relative spatial placements and temporal activations of the shunting inhibitory 

and excitatory synapses on dendritic arbors are believed to play a significant role in the 

computational capabilities of neuronal cells. In previous studies [19,33], it was shown that 

shunting inhibition implements an approximate multiplication between the excitatory 

and inhibitory synaptic conductance within the dendritic tree. In another study [20], it 

was demonstrated that in a neuronal cell, the shunting inhibitory synapses can modify 

the number of electrically isolated dendritic compartments; these then act as independent 

compartments for detecting the coincidence of incoming spikes. A study discussing the 

escape behavior of crayfish [18] hypothesized and then experimentally confirmed how 

the relative positioning and activation of excitatory and shunting inhibitory synapses on 

a neuronal cell can help fish decide whether to initiate an escape response or continue 

usual feeding activity in response to a potentially dangerous situation. Thus, implement-

ing the shunting inhibitory synapse circuits is necessary to replicate the electrical behavior 

of the neuronal circuits in the brain. Moreover, given their potential to enhance neuronal 

computation via specific non-linear interactions with excitatory inputs, it is evident that 

low-power shunting inhibitory synapse circuits can add to the capabilities of neuromor-

phic chips implementing multi-compartment or reduced-compartment neuron models. 

2.2. Conductance-Based Synapse Circuit 

A schematic of the proposed synapse circuit is shown in Figure 2A. It has three stages: 

a digital-to-analog converter (DAC, M1–M10), an integrator stage (𝐶syn and M11) similar 

to the log domain integrator (LDI), and a transconductance stage (M12–M14, C1–C3, and 

INV1–INV4). The DAC and integrator stages are similar to the synapse circuit proposed 

in our previous study [27,34]. 

Figure 1. A schematic illustration of a neuronal cell with excitatory and shunting inhibitory synapses.
The EPSP generated by excitatory synapse attenuates as it reaches the soma.

The relative spatial placements and temporal activations of the shunting inhibitory
and excitatory synapses on dendritic arbors are believed to play a significant role in the
computational capabilities of neuronal cells. In previous studies [19,33], it was shown
that shunting inhibition implements an approximate multiplication between the excitatory
and inhibitory synaptic conductance within the dendritic tree. In another study [20], it
was demonstrated that in a neuronal cell, the shunting inhibitory synapses can modify
the number of electrically isolated dendritic compartments; these then act as independent
compartments for detecting the coincidence of incoming spikes. A study discussing the
escape behavior of crayfish [18] hypothesized and then experimentally confirmed how
the relative positioning and activation of excitatory and shunting inhibitory synapses on
a neuronal cell can help fish decide whether to initiate an escape response or continue
usual feeding activity in response to a potentially dangerous situation. Thus, implementing
the shunting inhibitory synapse circuits is necessary to replicate the electrical behavior
of the neuronal circuits in the brain. Moreover, given their potential to enhance neuronal
computation via specific non-linear interactions with excitatory inputs, it is evident that
low-power shunting inhibitory synapse circuits can add to the capabilities of neuromorphic
chips implementing multi-compartment or reduced-compartment neuron models.

2.2. Conductance-Based Synapse Circuit

A schematic of the proposed synapse circuit is shown in Figure 2A. It has three stages:
a digital-to-analog converter (DAC, M1–M10), an integrator stage (Csyn and M11) similar
to the log domain integrator (LDI), and a transconductance stage (M12–M14, C1–C3, and
INV1–INV4). The DAC and integrator stages are similar to the synapse circuit proposed in
our previous study [27,34].

In the DAC, M7–M10 are binary-weighted transistors. The bias voltage sVw controls
the strength of the synaptic current, and the switches M3–M6 configure the four-bit synaptic
efficacy. The efficacy is stored in digital memories updated by a learning circuitry. Upon
the application of an input pulse (~2 ms wide) at the gate of M1, depending on the value of
sVw and the synaptic efficacy, the DAC sources a current into the node Vsyn and charges
it for the duration of the input pulse. The inverter INV0 along with M2 is for reducing
the charge injection effect. Once the input pulse is turned off, Vsyn is discharged linearly
by a constant current sunk by transistor M11, which operates in the saturation region (for
Vsyn > 4 UT). The bias voltage sVt and capacitance Csyn control the discharge rate. In most
contemporary current-based synapse circuits, the node Vsyn activates a MOS transistor (M2
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in Figure 2B) for converting the linear voltage Vsyn to an exponential current (Isyn_exc), as
shown in Figure 2B. In the proposed circuit, Vsyn activates the transconductance stage.
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(B) Output stage of current-based excitatory and inhibitory synapse circuit with the same digital-to-
analog converter (DAC) and integrator as the first two stages.

The transconductance stage is designed using an unbalanced switched-capacitor-like
circuit (INV4, M13, M14, and C3) activated by a ring oscillator-type circuit (INV1–3). In
a typical ring oscillator, the source terminals of the PMOS and NMOS devices of the
inverters (Vdd_osc and node Vin_osc) are connected to constant voltage sources, and the
circuit generates a pulsed waveform with the maximum and minimum values of Vdd_osc
and Vin_osc, respectively. The propagation time of the inverters determines the pulse width
and frequency of the waveform. It is calculated as the average time taken by the inverter’s
PMOS transistor to charge its output capacitance and that taken by the NMOS transistor to
discharge the same capacitance. To derive this, we consider the inverter INV1 in Figure 2A.
When its gate voltage Vg is near Vdd_osc its NMOS transistor discharges its output node, as
follows:

I0_NM · exp

(
kn_NM

(
Vg
)
− Vin_osc

UT

)
·
(

1 − exp
(
−(Vout − Vin_osc)

UT

))
= −Cout ·

dVout

dt
, (2)

where I0_NM and kn_NM are the current scaling factor and capacitive coupling ratio of
the inverter’s NMOS transistor, respectively. UT is the thermal voltage. Vout is the output
node of INV1. The body effect is ignored in the calculations. Separating the variables in
Equation (2) and integrating yields as follows:

