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Abstract: Researchers borrow ideas from biological characteristics and behavior in design to make
bionic robots that can meet unstructured and complex operating environments. The elephant trunk
has been widely imitated by bionic robots because of its strong dexterity and stiffness adjustability.
Due to the complex structure of the current elephant trunk robot, a series-parallel elephant trunk
robot based on flexible rod actuation and a 6-degree-of-freedom (6-dof) parallel module is proposed
in this paper. The bionic robot has a simple structure and redundant kinematics, which can realize the
control of stiffness. This work focuses on the modeling of the flexible driving rod, the kinematics of a
single parallel module, and the whole biomimetic robot. The kinematics are verified by simulation,
which lays a foundation for future research on stiffness regulation.

Keywords: flexible rod; cosserat theory; kinematic; flexible series-parallel structure; bionic elephant
trunk robot

1. Introduction

The design inspiration for bionic robots comes from all kinds of creatures in nature,
that is, the structural characteristics and behavior of a certain animal or its organs are
studied, and the corresponding biomimetic structure is developed [1]. In nearly 60 million
years of evolutionary development, the elephant trunk gradually became a versatile organ,
strong and powerful, and can achieve many functions and unique advantages such as
carrying, grasping, drinking, and attacking. The trunk of an elephant can be bent in the
form of a helix, Q, S, U, C, L, I, etc. From the head to the end of the trunk, the size of the
trunk decreases, with each segment increasing in rotatable angle and flexibility. And when
it comes to different tasks, the stiffness of the trunk can adapt to different environments.
The trunk is so versatile that elephants don’t have to adjust their posture to survive like
other giant animals. To sum up, the dexterity and stiffness adjustability of the elephant
trunk enable it to adapt to various complex environments. Thus, the elephant trunk has
become an inspiration and research target of biomimetic robots.

Since the 1960s, researchers have carried out research on bionic series-parallel robots [2].
Victor Scheinman and Larry Leifer of Stanford University built the robot ORM [3]. The
ORM includes 28 air bags and seven metal discs. Anderson and Horn have developed a
tendon-driven robot that can be used to operate under sea, using plates connected with
gimbal joints [4]. Due to the lack of theoretical study for bionic series-parallel robots, the
kinematics and dynamics analysis methods of traditional robotic arms are not applica-
ble, which leads to the problems of poor load capacity and low positioning accuracy of
the two robots. Walker’s team has made a lot of contributions to the research of bionic
series-parallel robots. In 2001, Hannan and Walker et al. developed an elephant-trunk
robot with super redundant degrees of freedom [5]. The total length of the elephant-trunk
robot is 82.32 cm, including 16 hook joints, each of which has 2 degrees of freedom. In 2002,
based on the results of the 2001 research, Walker’s team developed a robot that can bend
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in a plane [6,7]. The planar series-parallel robot consists of four segments, each of which
contains two degrees of freedom. Each section is connected in series by tension structure.
The robot can grasp objects in space. In 2005, Walker worked with McMahan on a novel
series-parallel robot called Air-Octor [8,9]. Air-Octor uses a pneumatic structure as the
support of the robot body, which is bent by three ropes and internal air pressure control.
In 2007, Neppalli and Jones combined Air-Octor with OctArm to create a robot with a
simple structure and efficient obstacle avoidance ability. The main body of the continuous
robot is a rubber tube, and three ropes are distributed uniformly in the circumferential di-
rection of the rubber tube to drive and control it, so that it can achieve the effect of bending
in space [10]. In 2004, Nabil Simman and Kai Xu et al. proposed a laryngeal surgical robot
based on a series-parallel structure. The robot can bend and rotate, and operate with a tiny
metal grasper at the front [11–14]. In 2007, Choi et al. invented a series-parallel endoscopic
robot based on a spring skeleton [15]. The robot is driven by three ropes, with three degrees
of freedom, and springs link its internal adjacent joints together, which can achieve bending
deformation in three directions. In 2011, Festo developed a new bionic operating arm
based on the characteristics of the elephant trunk [16]. Each joint of this bionic robot is
composed of airbags, which can smoothly complete the handling of objects and has a strong
load capacity. In 2015, Thien-Dang Nguyen et al. proposed elastic magnetic structures
with telescopic functions and promoted the degrees of freedom to form stretchable flexible
series-parallel robots [17]. Shugen Ma et al. mainly studied the path planning [18] and
motion control [19,20] of bionic series-parallel robots. And the design parameters of the
robot are optimized based on dynamics [21].

