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Abstract: As one of the new intelligent materials, controllable bionic adhesive materials have great
application prospects in many fields, such as wearable electronic devices, wall climbing robot systems,
and biomedical engineering. Inspired by the microstructure of the newt pad’s surface, this paper
reports a bionic adhesive surface material with controllable adhesion on dry, wet acrylic, and iron
sheet surfaces. The material is prepared by mixing the PDMS matrix with micron carbonyl iron
powders (CIPs) and then pouring the mixture into a female mold prepared by Photo-curing 3D
Printing for curing. As the mold interior is designed with a two-level microstructure array, the
material’s surface not only coated a regular hexagonal column array with a side length of 250 µm and
a height of 100 µm but also covered seven dome structures with a diameter of 70 µm on each column.
In what follows, the adhesion force of the proposed materials contacted three different surfaces are
tested with/without magnetic fields. The experimental results show that the MAEs covered with
two-level bionic structures(2L-MAE) reported in this paper exhibit a stronger initial adhesion in the
three types of surfaces compared to the normal one. Besides, we also found that the magnetic field
will noticeably affect their adhesion performance. Generally, the 2L-MAE’s adhesion will increase
with the external magnetic field. When the contact surface is an iron sheet, the material adhesion will
be reduced by the magnetic field.

Keywords: tunable adhesion; bionic-inspired adhesion; magnetoactive elastomer; two-level microstructure

1. Introduction

Natural selection has enabled some animals to evolve the ability to move speedily on
the inclined wall [1,2]. Research shows that the microstructure array covered by the feet of
these animals is the key to their strong adhesion ability [3]. For instance, the hierarchical
microstructure of gecko toes allows them to climb on the inclined wall [4]. The sucker
microstructure of disk-winged bats allows it to climb on smooth surfaces [3]. The hexagonal
microstructure of a tree frog’s pad allows it to climb on the wet wall [5]. Inspired by these
phenomena, scholars have constructed similar microstructures on soft surfaces through
photolithography [6], ultraprecision diamond cutting [7], polymer thin film dewetting [8],
and other methods to reinforce the adhesion of those surfaces.

Nevertheless, when the adhesion ability is enhanced, the material usually becomes
difficult to detach. Therefore, in order to solve this problem, how to prepare biomimetic ad-
hesive materials with adjustable adhesive force to achieve the reversible switching between
attach and detach states has become a hotspot in this research field [9–13]. In recent years,
the research on controllable biomimetic adhesive materials has made great progress. The
surface of such materials is usually covered with field-sensitive microstructure arrays [14].
When external stimuli are applied to the material, the morphology of the microstructure
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array is deformed. As a result, the contact area between the microstructure array and the
substrate would be changed, thus changing the adhesion force in the macroscopic. For
example, utilizing shape memory elastomers [9] and liquid crystal polymers [10] to fabri-
cate the array of microstructures can make the adhesion force of bionic adhesive materials
temperature-dependent.

In 2013, Gillies and his group [15] reported that when the serrated microstructure
array is constructed on the surface of magnetoactive elastomers (MAE), the structure
will be greatly deformed under the effect of an external magnetic field, thus changing its
adhesion [16]. Compared with other control methods, magneto-responsive adhesion has the
advantages of fast response, strong reversibility, and safety, making it a strong engineering
application prospect. Subsequently, scholars [14,17–21] design and fabricate the different
microstructures on MAEs’ surfaces to enhance their controllable adhesion properties.

Current Strategies for fabricating microstructures on MAEs’ surface typically include
laser micromachining [22,23], self-assembling [24–26], and replica molding [27]. Laser
micromachining enables rapid microstructuring of the pattern on MAE’s surface using
remote near-infrared irradiation. However, the magnetic particles inside the MAE would
be exposed to the air during the ablation process. Therefore, micro patterns fabricated
by laser micromachining are easy to crack and break when subjected to external forces.
The self-assembling method could only form “mountain-like” structures (micron size)
on MAE’s surface by applying the external magnetic field during the curing progress.
Moreover, the replica molding method requires specific approaches to release the MAE
from the mold. Therefore, how to design the microsurface with high controllable adhesion
and fabricate those structures with sufficient structural strength is still a hot topic in the
research field.