∫ Vout(t)

Vout(0)

dVout

1 − exp
(
−(Vout−Vin_osc)

UT

) =
−I0_NM

Cout
· exp

(
kn_NM

(
Vg
)
− Vin_osc

UT

) ∫ t

0
dτ. (3)

By choosing the halfway point between Vdd_osc and Vin_osc to calculate the discharging
time (tPHL), the integral limit on the left-hand side ranges from Vinitial to (Vinitial + Vin_osc)/2

and that on the right-hand side ranges from 0 to tPHL. Solving Equation (3) for tPHL yields
as follows:

tPHL =
Cout · UT

I0_NM · exp
(

kn_NM(Vg)−Vin_osc
UT

) · ln

 1 − exp
(
−(Vinitial−Vin_osc)

UT

)
exp
(
−(Vinitial−Vin_osc)

2UT

)
− exp

(
−(Vinitial−Vin_osc)

UT

)
. (4)
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By repeating the same derivation for the charging process via the inverter’s PMOS
transistor, the charging time is given as follows:

tPLH =
Cout · UT

I0_PM · exp
(

kp_PM(Vdd_osc−Vg)
UT

) · ln

 1 − exp
(
−(Vdd_osc−Vinitial)

UT

)
exp
(
−(Vdd_osc−Vinitial)

2UT

)
− exp

(
−(Vdd_osc−Vinitial)

UT

)
, (5)

where I0_PM and kp_PM are the current scaling factor and capacitive coupling ratio of the
PMOS transistor in the inverter, respectively. In Equation (4), tPHL is calculated when Vg ≈
Vdd_osc and Vinitial ≈ Vdd_osc. Similarly, in Equation (5), tPLH is calculated when Vg ≈ Vin_osc
and Vinitial ≈ Vin_osc. To simplify the equation, we assume that I0_PM=I0_NM = I0, kn_NM =
kp_PM = k. Based on these substitutions, and considering that Vdd_osc − Vin_osc > 4UT , the
propagation time of the inverter (the average of tPLH and tPHL), is given as follows:

tP =
1

I0 · exp
(

k(Vdd_osc)−Vin_osc
UT

) · Cout · UT · (Vdd_osc − Vin_osc)

4
. (6)

In the proposed circuit, only Vdd_osc is a constant-voltage source (600 mV). The node
Vin_osc is not a voltage source. The current sourced and sunk by the inverters (INV1–4)
and M12 determine its voltage. The propagation time (tP) of the inverters (which controls
the oscillator’s frequency and pulse width) is thus not constant, and the frequency has
an exponential dependence on Vin_osc (see Figure 3). The terminal Vss_osc is kept above
0 V (~35 mV) to minimize the leakage current via M12. This renders the oscillator circuit
inactive when there is no input pulse. In this inactive state, Vsyn and Vin_osc are close to 0 V
and Vdd_osc, respectively. The oscillator remains off because there is insufficient headroom
for oscillation. In response to a pulse input to the DAC stage, the linearly charging and dis-
charging Vsyn activates M12 that sinks current out of Vin_osc, pulling it down and activating
the oscillator. The profiles of Vsyn and Vin_osc upon circuit activation at 50 ms (obtained
via Spectre simulation) are shown in Figure 4A,B. The voltage Vin_osc is approximately
linearly related to Vsyn, as indicated by the moving average of Vin_osc (Figure 4C). The
oscillator’s output (Vout_osc) is shown in Figure 4D. The oscillator’s output Vout_osc activates
the switched-capacitor-like circuit (M13, M14, INV4, and C3) that implements an asym-
metric resistor-type element between Vmem and Esyn. Here, Vmem is fixed at 600 mV. When
inactive, the gates of M13 and M14 remain close to Vdd_osc and a very small current flows
out of Vmem (if Esyn > Vmem). Upon circuit activation, M13 and M14 receive out-of-phase
pulses (via INV4) whose amplitudes decrease from Vdd_osc to Vin_osc. These pulses activate
M13 and M14 in the subthreshold domain (where the drain current of the MOS device
is exponentially related to its gate voltage). As the amplitude of these pulses decreases
linearly over time (because Vin_osc increases linearly over time), an exponential current is
induced out of Vmem (for Esyn > Vmem). Figure 4E plots the moving average profile of the
induced synaptic current for Esyn = 700 mV and Vmem = 600 mV.

This circuit functions as a non-linear resistor. Unlike an ideal resistor, the induced
current has an exponential dependence on the difference between Esyn and Vmem. The
current in a PMOS device increases with its source-gate overdrive voltage, and for a fixed
Vdd_osc, the overdrive in M13 and M14 is higher for Esyn > Vmem than for Esyn < Vmem.
Owing to the exponential current–voltage (I–V) relationship in the subthreshold domain,
the resistance emulated is exponentially larger for values of Esyn < Vmem (in comparison
with values of Esyn > Vmem), leading to an “asymmetric” I–V relationship (See Section 3.1).
The transconductance stage of the proposed circuit can also be used as a non-linear resistor
between terminals Esyn and Vmem if the node Vsyn is fixed at a constant value.
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50 ms with sVt = 100 mV, sVw = 280 mV, and maximum synaptic efficacy. (A) Frequency plot of the
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Plots (B) and (C) show that the oscillator’s frequency decays exponentially in a typical synaptic event.
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2.3. Architecture of Silicon Neuron Circuit