Through this literature, it can be seen that the design of the current bionic series-
parallel robots is relatively complex, and its kinematics and dynamics analysis still need
to be further studied. Meanwhile, the characteristic of the stiffness adjustability of the
elephant trunk has not been studied and reproduced in the scheme of the robot.

In this paper, a series and parallel biomimetic elephant trunk robot based on a flex-
ible rod and a 6-dof parallel module is proposed, as shown in Figure 1. The modeling
and kinematics of the driving unit, single parallel module, and series-parallel robot are
researched. This paper is organized as follows: Section 2 presents the modeling of the
flexible rod which would drive the robot to realize 6-dof motion. In Section 3, kinematic
analysis is carried out of the flexible 6-dof parallel manipulator, as the single module of the
serial-parallel robot. Finally, the kinematics of the serial-parallel robot are deduced and
simulated based on the modeling of flexible rods and the single parallel module.

Biomimetics 2022, 7, x FOR PEER REVIEW 2 of 16 
 

 

82.32 cm, including 16 hook joints, each of which has 2 degrees of freedom. In 2002, based 
on the results of the 2001 research, Walker’s team developed a robot that can bend in a 
plane [6,7]. The planar series-parallel robot consists of four segments, each of which con-
tains two degrees of freedom. Each section is connected in series by tension structure. The 
robot can grasp objects in space. In 2005, Walker worked with McMahan on a novel series-
parallel robot called Air-Octor [8,9]. Air-Octor uses a pneumatic structure as the support 
of the robot body, which is bent by three ropes and internal air pressure control. In 2007, 
Neppalli and Jones combined Air-Octor with OctArm to create a robot with a simple struc-
ture and efficient obstacle avoidance ability. The main body of the continuous robot is a 
rubber tube, and three ropes are distributed uniformly in the circumferential direction of 
the rubber tube to drive and control it, so that it can achieve the effect of bending in space 
[10]. In 2004, Nabil Simman and Kai Xu et al. proposed a laryngeal surgical robot based 
on a series-parallel structure. The robot can bend and rotate, and operate with a tiny metal 
grasper at the front [11–14]. In 2007, Choi et al. invented a series-parallel endoscopic robot 
based on a spring skeleton [15]. The robot is driven by three ropes, with three degrees of 
freedom, and springs link its internal adjacent joints together, which can achieve bending 
deformation in three directions. In 2011, Festo developed a new bionic operating arm 
based on the characteristics of the elephant trunk [16]. Each joint of this bionic robot is 
composed of airbags, which can smoothly complete the handling of objects and has a 
strong load capacity. In 2015, Thien-Dang Nguyen et al. proposed elastic magnetic struc-
tures with telescopic functions and promoted the degrees of freedom to form stretchable 
flexible series-parallel robots [17]. Shugen Ma et al. mainly studied the path planning [18] 
and motion control [19,20] of bionic series-parallel robots. And the design parameters of 
the robot are optimized based on dynamics [21]. 

Through this literature, it can be seen that the design of the current bionic series-
parallel robots is relatively complex, and its kinematics and dynamics analysis still need 
to be further studied. Meanwhile, the characteristic of the stiffness adjustability of the el-
ephant trunk has not been studied and reproduced in the scheme of the robot. 

In this paper, a series and parallel biomimetic elephant trunk robot based on a flexible 
rod and a 6-dof parallel module is proposed, as shown in Figure 1. The modeling and 
kinematics of the driving unit, single parallel module, and series-parallel robot are re-
searched. This paper is organized as follows: Section 2 presents the modeling of the flexi-
ble rod which would drive the robot to realize 6-dof motion. In Section 3, kinematic anal-
ysis is carried out of the flexible 6-dof parallel manipulator, as the single module of the 
serial-parallel robot. Finally, the kinematics of the serial-parallel robot are deduced and 
simulated based on the modeling of flexible rods and the single parallel module. 

 
Figure 1. Elephant trunk robot based on flexible series-parallel structure. 

The flexible rod is chosen as the driving unit on the single module and the whole 
robot to simplify our design. In a robot system, the driving unit is the core of the system. 
And it plays an important part in the kinematic analysis. Thus, in this work, our analysis 
begins with the modeling of a flexible rod as the driving unit of the single parallel module 

Figure 1. Elephant trunk robot based on flexible series-parallel structure.