As an ancient amphibian, newt has the ability to crawl on almost vertical dry and
moist surfaces. Recent research [28,29] shows that this unique ability is attributed to the
hexagonal column and hemispherical microstructure at its toe. In this study, mimicking the
microsurface of the newt’s pad, this paper designed a 2-level microstructure array and used
Photo curing 3D printing technology to prepare a female mold with this microstructure.
Subsequently, we mixed and poured carbon iron powder (CIP) and PDMS matrix into
the female mold in a certain proportion. Hence, the newt-inspired 2-level microarray is
constructed at the MAE’s surface. On this basis, we first built a normal adhesion test system
and selected normal MAE as the control group. Finally, the adhesion properties of 2L-MAE
materials in dry and wet acrylic and iron sheets under different external magnetic fields
have been studied experimentally.

2. Experiment Section
2.1. Biomimetic Structure Design

In 2013, Huang and Wang [28] found that the hexagonal cells are separated by narrow
networking grooves on the newt’s pads, and the size ratio of them is around 60:1. Besides,
the refs [28,29] reported that the increase of the size ratio would enhance their adhesion
performance, when the newt-inspired adhesion surfaces are being prepared. However,
increasing the size ratio would trigger the demolding difficulty during preparation. There-
fore, the bionic two-level array structure designed in this paper is given in Figure 1b.
The microstructure is divided into upper and lower parts (See Figure 1d). As shown in
Figure 1a, The bottom of the structure has a side length of 250 µm. The array is composed
of hexagonal columns, and the spacing of each hexagonal column in the array is 70 µm.
Besides, ref [28] also found that the hexagonal structures on the newt’s pads are covered
with nano-size hemispherical microstructures. Hence the upper structure designed in this
work is composed of 7 domes on the lower hexagonal columns, with a dome height of
30 µm and a radius of 90 µm. One dome is located at the center of the hexagonal column,
and the other six domes are equiangular and distribute 170 µm (See Figure 1c) from the
column’s center.
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Figure 1. The 2-level microstructure used in the research (a) The vertical view of the lower structure
(b) The 3D view of the 2-level structure (c)The front view of the 2-level structure (d) The female mold
and its microstructure.

2.2. Biomimetic Structures Preparation

As shown in Figure 2, the material preparation steps in this study include three steps:
mold preparation, MAE mixture preparation, and bionic microstructure fabrication. The
specific material preparation process can be described as follows:

Manufacturing of the Female mold manufacturing: female mold with designed struc-
tures was printed by using a Photo curing 3D printer (MicroArch S140, BMF Material
Technology Inc., Shenzhen, China). Subsequently, the printed mold was carefully cleaned
and separated from the substrate. Then, the mold was placed in absolute ethanol for 24 h,
which could clean all the resin left in the mold. Finally, the release agent (efficient mold
release agent, QQ-19, Qiqiang) was uniformly sprayed at the mold’s surface to facilitate
demolding.

Preparation of the MAE mixture: PDMS and Sylgard 184 (a curing agent) was pur-
chased from Dow Corning (MI). Moreover, CIP with an average diameter distribution
between 3−7 µm was obtained from SigmaAldrich (Taufkirchen, Germany). PDMS and the
curing agent were used as the base, and CIPs were used as a kind of magnetized particle.
Firstly, the carbonyl iron powder (CIPs, a typical soft-magnetic material) and PDMS were
mixed in a 10%, 15%, and 30% volume fraction and stirred at 200 rpm for 30 min using
a mechanic mixer (IKA RW20 digital, Guangzhou, China). The mixture was placed in a
vacuum for 30min to get rid of air bubbles.