The synapse circuit described in Section 2.2 is incorporated into a silicon neuron circuit
fabricated in the Taiwan Semiconductor Manufacturing Company (TSMC) 250 nm technol-
ogy node. The block diagram is shown in Figure 5. It has 256 synapse circuits in groups of
four (64 circuits per group) for activating a qualitatively modeled soma circuit [16,35]. The
polarities of the synapse circuits can be configured as a group. In an excitatory or inhibitory
configuration (Isyn_exc or Isyn_inhib terminals chosen as outputs in Figures 2 and 5), the
current-based synapse model is evoked. Here, the induced synaptic current does not de-
pend on the postsynaptic potential, whereas it does in the conductance-based configuration
(terminal Isyn is chosen as the output in Figures 2 and 5). Upon activation, the synapse
circuits induce a current into the soma circuit via an interface circuit, causing it to either de-
polarize or hyperpolarize. The spiking behavior and current polarity of the neuronal soma
circuit are opposite to the convention. An excitatory (inhibitory) synapse circuit has Esyn
lower (higher) than the resting Vmem and depolarizes (hyperpolarizes) the soma by sinking
(sourcing) current out of (into) it, causing the postsynaptic membrane potential to drop
(rise) below (above) its resting value. This is because the soma circuit is designed primarily
using PMOS transistors with much smaller leakage currents than their NMOS counterparts.
This minimizes the power consumption of the circuit. In this study, the soma circuit is
configured in the fast-spiking Class 1 mode of Hodgkin’s classification (no spike-frequency
adaptation). Its spikes are converted into pulses using a spike detector circuit (see [30] for
details). Subsequently, these pulses are fed back to the learning circuitry (representing the
postsynaptic spike, Vpost_in in Figure 5). All synapse circuits have a learning circuitry to
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implement adaptive spike-timing-dependent plasticity (STDP) learning, which updates
the synaptic efficacy based on the spike timings of the pre- and postsynaptic spikes. To
perform pattern detection on-chip, input spike trains are transmitted from a PC to the chip
via a field-programmable gate array. An on-chip spike address decoder circuit is used to
activate the synapse circuits. The details of this spike transfer module can be found in a
previous study [30].
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Figure 4. The synapse circuit is activated at 50 ms with sVt = 100 mV, sVw = 280 mV, and maximum
synaptic efficacy. (A) Linearly discharging profile of Vsyn; (B) profile of Vin_osc. Oscillations are owing
to the current sourced out of the oscillator circuit; (C) moving average profile of the node Vin_osc,
plotted with a time window of 15 ms; (D) profile of the node Vout_osc showing oscillator’s output,
where the amplitude of the oscillations decreases linearly; (E) the induced synaptic current plotted
with a time window of 5 ms.
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Figure 5. Block diagram representation of the neuron’s architecture. The current conveyor as a link
implements a single-compartment point neuron model. It also fixes the voltage at node Vpost equal
to VCC_ref. The unidirectional resistor Rc as a link implements the unidirectional two-compartment
model.

2.3.1. Interface Block

The interface block has two circuits available as a link between the synaptic and soma
circuits: a unidirectional resistor (green part in Figure 5) composed of a transconductance
circuit (Figure 6A), and a bidirectional current conveyor circuit (yellow part in Figure 5)
whose circuitry is shown in Figure 6B. The former configures the neuron as a unidirectional
two-compartment neuron circuit, whereas the latter does so as a single-compartment point
neuron circuit.
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Figure 6. (A) Unidirectional resistor designed using a single-stage source degenerated transconduc-
tance circuit; (B) current conveyor circuit with two output branches. Iout (Iout_rev) is used when the
256 synapse circuits are connected to Vpost via terminal Isyn_exc (Isyn).
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The unidirectional two-compartment neuron configuration was described in detail
in a previous study [29]. It has a somatic compartment comprising a soma circuit and
dendritic compartment comprising a leak resistor (Rleak) and dendritic capacitor (Cden) for
integrating the synaptic current induced by the synapse circuits. The membrane potentials
of the somatic and dendritic compartments are represented by Vmem and Vden, respectively.
Based on their potential difference, current flows into or out of the somatic compartment
via a unidirectional resistor (Rc). As the name implies, no current flows into or out of
the dendritic compartment via the unidirectional resistor as would occur in an ideal two-
compartment neuron model. The dendritic capacitor Cden is approximately 8.5 pF. The
leak resistor Rleak is implemented using one synapse circuit in the conductance-based
configuration. This neuron configuration is used to demonstrate the shunting inhibition.

In the single-compartment neuron configuration, the membrane capacitance of the
soma integrates the synaptic current. However, in the circuit implementation, if synapse
circuits are connected directly to the soma circuit, their parasitic capacitance and leakage
current disturb the spiking dynamics of the soma circuit. Hence, a bidirectional current con-
veyor circuit that replicates the current induced by the synapse circuits into the soma circuit
is used as a link between them. Its two output branches induce currents with opposite
polarities. Iout has the same polarity as Iin and Iout_rev has the opposite polarity. The current
conveyor circuit is a current-controlled current source that fixes the node voltage common
to the output terminals of all 256 synapse circuits (Vpost in Figures 5 and 6B) at a fixed
value, approximately VCC_ref = 600 mV. Thus, in this single-compartment configuration, the
induced synaptic current depends only on the voltage parameters configuring the synapse
circuit. As the node Vpost is fixed to a constant value, the conductance-based synapse
circuits act as excitatory synapse circuits (when connected to the soma circuit via the output
terminal Iout_rev and with Esyn fixed higher than VCC_ref or Vpost). In the experiments, the
voltage bias VCC_b was 630 mV (370 mV below Vdd). For relatively weaker bias voltages
( VCC_b = 700 mV), the precise shapes and timings of the current induced by the synapse
circuits were not conveyed to the soma circuit. However, with a stronger bias voltage
(VCC_b = 630 mV) the circuit consumes relatively higher power and induces significant
noise. The noise is due to thermal noise in silicon and the bias voltage source. The ripple
noise of the power line was extremely low as ultralow ripple power supplies were used.
The induced thermal noise caused the soma circuit’s resting membrane potential (when
around 800 mV) to vary randomly by approximately 50 mV. This random variation was
higher for resting membrane potential values close to the spiking threshold of the soma
circuit (700 mV in single-compartment configuration). To minimize this noise, Vdd out and
Vssout were fixed at 949 mV and 50 mV, respectively, i.e., smaller and larger than their ideal
values of 1 and 0 V, respectively. This reduced the random variation to approximately 30 mV
(at a resting membrane potential of 800 mV). Furthermore, to minimize the effect of thermal
noise, the resting membrane potential of the soma circuit was increased to approximately
850 mV. The power consumed by this circuit was approximately 90 nW (measured in the
Spectre simulation). In this configuration, the 256 conductance-based synapse circuits were
connected to the soma circuit via the current conveyor’s output terminal Iout_rev. The spike
pattern detection was performed in this configuration to demonstrate that the switching
nature of the conductance stage did not affect the performance of the task.