The flexible rod is chosen as the driving unit on the single module and the whole robot
to simplify our design. In a robot system, the driving unit is the core of the system. And it
plays an important part in the kinematic analysis. Thus, in this work, our analysis begins
with the modeling of a flexible rod as the driving unit of the single parallel module and
proposed elephant trunk robot. Note that our work is based on Cosserat theory [22–24],
and the open-source project Elastica and PyElastica [25–27] provide a reliable environment
to simulate our model in Python.
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2. Modelling of Flexible Rod
2.1. Geometric Description of The Flexible Rod

The geometric model of the flexible rod contains its geometric and topological in-
formation. When the slender flexible rod is subjected to external force, it has large and
local deformation, which makes its geometric form complex and diverse, e.g., bending,
twisting, and winding. When describing the position of the rod, the geometric shape of a
single flexible rod can be expressed by the shape of its center line and the orientation of
the cross-section. The shape of the flexible rod’s center line includes bending deformation,
and the cross-section could have torsional deformation around the center line. This part de-
scribes the geometric parameters of the center line of a single flexible rod and the geometric
parameters of the cross-section characteristics, and then describes the spatial geometry of
the flexible rod. The expression of the position and shape of flexible rods in 3D space is the
prerequisite for the establishment of robot system modeling.

From the perspective of geometry, the center curve can be regarded as a space curve
G’ with arc length L. The four basic coordinate systems of the legs are established based on
the smooth curve G’, as shown in Figure 2.
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Figure 2. Coordinate systems of the flexible leg.

The P-NBT coordinate system is called the Frenet coordinate system. The T-axis is
the tangent vector of the rod’s center curve G’ at point P, which is defined as Equation (1).
The N-axis is the normal vector of the center curve G’ at point P, as defined in Equation (2).
Axis B is the binormal vector of G’ at point P, which is defined as Equation (3). The three
coordinate axes N, B, and T are pairwise orthogonal. At point P, the close plane of the
point is determined by the T axis and N axis. The plane defined by N and B is called the
normal plane.

T(s) =
dr
ds

(1)

N(s) =
1∣∣T’(s)
∣∣ dT

ds
(2)

B(s) = T(s)×N(s) (3)

The curvature and torsion of the curve can completely determine its spatial orienta-
tion [22]. Consider an arc of length ds between two points P and P’ on the space curve G’,
as shown in Figure 3, Let dφ be the angle subtended by ds at the center of a circle with
radius r. Since ds = rdφ, the change of the tangent vector with ds is approximately the
same with the change of dφ. As a result, the curvature κ of a space curve is defined by
Equation (4).

κ(s) = lim
∆s→0

∣∣∣∣∆φ

∆s

∣∣∣∣ = lim
∆s→0

∣∣∣∣∆T
∆s

∣∣∣∣ = ∣∣∣∣dT
ds

∣∣∣∣ = dφ

ds
(4)

τ(s) =
∣∣∣∣dB

ds

∣∣∣∣ (5)



Biomimetics 2022, 7, 228 4 of 15

Biomimetics 2022, 7, x FOR PEER REVIEW 4 of 16 
 

 

same with the change of dφ . As a result, the curvature κ of a space curve is defined by 
Equation (4). 

 
Figure 3. Differential geometry of a space curve. 

( )
0 0

lim lim
s s

d ds
s s ds ds
φ φκ

Δ → Δ →

Δ Δ= = = =
Δ Δ

T T
 (4)

( ) ds
ds

τ = B  (5)

τ is the torsion of the curve which could be calculated by Equation (5). While the 
curvature κ is a measure of the deviation of the curve from a straight line, the torsion τ is 
a measure of the twisting of the curve out of the osculating plane. 

The Darboux vector Fω  is defined as Equation (6), whose physical meaning is the 
angular rotation velocity of the Frenet coordinate system (p-NBT) relative to the inertial 
coordinate system (o-ξηζ) when point P moves along the center curve G’ in the positive 
direction of the arc coordinate s with unit velocity. The variation of vectors N, B and T 
can be determined by Darboux vector Fω . 

( ) ( )F s sκ τ= +ω B T  (6)

Given curvature κ(s) and torsion τ(s), the variation of each coordinate axis vector of 
Frenet coordinate system (p-NBT) with arc coordinates s can be solved according to Equa-
tion (7), and then the shape of the curve can be obtained by Equation (1), as shown in 
Equation (8). Curvature κ and torsion τ are two independent variables to determine the 
shape of a space curve, so the degree-of-freedom of space curve is 2. 

( ) ( )

( )

( )

F

F

F

d s s
ds
d s
ds
d s
ds

τ κ

τ

κ

 = × = −

 = × = −

 = × =

N ω N B T

B ω B N

T ω T N

 (7)

( ) ( ) ( )
0

0
s

s dσ σ= +r T r  (8)

After determining the center curve, the orientation of the cross-section of the rod is 
further determined to obtain the spatial shape of the rod. The rod is jointly determined by 
the orientation of its center curve and cross-section. After the center curve of the rod is 
determined, only the torsion angle of the cross-section needs to be obtained, as shown in 
Figure 2. Therefore, each rod has 3 degrees of freedom. 