Fabrication of the biomimetic microstructure: in this step, the MAE mixture was
poured into the female mold. Then, the mold-containing mixture was placed in a vacuum
for 60 min. After that, the mixture is cured at 70 ◦C for 4 h. Finally, three kinds of 2L-MAEs,
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including 10 vol.% (initial elastic modulus 1.41 MPa), 15 vol.% (initial elastic modulus
1.52 Mpa) and 20 vol.% (initial elastic modulus 1.60 Mpa) are fabricated.
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2.3. Contacting Adhesion Testing

As shown in Figure 3, a contact adhesion tester (CAT) is designed and built into this
works to test the tunable adhesion performance of MAEs. The CAT is equipped with a
linear motion device (ZeberTech T-lsm050b, Beijing, China.), a load-sensitive sensor (Futek
LRF400, 2.2N maximum range, Guangzhou, China), and an 8 mm diameter cylindrical
probe which is made of 45 # steel. The MAE sample and the substrate are fixed on the
cylindrical probe and a glass dish with double-sided tape, respectively. Therefore, The CAT
could vertically translate the MAE towards and away from a substrate mounted over the
glass dish.

In addition, several permanent magnets (Magpanda NingBo China, each magnetic
intensity is around 100 mT) are placed under the glass dish to generate a uniform magnetic
field in case the steel probe is closed to the substrates. Moreover, the magnetic intensity
on the MAE samples is tested by an HT20 model digital tesla meter (Shanghai Hengtong
Company, China). Besides, a paper gasket is placed between the glass dish and permanent
magnets. The height of the paper gasket and the number of permanent magnets could be
changed to ensure that the magnetic intensity in each test is the same.

Due to that, the accuracy of the mold is not perfect; there is a slight difference in height
between the bionic microstructures. Therefore, a 1000 mN pressure load is applied to the
MAE by the cylindrical probe in the vertical direction to ensure the microstructures are
in complete contact with the substrate. During the test process, the probe approaches the
substrate surface and finally retracts at a speed of 25 mm/s until the full separation of the
MAE and substrate.

In this work, a 20 mm × 20 mm × 0.5 mm iron sheet (Zhongzhiyuan Company,
Shanghai, China, Ra 0.8 µm) and a 20 mm × 20 mm × 3 mm acrylic plate (Xinyue Company,
Shanghai, China, Ra 300 µm) in the dry and wet state are selected as the substrates. Besides,
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a 10 vol.% normal MAE without any surface microstructure is selected as the reference
group in this work. All tests were conducted at room temperature, and all tests were
repeated ten times under the same conditions. The adhesion data obtained from each test
will be continuously recorded by a personal computer. Figure 3c exhibits the adhesion
change curve in a test, where the highest point in the curve can be regarded as the critical
pull-off load Pc of the material. In this paper, critical pull-off load Pc is used to evaluate the
adhesion performance of bionic adhesive surfaces under different contact substrates.
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3. Results and Discussions
3.1. Surface Morphologies of 2L-MAE

Figure 4 gives the surface microstructure morphology of a 2L-MAE sample. From
Figure 4a, we can easily find that the regular hexagonal column array has covered the
surface of the 2L-MAE samples. Besides, the structural array meets the design expectation,
and there are obvious equidistant gaps between them. Figure 4b shows that the hexagonal
column structure has clear edges and obvious edges, which illustrates that magnetic
particles do not appear at the edge of the column structure.
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Figure 4c gives the SEM picture of a 2L-MAE’s surface at 150× magnification. It
shows that the upper structure composed of seven micro domes exists on the hexagon
microstructure, one is located in the center of the column, and the other six are located
near each corner of the hexagon. Such regular distribution conforms to the design concept.
We can find that the upper surface of the column structure is smooth. Figure 4d gives
a detailed enlarged view of the dome structures. We can find that CI particles with an
average diameter distribution between 3−7 µm protrude from the top surface of demos;
hence we also see the surface of the demo is rough.

3.2. The Magneto Responsible Adhesion of 2l-MAE

Figure 5 gives the relationship between the magnetic field and critical pull-off load
when the materials contact a dry acrylic substrate. As shown in Figure 5, when the detach
process is without any magnetic fields, the adhesion of 2L-MAE is much stronger than the
normal one. Moreover, the pull-off load of 2L-MAE material with a 20% particle volume
ratio is as high as 79.5 mN, which is 3.8 times higher than that of normal MAE. The above
results fully demonstrate that the dry adhesion property of the material is greatly enhanced
by the newt-like microstructure array.
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Besides, the experimental results also show that the initial adhesion force increased
substantially with the CIPs’ volume fraction. We believe that the reason for this phe-
nomenon could be explained by the JKR model [30]; the pull-off load Pc in the JKR model
usually can be expressed as follows:

Pc =
3
2
πr∆γ (1)

where r represents the equivalent contact radius and ∆γ is the work of cohesion which is
related to the surface energy of those contacted materials.