In terms of the complexity and biological plausibility, the unidirectional two-compartment
model lies between the single- and two-compartment neuron models. The single-compartment
neuron configuration cannot be used to demonstrate shunting inhibition, because the postsy-
naptic node (output terminals of the synapse circuits, Vpost) is fixed at a constant value by the
feedback action of the current conveyor circuit. In this study, we present three experimental
results, as summarized in Table 1.
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Table 1. Summary of the experiments performed in this study.

Exp. # Demo.
Neuron Configuration Synapse Circuits Configuration (Terminal Name)

Model Resting Vmem Spiking Threshold Excitatory (Isyn_exc) Conductance-Based
Synapse (Isyn)

Conductance-Based
Resistor (Isyn)

1 Synapse circuit
characteristics - - - - - -

2 Shunting inhibition Unidirectional
two-compartment 600 mV 575 mV 192 1 1

3 Spike pattern detection Single-compartment 850 mV 700 mV - 256 -
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2.3.2. Learning Circuit

Similar to STDP learning, the adaptive STDP learning rule updates the synaptic
efficacy based on the time difference between the pre- and postsynaptic spikes. However,
the update in the efficacy is restricted to ±1 bits. This ±1 bit update is encoded by the
rectangular STDP learning function (Figure 7A) and is mathematically expressed as follows:

∆wj =

{
+1 bit, i f tj ≤ ti and ti − tj < tpre and w < wmax (LTP),
−1 bit, i f tj > ti and tj − ti < tpost and w > wmin (LTD),

(7)

where tpre is the maximum delay of the postsynaptic spike after the presynaptic spike
leading to potentiation (LTP). tpost is the maximum delay of the presynaptic spike after
the postsynaptic spike leading to depression (LTD); tj and ti represent the timing of the
pre- and postsynaptic spikes, respectively. The efficacy saturates at its maximum (wmax)
and minimum (wmin) values. The learning parameter tpre is kept constant during learning
and tpost is increased, as shown in Figure 7B. The details of the adaptive STDP learning are
provided in a previous study [29]. Each synapse circuit has a learning circuit to implement
the adaptive STDP learning. A block diagram is shown in Figure 8A. The synaptic efficacy
is stored in a four-bit up-down counter and updated by the circuits controlling its LTP
and LTD. A conceptual schematic of the half-circuit controlling the LTP of the synaptic
efficacy is shown in Figure 8B. The details of the circuit operation are provided in another
study [30]. The value of VLTP (which controls tpre) was fixed at 780 mV. The initial value
of VLTD (that controls tpost) was fixed at 783 mV and was adapted to higher values during
learning (as shown in Figure 7B). The chip does not contain an adaptation circuitry, and the
adaptation of VLTD was controlled via an external voltage source.
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2.3.3. Spike Pattern Detection Task

The goal of the spike pattern detection task is to detect a 50 ms long spike pattern
hidden within stochastic input spike trains at irregular intervals using a single neuron in
an unsupervised manner. The neuron receives spike trains via Naff synapses (Naff is the
number of afferents). These spike trains are generated independently via an inhomoge-
neous Poisson process. The instantaneous firing rate ranges between 0 Hz and 90 Hz (the
minimum time period for changing from 0 Hz to 90 Hz is 50 ms). Each afferent spikes at
least once in a 50 ms duration, fixing 20 Hz as the minimum spiking frequency. Upon the
generation of stochastic spike train (with a length of 225 s), a random 50 ms long segment
(the target spike pattern) is chosen and copied. Subsequently, the original spike train is
segmented into 50 ms long sections. Depending on the required spike pattern repetition
frequency (chosen as 25 or 10%), certain randomly chosen sections are replaced by the
target spike pattern. Consecutive 50 ms sections are avoided in this copy–paste process.
This process ensures that only the specific spike time of the afferents distinguishes the spike
pattern. The population average spike rate (measured in 10 ms time bins) is approximately
the same inside and outside the spike patterns (approximately 54 Hz). These spike trains
are used as inputs with Naff = 256 for the spike pattern detection experiment. The spike
trains are 225 s long, and 50 runs were performed for each experimental setup.

The ideal STDP learning model has been shown to perform well in such spatiotempo-
ral pattern detection tasks; however, its circuit implementation requires high-resolution
synaptic efficacy [5,28]. In contrast, low-power circuits generally adopt memory devices un-
der five bits for synaptic efficacy, owing to the silicon area and power constraints. Thus, we
propose a hardware-friendly, bioinspired learning rule called adaptive STDP. In previous
studies, the task described above was solved using adaptive STDP learning via simula-
tions [29] and circuit experiments [30] with current-based four-bit excitatory synapses.
In this study, we solved this task using the conductance-based four-bit synapse circuit
described in Section 2.2.