Figure 3. Differential geometry of a space curve.

τ is the torsion of the curve which could be calculated by Equation (5). While the
curvature κ is a measure of the deviation of the curve from a straight line, the torsion τ is a
measure of the twisting of the curve out of the osculating plane.

The Darboux vector ωF is defined as Equation (6), whose physical meaning is the
angular rotation velocity of the Frenet coordinate system (p-NBT) relative to the inertial
coordinate system (o-ξηζ) when point P moves along the center curve G’ in the positive
direction of the arc coordinate s with unit velocity. The variation of vectors N, B and T can
be determined by Darboux vectorωF.

ωF = κ(s)B + τ(s)T (6)

Given curvature κ(s) and torsion τ(s), the variation of each coordinate axis vector
of Frenet coordinate system (p-NBT) with arc coordinates s can be solved according to
Equation (7), and then the shape of the curve can be obtained by Equation (1), as shown in
Equation (8). Curvature κ and torsion τ are two independent variables to determine the
shape of a space curve, so the degree-of-freedom of space curve is 2.

dN
ds =ωF ×N = τ(s)B− κ(s)T
dB
ds =ωF × B = −τ(s)N
dT
ds =ωF × T = κ(s)N

(7)

r(s) =
∫ s

0
T(σ)dσ + r(0) (8)

After determining the center curve, the orientation of the cross-section of the rod is
further determined to obtain the spatial shape of the rod. The rod is jointly determined by
the orientation of its center curve and cross-section. After the center curve of the rod is
determined, only the torsion angle of the cross-section needs to be obtained, as shown in
Figure 2. Therefore, each rod has 3 degrees of freedom.

ω is defined as the angular velocity related to the torsional deformation of the rod,
as shown in Equation (9). Its physical meaning is the angular velocity of the cross-section
rotation relative to the inertial coordinate system (o-ξηζ) when the point P on the center
curve G ‘of the rod moves in the forward direction with unit velocity.

ω =ωF +

(
dχ

ds

)
z (9)

where, χ is the angular and
(

dχ
ds

)
z is the relative angular velocity of the section with respect

to the Frenet coordinate system (P-NBT), and z is the tangent of the center curve. ωF is the
relative angular velocity of the coordinate system (P-NBT) with respect to (O-ξηζ). The
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projected component of the angular velocityω on the axis of the coordinate system (P-XYZ)
on the cross-section is shown in Equation (10).

ωx = κ sin χ, ωy = κcosχ, ωz = τ +
dχ

ds
(10)

Thus, the shape of the rod can be expressed by three independent variables ωx, ωy
and ωz.

Similar to Equation (7). The variation of the coordinate system (P-XYZ) with the arc
coordinate s can be described by the ω(s), as shown in Equation (11).(

dx
ds

,
dy
ds

,
dz
ds

)
= (ω× x,ω× y,ω× z) (11)

2.2. Static Equilibrium of Flexible Rod

For the flexible rod, it is divided into micro segments, and each micro segment is
analyzed by equilibrium analysis. As shown in Figure 4, P1 and P2 are 2 infinitely closed
points on the rod. The reference position vector of origin point O of the inertial coordinate
system are r and r + ∆r, respectively, and their relative arc coordinates are s and s + ∆s,
respectively. The static equilibrium is established by taking the micro-element of the rod as
the unit, and the internal forces and internal moments of the external section of P1 point
are set as −F and −M, respectively, and the internal forces and internal moments of the
external section of P2 point are F + ∆F and M + ∆M, respectively. In the equilibrium state
at P1, the resultant force and moment of force or torque are 0, as shown in Equation (12).{

∆F = 0
∆M + ∆r× F = 0

(12)
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Taking the derivative of Equation (12) to arc coordinates s and converting it to the
coordinate system (P-XYZ): {

dF
ds +ω× F = 0
dM
ds +ω×M + z× F = 0

(13)

When there is no original curvature, the moment of micro segment on the rod can be
expressed through ω as:

Mx = Aωx, My = Bωy, Mz = C
(

ωz −ω0
z

)
(14)
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where A and B are the flexural stiffness of the rod section around the X-axis and Y-axis,
respectively, C is the torsional stiffness of the rod section around the Z-axis. They could be
obtained:

A = EIx, B = EIy, C = GIZ (15)