Recent experiments and analytic research [31,32] show that the elastic modulus of
MAE E could be divided into two parts: the magneto-induced modulus Em and the pure
modulus Ep. When the MAE is without any magnetic field, the MAE could be considered as
a typical two-phase composite material; hence the raising of CIPs’ volume fraction would
lead to the increase of the MAE’s elastic modulus. Consequently, the lower structure would
be generated a larger press-induced deformation when the MAE contacts the substrate (see
Figure 6). As a result, the equivalent contact radius r will be increased, and the pull-off
load Pc will increase correspondingly according to Equation (1).

In addition, different from the adhesion of normal MAE, the adhesive force of 2L-
MAE will increase dramatically with an external magnetic field. When the magnetic
field increases from 0 mT to 300 mT, the critical pull-off load of 2L-MAE material with
a 10% particle volume ratio increases from 49 mN by 165% to 81 mN. Nevertheless, the
adhesion of 2L-MAE at 15 vol.% and 20 vol.% increased to 91 mN and 115 mN, respectively,
by 152% and 144%. This phenomenon of magnetic field-enhanced adhesion was also found
in reference [33]. We believe that this phenomenon also causes by the magneto-induced
modulus Em, which could be expressed as [31]:

Em =
∂vm

∂ε
(2)

where ε is the average strain of the MAE. and vm represents the magnetic energy intensity.
It relates to the particle volume fraction and external magnetic field. Generally, the Em
is positively correlated to the particle concentrations and the magnetic intensity. There-
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fore, The MAE with a higher volume fraction and greater magnetic field would exhibit a
stronger adhesion.
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Figure 7 gives the correlation between critical pull-off load and magnetic field strength
of 2L-MAE material on a wet acrylic plate. It can be found that the normal MAE can
almost not attach the substrates in the wetting environment. Whereas the 2L-MAE samples
still exhibit a strong adhesion. It illustrates that The Newt-inspired 2-level structure can
effectively discharge the liquid on the material surface during detaching. Moreover, 2L-
MAE samples with different CIPs’ volume fractions exhibit a closed adhesion when not
under a magnetic field. It illustrates that the elastic modulus of the material has little effect
on the adhesion performance of the 2L-MAE in the wet environment.
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As shown in Figure 7, the Pull-off load of 2L-MAE material with 10 vol.%, 15 vol.%,
and 20 vol.% is increased to 49 mN, 53 mN, and 55 mN, respectively, under the action of
300 mT magnetic field. 2L-MAE materials also exhibit the characteristics that the adhesion
force increases with the external magnetic field in the wet adhesion state. As shown in
Figure 8, the capillary bridge model (CBM) [34] could explain this phenomenon. According
to the CBM model, the critical pull-off load is related to the apparent contact angle (ACA).
Furthermore, when the magnetic field is applied to the 2L-MAE, the magnetized particles
would interact with each other and cause uniform magneto-induced deformation. Then,
the surface roughness of the dome structure would change with the external magnetic
fields [35]. Therefore, the ACA of the dome structure would vary with magnetic fields. As
a result, the pull-off load is increased.

Biomimetics 2022, 7, 245 9 of 13 
 

 

 

Figure 7. Critical pull-off load vs. external magnetic fields curves when the MAE samples detached 

from a wet acrylic substrate. 