3. Results
3.1. Characteristics of the Conductance-Based Synapse Circuit

The experimental results for the fabricated conductance-based synapse circuit are
shown in Figure 9. The induced synaptic current is in the picoampere range, and is
measured as a voltage using an on-chip high-resistance circuit (a source-degenerated
transconductance circuit similar to Figure 6A). The synaptic currents were measured for
21 different values of Esyn (from 500 to 700 mV) with Vmem = 600 mV and Vdd_osc = 600 mV.
Six measurements were performed for each of the Esyn values. The time traces of one
measurement are shown in Figure 9A. The mean peak intensities (averaged across six mea-
surements) of the synaptic currents in Figure 9A for the Esyn values are plotted in Figure 9B,
and show the non-linear I–V relationship (orange trace). A negligible standard deviation
was observed across the repeated runs. The circuit was designed such that the static power
consumption did not exceed 2 pW (across all of the process corners). The measured static
power consumption of the single synapse circuit on the chip was approximately 1.64 pW.
This was calculated by an on-chip measurement of the average static current drawn by
256 synaptic circuits. Owing to the transconductance stage, the dynamic power consump-
tion of this circuit is higher than that of contemporary low-power current-based synapse
circuits designed to operate in the subthreshold domain. The dynamic power consumption
to generate an AMPA-type synaptic current is approximately 5.2 pJ/spike. The voltage
parameters used for the measurements were as follows: Vdd_osc = 600 mV, sVw = 315 mV,
sVt = 160 mV, Esyn = 700 mV, and Vmem= 600 mV, with the maximum synaptic efficacy.
These parameters were used in the spike pattern detection task (Section 3.3). The dynamic
power consumption contribution from the DAC stage alone is approximately 60 fJ/spike.
The DAC is active only during the input pulse (~2 ms). The majority of the dynamic power
in the circuit is consumed by the transconductance stage, which is active both during the
input pulse and the discharge phase of the synaptic current. The circuit voltage parameters
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used in these measurements are listed in Table 2. The parameter sVt =160 mV generated
a synaptic current with small time constants (approximately 3–5 ms). For clarity in the
plotted image, sVt = 80 mV was chosen for the measurements shown in Figure 9. In all the
other measurements in this study, it was fixed at 160 mV.
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Figure 9. (A) Synaptic current measured as voltage for 21 different values of Esyn (500 mV to 700 mV)
with Vmem = 600 mV. Each of the 21 measurements were repeated six times and ignorable standard
deviation was observed among the repeated runs; (B) non-linear I–V relationship. The Orange trace
plots the peak intensities of synaptic currents in (A) and the purple trace plots the same with Vdd_osc

and sVw reduced to 500 mV and 340 mV, respectively. Both traces are plotted against corresponding
values of Esyn.

Table 2. Synapse circuit’s voltage parameters used for measurements. Synaptic efficacy was set to
maximum value for both measurements.

Measurements sVw sVt Vdd_osc Esyn Vmem

Characteristics of the synapse
circuit 370 mV (340 mV) 80 mV 600 mV (500 mV) 500 mV to 700 mV 600 mV

Single synapse power
consumption 315 mV 160 mV 600 mV 700 mV 600 mV

To further characterize the circuit, the results measured using the Spectre simulator
(unless stated otherwise) are also presented. With Vdd_osc, Vmem, and Esyn fixed at 600, 600,
and 700 mV in the static condition (no spike input), respectively, the current flowing into
the node Vmem is under 20 fA. The current flows into (out of) the node Vmem if Esyn > Vmem
(Esyn < Vmem). The dynamic power consumption of the circuit with synaptic efficacy values
of 1 and 15 and a time constant of 3 ms is estimated as under 700 fJ/spike and 4.5 pJ/spike,
respectively. This value is about 15 % lower than the experimentally measured value and
the difference is probably due to fabrication process variations. The efficacy values of 1
and 15 induce synaptic currents with a peak intensity of 10 pA and 68 pA, respectively,
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corresponding to the oscillator’s maximum frequency of 2.4 kHz and 17.7 kHz, respectively.
The higher the oscillation frequency, the higher the dynamic power consumption. The
dynamic power consumption of the circuit can be reduced by using a smaller Vdd_osc
(relative to Esyn), at the expense of a higher current flowing into its output terminal Vmem
(for Esyn > Vmem). Lowering Vdd_osc increases the source-gate overdrive voltage for M13
and M14 (see Figure 2), and when operating in the subthreshold region, an exponentially
larger current flows into Vmem. With Vdd_osc = 500 mV and all other parameters remaining
the same, the static current flowing into Vmem increases from 20 fA to approximately 325 fA.
Upon activation, the induced current is also exponentially larger. The dynamic power
consumption with synaptic efficacy values of 1 and 15 is estimated as under 600 fJ/spike
and 3.6 pJ/spike, respectively, corresponding to the oscillator’s maximum frequency of
3 KHz and 20.1 KHz and synaptic currents of 26 pA and 180 pA, respectively. Thus, with
a smaller Vdd_osc, for approximately similar values of the oscillator frequency and power
consumption, the induced current is exponentially larger. The purple trace (experimental
measurement) in Figure 9B plots the measured peak intensity for 21 different values
of Esyn (averaged over six measurements), similar to the orange trace, but with Vdd_osc
reduced from 600 mV to 500 mV. As the current induced with a smaller Vdd_osc is larger, the
parameter sVw was reduced from 370 mV to 340 mV to ensure that the measured voltage
remains in the linear range of the high-resistance circuit. The circuit operates reliably across
all of the process corners for Vdd_osc > 450 mV.

Thus, the power consumption of this circuit can be minimized at the expense of the
static current flowing out of its output terminal (305 fA when Vdd_osc is reduced from
600 mV to 500 mV), which can be compensated for at the level of the dendrites or the soma.
In addition, the static current (along with the intensity of the induced synaptic current)
can be controlled using the back-gate voltages Vbulk of M13 and M14 (see Figure 2). In the
measurements above, Vbulk was fixed at 1 V; increasing it reduces the static current flowing
into Vmem. With Vdd_osc = 500 mV, Esyn = 700 mV, and Vbulk = 1.2 V (increased from 1 V),
the static current reduces from 325 fA to under 50 fA.