In Equation (15),
Ix: The moment of inertia of the cross-section with respect to the x axis, Ix = πd4/64.
Iy: The moment of inertia of the cross-section with respect to the y axis, Iy = πd4/64.
Iz: The moment of inertia of the cross-section with respect to the z axis, Iz = πd4/32.
E: Young’s modulus.
G: Shear modulus G = E/(2 + 2µ).
µ: Poisson ratio
d: Diameter of cross section of rod
Equation (12) projected to the coordinate system (P-XYZ) can be transformed into:

dFx
ds + ωyFz −ωzFy = 0

dFy
ds + ωzFx −ωxFz = 0

dFz
ds + ωxFy −ωyFx = 0

(16)


A dωx

ds + (C− B)ωyωz − Cω0
z ωy − Fy = 0

B dωx
ds + (A− C)ωzωx + Cω0

z ωx + Fx = 0

C dωz
ds + (B− A)ωxωy = 0

(17)

Equations (16) and (17) are static balance equations of the flexible rod. It contains six
variables Fx, Fy, Fz and ωx, ωy, ωz. Given the initial condition of the ordinary differential
equations, the shape of the rod can be obtained. After the variation of Fx, Fy, Fz and ωx,
ωy, ωz with arc coordinate s are obtained, the variation of curvature κ, torsion τ, and
torsion Angle χ with arc coordinates s could be solved by Equation (10). By Equation (11),
it is transformed into the variation of the axis of the coordinate system (P-XYZ) with arc
coordinate s.

3. Modelling of Single Flexible 6-Dof Parallel Module

One flexible parallel module has six driven flexible rods and has a similar structure to
the rigid 6-dof Stewart platform, as shown in Figure 5. The flexible rods are clamped and
fixed on the moving platform. The flexible rods pass through the base platform and can
translate through the holes on the base platform and can be braked so that these six flexible
rods can be driven independently.
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where, '  denotes the differential of is ,  ̂  denotes the mapping from 3  to ( )SO 3  
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mapping from ( )SO 3  to 3 ). 

The variation of internal force nF  and moment nM  with arc length is  can be de-
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ni i

ni i ni i

′ = −

′ ′= − × −

F F

M r F M
 (19)

Figure 5. Prototype Design of k-th Flexible Parallel Module.

Based on the basis of the previous sections, we modeled the flexible rod based on
Cosserat theory. In the following sections, the forward and inverse kinematics and the
static equilibrium of a single parallel module are introduced.
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The shape of each flexible rod consisting of the module is determined by the position
function Pi(si) ∈ R3 and the orientation function Ri(si) ∈ SO(3) of arc length si ∈ R,

constituting a reference system gi(si) =

[
Ri(si) Pi(si)

0 1

]
∈ SE(3) attached to the flexible

rod. The position and attitude of the flexible rod evolve with the kinematic parameters
vi(s) ∈ R3 and ui(s) ∈ R3 of arc length s, which represent the linear velocity and angular
velocity of the rod, respectively.

Pi
′ = Rivi

Ri
′ = Ri

^
ui

(18)

where, ′ denotes the differential of si,ˆdenotes the mapping from R3 to SO(3) (antisymmet-
ric matrix). Similarly, use the ∨ representing inverse mapping (that is, the mapping from
SO(3) to R3).

The variation of internal force Fn and moment Mn with arc length si can be described
by the classical Cosserat rod differential equations of static equilibrium:

Fni
′ = −Fi

Mni
′ = −ri

′ × Fni −Mi
(19)

The kinematic variables vi and ui are related to material strains (shear, elongation,
bending, and torsion) for the calculation of internal force and moment.

Fni = RiKse,i
(
vi − v∗i

)
, Kse,i =

 AiGi 0 0
0 AiGi 0
0 0 AiEi


Mni = RiKbt,i

(
ui − u∗i

)
, Kbt,i =

 Ei Ii 0 0
0 Ei Ii 0
0 0 JiGi


(20)

where, v∗i and u∗i are the kinematic parameters of the rod without external force and
moment. For the flexible rod whose initial state is straight, the two parameters are
v∗i =

[
0 0 1

]T and u∗i =
[
0 0 0

]T , respectively. The matrix Kse,i and Kbt,i are the
stiffness terms of the radial symmetric cross-section rod, which varies with the arc length,
including cross-sectional area Ai, Young’s modulus Ei, shear modulus Gi, moment of inertia
of section Ii (about PX and PY axes), polar area moment Ji about PZ axis. Therefore, for
each flexible rod, Equations (18)–(20) constitute a system of differential equations, which
describes the evolution of the variable Pi, Ri, Fni and Mmi with arc length si.