As shown in Figure 7, the Pull-off load of 2L-MAE material with 10 vol.%, 15 vol.%, 

and 20 vol.% is increased to 49 mN, 53 mN, and 55 mN, respectively, under the action of 

300 mT magnetic field. 2L-MAE materials also exhibit the characteristics that the adhesion 

force increases with the external magnetic field in the wet adhesion state. As shown in 

Figure 8, the capillary bridge model (CBM) [34] could explain this phenomenon. Accord-

ing to the CBM model, the critical pull-off load is related to the apparent contact angle 

(ACA). Furthermore, when the magnetic field is applied to the 2L-MAE, the magnetized 

particles would interact with each other and cause uniform magneto-induced defor-

mation. Then, the surface roughness of the dome structure would change with the exter-

nal magnetic fields [35]. Therefore, the ACA of the dome structure would vary with mag-

netic fields. As a result, the pull-off load is increased. 

 

Figure 8. The mechanism of the magneto-responsive adhesion of 2L-MAE detached from wet acrylic 

substrates. (a) the pull-off process without magnetic field in microscopic (b) the pull-off process 

with magnetic field in microscopic (c) the pull-off process with magnetic field in mesoscopic. 
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substrates. (a) the pull-off process without magnetic field in microscopic (b) the pull-off process with
magnetic field in microscopic (c) the pull-off process with magnetic field in mesoscopic.

Figure 9 shows changes in the critical pull-off load with the magnetic field when
2L-MAE contacts the iron sheet surface. As displayed in Figure 7, 2L-MAE materials with
different volume fractions have similar critical pull-off loads, about 121 mN, in the absence
of a magnetic field, which is much larger than normal MAE with a value of only 62 mN.
This demonstrates that on the smooth metal surface, the bionic newt microstructure array
also makes the adhesion of materials tremendously competitive.

Moreover, the surface adhesion of normal MAE samples increased with the external
magnetic field. On the contrary, when 2L-MAE materials are subjected to a magnetic field,
their critical pull-off load will decrease sharply with the magnetic field. Among them, the
adhesive force of 20 vol.% 2L-MAE material decreases the most under the action of 300 mT
magnetic field, from about 120 mN to 37 mN, while the critical pull-off load of 10 vol.%
and 15 vol.% 2L-MAE will decrease to 51 mN and 43 mN respectively. The mechanism of
the decline in adhesion needs to be further studied. However, this behavior matches the
experiment result in references [36,37]. They found that MAEs with random surfaces would
decrease their friction coefficient when applied to an external magnetic field. Therefore,
we have reason to believe that the detachment force between the demo structure and the
iron sheet plays a primary role in the pull-off load. As shown in Figure 10, due to the
magnetization and interaction of magnetic particles under the action of a magnetic field,
non-uniform deformation will be generated on the demo structure’s surface and increase
its surface roughness. As a result, hence the equivalent contact area will be further reduced,
resulting in the reduction of the adhesive force.
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4. Conclusions

Inspired by the research on the microstructure of Newt’s pad, we fabricated 2L-MAE
material with adjustable adhesion on a dry and wet acrylic plate and thin iron plates using
the template forming method. Then, we conducted relevant experiments to explore the
correlation between material critical pull-off load and external magnetic field and particle
volume ratio. Research findings are listed below:

1. In the absence of a magnetic field, the 2L-MAE exhibits a stronger initial adhesion
on the three surfaces than the normal one. Besides, the three 2L-MAE with different
volume fraction shows similar adhesion behaviors when they have contacted the sur-
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faces of wet acrylic plate and iron sheet. Moreover, the 2L-MAE material with 20 vol.%
exhibits the highest adhesion when they are contacted with a dry acrylic substrate.

2. The magnetic field can significantly affect the adhesion performance of 2L-MAE
samples, and the adhesion would increase with the magnetic field on the dry (up over
165%) and wet (up over 229%) acrylic plate. Furthermore, the adhesion of 2L-MAEs
would decrease with the external magnetic field and achieve a 69% reduction under
300 mT magnetic field when they are in contact with the surface of an iron sheet.

3. We suggest that the Magneto-induced modulus is the main reason that the 2L-MAE
could change its adhesion when it makes contact with a dry acrylic plate under a
magnetic field. Moreover, the tunable adhesion properties on a wet acrylic plate
and iron sheet might be caused by the magneto-induced surface deformation on the
Bionic arrays.
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