3.2. Shunting Inhibition on Chip

The shunting inhibition was demonstrated using the unidirectional two-compartment
neuron configuration. Of the 256 synapse circuits, 192 were configured to be excitatory
(connected via terminal Isyn_exc), 1 as shunting inhibitory (GABAa-type connected via
terminal Isyn), and 1 was configured as the leak resistor Rleak (connected via terminal Isyn).
The remaining 62 synapse circuits were connected via terminal Isyn, but were not activated
in this demonstration. The synaptic efficacies of all of the synapse circuits were set to
the maximum. The resting membrane potential of the soma was set at approximately
600 mV. The synaptic reversal potential (Esyn) for the shunting inhibitory synapse circuit
was set to 590 mV. For the synapse circuit configured as the resistor Rleak, the value of
Eleak was set at 590 mV. These values were set based on the relative difference of general
electrophysiological values measured from neuronal cells. The average resting membrane
potential in neuronal cells is about −70 mV. In our chip, the maximum and minimum
voltage supplies were 1 V and 0 V. Furthermore, the soma circuit is designed utilizing
PMOS transistors’ characteristics and its spiking behavior is opposite to the convention (See
Section 2.3). Due to this, its resting membrane potential is close to 1 V instead of 0 V. It was
set to 600 mV in the unidirectional two-compartment configuration, as this value is ideal for
the operation of both synapse and soma circuits. Additionally, shunting inhibitory synapses
have a reversal potential close to the resting membrane potential (−70 mV), and on average,
this value is slightly higher than the resting membrane potential [36,37]. However, as the
polarity of the current in our soma circuit is opposite to that of the conventional direction,
the value of the synaptic reversal potential (590 mV) was fixed slightly lower than the
resting membrane potential. Upon activation, an excitatory synapse generates an EPSP
that is shunted if a shunting inhibitory synapse circuit is simultaneously activated. This
is because the shunting inhibitory synapse circuit turns on in the right region of the I–V
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plot in Figure 9B (Esyn > Vmem), and shunts the EPSP as desired. To demonstrate the
shunting inhibition in the circuit experiments, the learning circuitry was deactivated, and
the following runs were performed. Initially, only one excitatory synapse circuit was
activated by an input spike. In the second run, only the shunting inhibitory synapse circuit
was activated, and in the third run, both the excitatory and shunting inhibitory synapse
circuits were simultaneously activated. The dendritic membrane potentials for all three
cases are plotted in Figure 10A. In the first run, the dendritic membrane potential was
strongly depolarized. As expected, in the second run, there was no major change in the
dendritic membrane potential. In the third run, the EPSC induced by the excitatory synapse
circuit slightly depolarized Vden. As expected, the EPSP was shunted by the shunting
inhibitory synapse circuit, i.e., Vden did not depolarize as strongly as in the first case.
Each of the three runs above was performed 10 times, and it was observed that shunting
inhibition in the second run reduced the amplitude of the EPSP in the first run by an average
value of 34.6%, with a standard deviation of 1.65%. Two additional runs were performed
using additional excitatory synapse circuits with the same circuit parameters. First, the
minimum number of excitatory synapse circuits (four) required to generate a spike were
activated synchronously, and next, the same four excitatory synapse circuits were activated
along with the single shunting inhibitory synapse circuit. The dendritic (orange and red
traces) and somatic (blue and green traces) membrane potentials for both runs are plotted in
Figure 10B. As expected, the soma did not spike in the second run, owing to simultaneous
activation of the shunting inhibitory synapse. These runs were performed 15 times, and the
probability of blocking the soma’s spike by the shunting inhibition was observed as 100%.
Synchronous activation of five excitatory synapse circuits was required to overpower the
inhibition of a single synapse and for the soma to generate a spike. Instead of using all
192 synapse circuits for the demonstration, we chose fewer circuits, this was done to show
visible dendritic depolarization with both single and multiple (four) excitatory synapse
circuits. By the appropriate configuration of the circuit’s voltage parameters (that control
the amplitude and time constant of excitatory and shunting inhibitory synapse current),
the number of synapse circuits can be chosen as desired. The spiking threshold of the soma
circuit was approximately 575 mV.

3.3. On-Chip Spatiotemporal Spike Pattern Detection

This subsection presents the results of the spatiotemporal spike pattern detection
task using adaptive STDP learning, corresponding to Experiment 3 in Table 1. We used
the single-compartment neuron configuration with all 256 synapse circuits configured as
conductance-based synapses (connected via terminal Isyn). The goal of this experiment is
to demonstrate that the oscillatory nature of the induced synaptic current has no undesired
effect on the performance relative to the same experiment with the synapse circuits in the
excitatory configuration (connected via the output terminal Isyn_exc in Figures 2 and 5). The
details and results of the same spike pattern detection task using excitatory synapse circuits
are described in another study [30]. The experiments were performed in two groups. In the
first (second) group, input spike trains with a spike pattern repetition frequency of 25%
(10%) were used. More stochastic spikes are present in the second group (90%) compared
to the first group (75%), further increasing the difficulty of the pattern detection task. Upon
learning, in successful trials, the neuron only spiked in the presence of the learned spike
patterns, and never outside the patterns. The chosen success criterion was a hit rate greater
than 98% and zero false alarms in the last 75 s of the run, similar to the criteria used in
other studies [28–30].