3.1. The Boundary Conditions for Forward Kinematics

Each flexible rod in the robot is independently described by the above differential
equations. However, the boundary conditions of each set of differential equations are
coupled due to the physical constraints in the robot structure.

For the 6-dof flexible parallel module configuration proposed in the previous. The
proximal end of each flexible rod is clamped in a groove connected to the moving platform
with a fixing screw. And each rod passes through a cylindrical hole in the base platform.
This configuration constrains the intersecting position Pi of the bar and the base platform
and the tangent vector of the rod at this point, while allowing the rod to rotate around the
tangent. Therefore, there is no torque around the tangent direction. Ri(0) is expressed as
the orientation when rotating θi around the z-axis of the global coordinate system, then:

Mniz(0) = 0

Ri(0) =

 cos θi − sin θi 0
sin θi cos θi 0

0 0 1

 (21)
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At the end of each rod (si = Li) interacting with the moving platform, the following
static equilibrium conditions must be satisfied:

n
∑

i=1
[Fni(Li)]− F = 0

n
∑

i=1
[pi(Li)× Fni(Li) + Mni(Li)]− pc × F−M = 0

(22)

where, F and M, respectively, represent the external force and moment acting on the point
pc of the moving platform. According to the same shape of each rod at si = Li, the constrain
about Ri:

Ri(Li) = R1(L1) (23)

The following equation can then be written about the position of the end of each rod:

p1(L1)− pi(Li)−R1(L1)(a1 − ai) = 0 for i = 2 · · · n (24)

where, ai is the position of the joint linking the i-th rod and moving platform in the moving
platform coordinate system.

p1 and R1 are unknown to be solved. Thus, there are 12 unknowns in forward kinemat-
ics. Equation (22) has six sub-equations that could be regarded as the main equations. And
Equations (22) and (24) consist of the equations of constraint, which have six sub-equations.
Therefore, after solving these 12 equations together, the position p1 and orientation R1 of
the moving platform could be obtained.

3.2. The Boundary Conditions for Inverse Kinematics

For the inverse kinematic, the boundary conditions given in Equations (21) and (22)
are still reasonable. However, the geometric coupling of the flexible rods on the moving
platform is simplified because the position and orientation of the moving platform are
known. The orientation of each rod’s end (Ri(Li)) is consistent with the orientation of the
moving platform (Rd):

Ri(Li) = Rd (25)

Similar to Equation (24), the joints’ position on the moving platform could be expressed
as the corresponding rod’s end position (pi) and relative position of the center of the moving
platform (pd).

pi = pd + Rdai for i = 1 · · · n (26)

In the inverse kinematic, Rd and pd should be given as the input command.
In the inverse kinematic, there are six unknowns (Li) to be solved. Similar to the forward

kinematic, each length of the rod could be contained by solving Equations (22) (25) and (26).
We note that Equations (23) and (25) are multi-dimensional with more than nine

unknows in one equation. It would be easier if R(SO(3)) could be simplified to R3. Thus, in
the actual solution process of kinematics, Equations (23) and (25) are always transferred to:[

log
(

RT
i (Li)R1(L1)

)]∨
= 0 for i = 2 · · · n (27)

[
log
(

RT
i (Li)Rd

)]∨
= 0 for i = 1 · · · n (28)

log() takes the natural logarithm of the matrix which could map SO(3) to so(3). And
∨maps so(3) to R3.

3.3. Smulation of Single Flexible 6-Dof Parallel Module

Taking the rigid steward platform as a reference, here the flexible parallel module
is simulated on 6-dof motion, including translation and rotation by the x, y, and z axis.
From Figure 6, the single flexible parallel module could realize 6-dof movements. And
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none of the rod has interference among these motions. This could be regarded as the basis
of imitation of a trunk’s behavior. Meanwhile, the result could support the design and
simulation of the whole flexible series-parallel robot.
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z-axis, (h,i): rotation ±45◦ across x-axis, (j,k) rotation ±45◦ across y-axis, (l,m) rotation ±30◦ across
z-axis.

4. Kinematic Modeling of Flexible Series-Parallel Mechanism

According to different types of series and parallel manipulators, their kinematic
modeling processes can be divided into the following three types:

(1) Continuum Serial-Parallel Manipulator. A continuous series-parallel robot is com-
posed of several parallel elements but does not contain discrete joints and rigid rods,
so its shape is usually characterized by a curve. For the kinematic modeling of this
kind of series-parallel robot, the shape curve should be described in space first, and
then the pose of each unit on the curve should be determined according to the struc-
tural characteristics, and then the kinematic parameters of the mechanism should
be derived.