The results of the spike pattern detection task obtained from the experiments with
pattern repetition frequencies of 25% and 10% are listed in Table 3. In the former case,
48 out of 50 runs were successful (96% success rate), and in the latter, 44 out of 50 runs were
successful (88% success rate). In all these runs, a hit rate of 100% with zero false alarms was
obtained in the last 75 s of the run. These runs correspond to Setups 3 and 1 in our previous
studies [29] (numerical simulation) and [30] (circuit experiments), respectively. The success
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rate for 25% (10%) pattern repetition frequency case was 95% (90%) in the former and
96% (90%) in the latter study. Thus, the performance of the proposed conductance-based
synapse circuits in the spike pattern detection task is similar to that obtained via the
simulations and circuit experiments for the current-based non-oscillatory synapses. The
only parameters changed between the two experiments (conductance-based oscillatory
synapse circuits and current-based non-oscillatory ones) were sVw, the initial value of the
synaptic efficacy, and a parameter that controls the current to set the resting potential of the
soma circuit. In both cases, the resting membrane potential of the soma circuit was fixed at
approximately 850 mV. The initial value of synaptic efficacy was selected to ensure that the
spiking frequency of the soma during the initial phase of the run is within the desirable
range of 40–200 Hz [29]. The conductance-based synapse circuit requires a relatively higher
sVw than the current-based circuit to generate the same current; hence, a higher value was
used.
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Figure 10. Demonstration of shunting inhibition. (A) Three traces of dendritic membrane potentials
corresponding to Runs 1, 2, and 3, respectively. Each trace was measured ten times. The figure shows
the moving average data of three single traces plotted with a time window of 50 µs. Depolariza-
tion reduces when both excitatory and shunting inhibitory synapse circuits are activated together;
(B) somatic and dendritic membrane potentials for two different runs. Synchronous activation of four
synapse circuits causes the soma to spike (blue trace). However, if the additional shunting inhibitory
synapse circuit is simultaneously activated, the depolarization is not strong enough and the soma
does not spike (green trace).
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Table 3. Results and comparative performance in the spike pattern detection task.

Simulation Results with
Non-Oscillatory

Current-Based Synapses [29]

Experimental Results with
Non-Oscillatory

Current-Based Synapses [30]

This Study with Oscillatory
Conductance-Based

Synapses

Success rate with 25% pattern
frequency 95% 96% 96%

Success rate with 10% pattern
frequency 90% 90% 88%

The value of sVw needed also depends on Vdd_osc (see Section 4). These results em-
pirically demonstrate that the oscillatory nature of the synaptic current induced by the
proposed synapse circuit has a negligible detrimental effect on the spike pattern detection
task. The resting membrane potential of the soma circuit was fixed at approximately 850
mV and the spiking threshold was approximately 700 mV. The initial value of synaptic
efficacy was fixed at eight for all synapse circuits. The common voltage parameters of the
synapse circuits, i.e., sVw, sVt, and Esyn, were fixed at 315, 160, and 720 mV, respectively.
Vdd_osc was fixed at 600 mV, and Vpost was fixed at approximately 600 mV via VCC_ref. The
evolution of the neuron dynamics for one of the runs with a pattern frequency of 10% is
shown in Figure 11. A trace of the membrane potential is shown in Figure 11A. The spiking
frequency is high during the initial phase of the run. It decreases as learning progresses
and the neuron becomes more selective to the spike inputs. The trace in the last second is
magnified in Figure 11B; as expected, the neuron spikes only in the presence of the pattern.
The times at which the 50 ms pattern ends are labeled in the bottom-right corner of the
figure, and the pattern duration is marked by a box. Figure 11C shows the adaptation
of VLTD during learning, and Figure 11D shows the bimodal distribution of the synaptic
efficacies after learning is completed.

During the pattern detection task, the average power consumed by the soma and
256 synapse circuits was measured (from the chip) as under 6 and 25 nW, respectively.
These were the average values measured during the initial 50 s of the run, when most of
the synapse circuits were active. The average static power consumption of the 256 synapse
circuits when they were not activated was less than 450 pW (<2 pW/synapse circuit). The
power consumption values reported for the synapse circuit did not include the power
consumed by the learning circuitry.
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4. Discussion and Conclusion

One of the primary goals of neuromorphic computing is to provide real-time or acceler-
ated emulation of neuronal circuitries in dedicated neuromorphic hardware to improve our
“understanding” of the brain. This requires neuromorphic implementation of biologically
plausible neuronal networks using reduced or multi-compartment neuron configuration.
The primary focus of this study was a key component of such a network, a low-power
conductance-based synapse circuit. The advantage of this circuit over contemporary analog
synapse circuits is its ability to implement shunting inhibition. It was suggested to en-
hance neuronal computation via the specific non-linear interactions between the excitatory
and shunting inhibitory synapses located at different locations on a dendritic tree [18–20].
Though the exact mechanisms via which shunting inhibition improves neuronal compu-
tation is still unclear, synapse circuits with this capability are critical for the emulation of
biologically plausible neuronal networks. The proposed oscillator-based synapse circuit im-
plements a phenomenological conductance-based model of the synapse capable of shunting
inhibition. It is suitable for low-power implementations of reduced-or multi-compartment
neuron models where the somatic and dendritic compartments are spatially distant. In
this study, the simplest possible reduced-compartment neuron model, the unidirectional
two-compartment configuration, was chosen to demonstrate the shunting inhibition.
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A natural question on our synaptic circuit is the ill effect of its oscillatory nature. It was
shown by circuit experiment that our synaptic circuit had no disadvantage in a most basic
biologically plausible neuromorphic computational task. This study does not promote
the use of the proposed synaptic circuit over current-based excitatory synapse circuit
in single-compartment point neuron configuration because the current-based excitatory
synapse circuits have much lower dynamic power consumption (approximately one order
of magnitude lower) [30] compared to the proposed circuit. In the spike pattern detection
experiment, the conductance-based synapse circuit was intentionally configured to act
as an excitatory current-based synapse in a point neuron configuration to demonstrate
that its oscillatory nature has a negligible effect on neuronal information processing in the
task, and the measured results empirically support this. This single-compartment point
neuron model (without shunting inhibition) was selected because we could not find a clear
computational model that exploits the shunting inhibition.