(2) Discrete Serial-Parallel Manipulator having less than or equal to 6-dof. For dis-
crete series-parallel robots, if the joint degrees of freedom are less than or equal
to 6, the transformation matrix relative to the root coordinate system or the world
coordinate system can be derived according to the position and orientation of the
end-effector. Then, the kinematic parameters can be determined according to the
structure and geometric constraints of the robot. For the intermediate platforms, it
is not necessary to know their specific position and orientation before the solution
kinematic. Because of the series and parallel robots with degrees of freedom ≤6, once
the position and orientation of the end-effector are determined, each intermediate
platform can be uniquely determined. In other words, the transformation matrix of
the end-effector contains the kinematic information of each intermediate platform, but
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these parameters need to be derived by using the structural and geometric constraints
of the robot.

(3) Discrete Serial-Parallel Manipulator having greater than 6-dof. For discrete series-
parallel robots, if the joint degrees of freedom are greater than six, it means that the
robot has redundant degrees of freedom, and the displacement of each joint cannot be
completely determined according to the orientation of the end-effector. Therefore, for
such discrete series-parallel robots, the inverse kinematics should be solved by giving
or solving the orientation of intermediate platforms first. The forward kinematics also
need to determine each intermediate platform in turn.

A series-parallel robot consists of n parallel modules connected in series to a fixed base
as shown in Figure 7. For the sake of explanation, assume that these parallel modules are
similar in structure. Figure 5 depicts the structure of a single module. The degree of freedom
of its moving platform relative to the base of the module is Nk. And it has mk flexible rods
for driving. Define ∑k and ∑bk are coordinate systems fixed on the module k’s moving and
base platform, respectively. Coordinate system ∑0 is the base of module 1. Since the base
of the module k is fixed on the moving platform of the module k− 1, the transformation

matrix between ∑k−1 and ∑bk is a constant matrix, namely:
[bk

k−1R Pbk,k−1
0 1

]
= cons.
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4.1. The Kinematic Model of The Module K

The forward and inverse kinematic expressions of the module are given as follows:[
Rk Pk
0 1

]
= F(Lk) k = 1, . . . , n (29)

Lk = f
([

Rk Pk
0 1

])
k = 1, . . . , n (30)

where, Rk and Pk are the orientation matrix and position vector of the moving platform
of the module k. Lk is the vector composed of the joint displacement of each flexible rod
in module k. F() is the mapping from the joints’ displacement and the moving platform’s
position and orientation. f () is the inverse mapping from the moving platform’s position
and orientation and the joints’ displacement. Because the elastic behavior of large deflection
is involved, and the analytical expression cannot be obtained in most cases, it needs to be
obtained by the numerical calculation method, as discussed in Sections 3.1 and 3.2.

4.2. Forward Kinematics Analysis of Flexible Series-Parallel Robot

The forward kinematics of a flexible series-parallel robot is to obtain the position and
orientation of each intermediate platform and end effector by knowing the displacement
of each active joint. The orientation of the moving platform of each module in the global
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coordinate system (R’
k and P’

k) can be deduced by the orientation of its moving platform
with respect to its base platform (Rk and Pk) using the recursive formula (k = 1, . . . , n):

R’
k = Rk · bk

k−1R ·R’
k−1 k = 2 . . . n

P’
k = P’

k−1 + RkPk k = 2 . . . n
R’

1 = R1
P’

k = P1

(31)

Rk and Pk in the equation can be obtained according to Equation (29). P’
0 is the position

vector of the base platform of module 1. When k = n, R’
n and P’

n are the orientation of the
end-effector (end-moving platform).

At first, by the input L1, the orientation and position of 1-th moving platform with
respect to its base platform (R1 and P1) could be obtained by Equation (29). Then, the
orientation and position of 1-th moving platform with respect to the global coordinate
system (R’

1 and P’
1) could be obtained by Equation (30). Note that, when k = 1, R1 and

P1 is identical to R’
1 and P’

1. After that, the arithmetic iterates once by k + 1. Repeat the
solution of Rk and Pk until k = n. In summary, the forward kinematics solution of the
flexible series-parallel robot can be expressed as in Figure 8.
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4.3. Inverse Kinematics Analysis of Flexible Series-Parallel Robot