The ideal operating frequency of the ring-oscillator-type circuit in the transconductance
stage should range between 2 and 25 KHz, corresponding to synaptic efficacies of 1 and
15, respectively. The minimal value of 2 KHz was chosen because it is sufficiently higher
than the maximum spike frequency of neuronal cells, and its period (500 µs) is not too
close to the minimum synaptic decay time constant of AMPA synapses (~3 ms). A high
operating frequency leads to high fidelity in the induced synaptic current, but at the cost
of higher dynamic power consumption. Hence, a trade-off must be made between the
operating frequency and power consumption of the circuit. It can be made based on the
desired application. In this study, the voltage parameters for the synapse circuits were
tuned manually without any consideration to minimize the power consumption. In the
future, the minimum oscillator frequency required for the spike pattern detection task will
be explored via numerical simulations.

The conductance implemented by the proposed synapse circuit between Vmem (or Vden)
and Esyn is non-linear, with an exponential dependence. The circuit has an exponentially
lower conductance for Esyn < Vmem (left region of the I–V plot in Figure 9B) than for
Esyn > Vmem. The conductance can be increased by decreasing Vdd_osc relative to Esyn
(Figure 9B). Although this non-linear conductance is not detrimental to implementing the
shunting inhibition phenomenon (the circuit operates in the right region of the I–V plot in
Figure 9B), a more linear relationship would better fit the phenomenological conductance-
based synapse model (Equation (1)). Any circuits in which the oscillator’s behavior is
controlled without disturbing its power terminals will be explored in the future with the
goal of removing the exponential non-linearity.

The static power consumption of the proposed synapse circuit was measured as
1.64 pW, resulting in 1.64 nW for 1000 synapse circuits. We could not find the static power
consumption metric for comparison with low-power current-based synapse circuits such
as LDI and DPI synapse circuits [26,32]. In point neuron circuits with linear synapse
models, the static power consumption is not important, because a synapse circuit can be
shared by multiple synaptic inputs. However, for a multi-compartmental implementation
in which the shunting inhibition synapses play important roles, minimizing the static
power consumption is important, because many synapse circuits have to be implemented
at different physical locations according to the desired spatial configuration of the neuron.
Hence, minimizing the static power consumption of a single circuit is an important design
constraint. The dynamic power consumption of this circuit is comparatively higher. In the
spike pattern detection task, the 256 conductance-based synapse circuits (configured to act
as excitatory synapses) consumed less than 26 nW of power (measured from the chip), and
in the same task using current-based excitatory synapse circuits, the power consumption
was less than 2.5 nW [30]. The power consumed by conductance-based synapse circuits
is significantly higher, but can be reduced by using a smaller value of Vdd_osc. The
circuit operates reliably across all process corners for values of Vdd_osc > 450 mV. When
Vdd_osc = 450 mV, a much smaller sVw is required to induce the same current. In the
spike pattern detection experiment, with Vdd_osc = 450 mV (reduced from 600 mV) and
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sVw = 215 mV (reduced from 315 mV) and all other parameters remaining unchanged, the
power consumed by 256 synapse circuits was measured to be less than 5 nW. However,
using a smaller Vdd_osc of 450 mV increased the static current flowing out from Esyn to
Vmem, and thus increased the overall static power consumption. In our experimental setup,
no provision was present to measure the current sourced by Esyn. As such, this increase in
the static current (and thus the change in the static power) was evaluated using the Spectre
simulator. For a synapse circuit, the static current flowing from Esyn to Vmem increased
from approximately 20 fA to 1.41 pA when Vdd_osc was reduced from 600 mV to 450 mV.
For 256 synapse circuits, this would amount to approximately 362 pA, and the power
consumption would increase by less than half a nano watt. Thus, the power consumption
of the synapse circuit can be minimized at the expense of a relatively higher static current
(from Esyn to Vmem), whose effect on the membrane potential can be compensated for at
the dendritic level. The bulk terminal Vbulk provides additional control over the current
induced (both static and dynamic) by the synapse circuits and can be used to minimize
the static current. For a multi-compartment neuron implementation with a large number
of synapses, minimizing the static current flowing into or out of the synapse circuits is
important for minimizing the overall power consumption. At the dendritic level, every
node in the compartmental model would require a wide-range transconductance circuit to
compensate for the static current flowing into that node (to maintain the resting membrane
potential of that compartment). The higher the current, the higher the power consumption
of the transconductance circuits.

In the single-compartment configuration, power consumption can be further reduced
by improving the design of the current conveyor circuit. The current-conveyor circuit
induced noise in the soma circuit. To minimize this effect, the power terminals of its
output branch were fixed at 949 mV and 50 mV, instead of the ideal values (1 V and 0 V,
respectively), and the resting membrane potential of the soma circuit was maintained at
850 mV (150 mV higher than the spiking threshold). To account for this change, a relatively
higher sVw value (315 mV) was required. By improving the design of the current conveyor
circuit, a smaller value of sVw can be used, thereby reducing the power consumption of
the circuit. The dynamic power consumption of this circuit will still be higher than that of
current-based synapse circuits. The additional functionality of the proposed circuit comes
at the cost of a relatively high power consumption.

As an interface, the unidirectional resistor consumes much less power than the cur-
rent conveyor circuit (approximately two orders of magnitude lower); thus, the unidi-
rectional two-compartment neuron model can be more efficient than the widespread
single-compartment neuron model. The experimental results of the spike pattern detection
task using the unidirectional two-compartment model and its comparison with the single-
compartment configuration will be presented in a future study. The neuron circuit was
fabricated in a relatively older TSMC 250 nm technology node, but all the circuits presented
in the study are compatible with lower-technology nodes; 250 nm was chosen because of its
availability and financial constraints. A 28 nm fully depleted silicon-on-insulator (FD-SOI)
technology will be used for future work.
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