The inverse kinematics is a process of solving the displacements of active joints of
each module according to the orientation of each intermediate platform. Since the object of
study in this paper is a series-parallel robot with degrees of freedom > 6, for the solution of
inverse kinematics, the orientation of each platform located in the middle and end needs
to be known before. Usually, the orientation of the intermediate platform can be directly
provided or obtained according to the end effector combined with the constraint conditions.
Since the total degree of freedom of the robot is >6, there would be multiple solutions to
obtain each intermediate platform’s orientation only through the kinematics information
of the end effector. Thus, the unique solution is often determined cooperatively with the
geometry constraints and parameters to be optimized. The optimized objects are generally
obstacle avoidance, time optimization, energy consumption optimization, smoothness
optimization, singularity avoidance optimization, and base disturbance optimization. This
is named Configuration Planning. For Configuration Planning of series-parallel robots
with degrees of freedom > 6, this is equivalent to the attitude planning of soft continu-
ous robots and has been maturely researched. The most basic strategy of Configuration
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Planning is based on the differential geometry of curves. In this kind of strategy, the basic
geometric characteristics of robot orientation are obtained by defining the backbone curve.
In order to solve the redundancy problem, the intrinsic geometric function of the backbone
curve is restricted to the modal form. This method is directly applied to the manipula-
tor with continuous morphology and can be extended to the Configuration Planning of
series-parallel robots with multiple modules. Therefore, in this work, we research the
kinematics of a series-parallel robot under a well-planned configuration instead of focusing
on Configuration Planning.

Similar to the forward kinematic, the displacement of the active joint of each module
also needs to be deduced by a recursive formula. According to Equation (30), the following
can be obtained:

Rk = R’
k ·R’T

k−1 · bk
k−1RT k = 2 . . . n

Pk = RT
k
(
P’

k − P’
k−1
)

k = 2 . . . n
R1 = R’

1 k = 1
P1 = P’

1 k = 1

(32)

Combined with Equation (29), the active joints’ position of each module can be ob-
tained as follows:

Lk =


f
([

R’
1 P’

0 1

])
k = 1

f

([
R’

k ·R’T
k−1 · bk

k−1RT RT
k
(
P’

k − P’
k−1
)

0 1

])
k = 2 . . . n

(33)

To obtain each group of Lk, a iterative algorithm is proposed such as forward kinemat-
ics. At first, input the known orientation and position of 1-th end-effector with respect to
the global coordinate system R’

1 and P’
1. By Equation (31), the orientation and position of

1-th end-effector with respect to its base platform R1 and P1 could be obtained. Then, L1
could be calculated by Equation (32). Make k + 1 and repeat the solution of Rk, Pk and Lk.
Iterate the arithmetic by k + 1 until k = n. In summary, the inverse kinematics solution of
the flexible series-parallel robot can be expressed as in Figure 9.
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4.4. Simulation

In this section, three parallel modules are connected to constitute a trunk robot (n = 3)
to verify the previous analysis. According to the trunk’s behavior, a group of motions
were simulated, including translation and bending. As shown in Figure 10b,c, the robot
could translate in the space. It is helpful to use the robot for carrying. To have a close
imitation of an elephant’s trunk, an s-shaped orientation is tested in this section, as shown
in Figure 10d,e. The s-shaped orientation is a signature behavior of elephants. It could
demonstrate the flexibility of the robot. In Figure 10d,e, the three-module robot can
complete the s-shaped orientation roughly. In addition, it can be deduced that the s-shaped
orientation would be imitated better if it has more sections. The flexibility is enhanced
with increased parallel units. Figure 10f,g show the bending ability of the robot which is a
common action when an elephant is grasping and eating. From the result, it can be seen the
robot could bend in a specific direction with a relatively small curvature and large angle.
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5. Conclusions

In this work, an elephant trunk robot based on a flexible series-parallel structure is
proposed. The flexible rod as a driven unit is modeled by the Cosserat theory. A single
flexible parallel module is analyzed in kinematics. Finally, the whole robot’s kinematics are
modeled in the iteration method and the simulation shows the effectiveness of the analysis
and its flexibility.

To sum up, we could conclude that:

(1) A flexible rod works well in a flexible series-parallel structure as verified in simulation.
In addition, Cosserat theory is an effective method in kinematic analysis of a flexible
series-parallel structure and a bionic elephant trunk robot.

(2) Finish the kinematic analysis of a flexible parallel module which makes it a reliable
section to consist of a trunk robot.

(3) The trunk robot proposed in this work could closely imitate an elephant’s behavior,
such as translating, presenting s-shaped orientation, and bending.

(4) To get better flexibility, more modules should be connected.
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6. Future Work

The dynamic and stiffness performance would be analyzed based on this kinematics
research. Structure parameters need to be optimized to meet the requirements of the
stiffness regulating range.
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