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Abstract: This work presents an in-depth numerical investigation into a hypothesized two-layer
central pattern generator (CPG) that controls mammalian walking and how different parameter
choices might affect the stepping of a simulated neuromechanical model. Particular attention is paid
to the functional role of features that have not received a great deal of attention in previous work: the
weak cross-excitatory connectivity within the rhythm generator and the synapse strength between the
two layers. Sensitivity evaluations of deafferented CPG models and the combined neuromechanical
model are performed. Locomotion frequency is increased in two different ways for both models to
investigate whether the model’s stability can be predicted by trends in the CPG’s phase response
curves (PRCs). Our results show that the weak cross-excitatory connection can make the CPG more
sensitive to perturbations and that increasing the synaptic strength between the two layers results in a
trade-off between forced phase locking and the amount of phase delay that can exist between the two
layers. Additionally, although the models exhibit these differences in behavior when disconnected
from the biomechanical model, these differences seem to disappear with the full neuromechanical
model and result in similar behavior despite a variety of parameter combinations. This indicates
that the neural variables do not have to be fixed precisely for stable walking; the biomechanical
entrainment and sensory feedback may cancel out the strengths of excitatory connectivity in the neural
circuit and play a critical role in shaping locomotor behavior. Our results support the importance
of including biomechanical models in the development of computational neuroscience models that
control mammalian locomotion.

Keywords: synthetic nervous system; rat; rhythm generator; pattern formation; perturbation analysis

1. Introduction

Mammals can swiftly react to terrain changes during locomotion by dynamically
adapting their limb movements. Although the strategies and neural systems that legged
animals use to produce stepping motions are still not fully understood, many experiments
suggest that the spinal cord and associated peripheral nervous system contribute to the
generation and adaptation of gaits [1–3]. It is widely believed that neural circuits located in
the spinal cord called central pattern generators (CPGs) are important for repetitive motions
in animal locomotion, such as those seen in swimming or walking [4–6]. These neural
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circuits can produce patterned output either with or without input from a descending
system. However, how the CPG is organized and how descending commands influence its
behavior is still not well understood.

Many earlier models of rhythm-generating spinal circuitry assumed a half-center orga-
nization for the network, in which two neuronal groups mutually inhibit each other [7–9].
The dynamics of the half-center structure have been well studied [10–13], and some mod-
els were successfully applied as robot controllers [14–17]. However, it is difficult for the
half-center model to independently modify both the timing and magnitude of motoneuron
activity [18]. Additionally, the half-center model cannot replicate the non-resetting deletions
that have been observed in spinal animal preparations [19] in which motoneuron bursts
were absent and then subsequent motoneuron bursts reappear at the time they would be
expected, had the deletion not occurred.

To enable separate control of CPG timing and MN patterning, Rybak and colleagues
introduced a two-layer CPG model [20]. It is composed of a half-center rhythm generator
that regulates rhythmic timing and a pattern formation network that distributes and shapes
the timing signals to the motoneuron pools. This model provides a degree of separation
between the behavior of the frequency control network and the motor patterning network,
providing a means for more flexibility in motor activations while maintaining coordinated
locomotion. We demonstrated in previous work that when the CPG frequency is increased
through a descending drive, the activity level of the pattern formation layer is less affected
than that of the rhythm generator layer [21]. Additionally, the two-layer CPG is more
adaptive to perturbations, allowing for small timing adaptations at the pattern formation
layer that are not experienced at the rhythm generator layer.

The two-layer CPG model has continued to evolve and has been further refined to
capture a range of experimental observations through the inclusion of additional structural
elements and modeling parameters. For example, recent modeling work has included
weak mutual excitation between oscillators in the rhythm generator level of the classic
half-center CPG model [21,22]. This connectivity is hypothesized to match observations
from several experimental studies [23]. For example, when the inhibition of v1 and v2b
interneurons is absent, the flexor and extensor motoneurons can still be synchronously
and rhythmically excited [24–26]. Although the introduction of this connection increases
the explanatory power of this model, how the strength of this connection impacts overall
network performance is not clear. Additionally, the sensitivity of the network performance
to variations in the strength of the connection between the rhythm-generating and pattern-
formation layers, which is fundamental to the performance of this two-layer CPG, has not
been examined systematically.

In the present study, we investigate how variations in these connection strengths affect
the overall CPG network function. We use a perturbation analysis, evaluating how the
phase changes in response to perturbations under different modeling conditions applied
at different times in the gait cycle. We employ a similar approach to the phase response
analyses used previously to characterize oscillators’ performance in experimental [27,28]
and modeling studies [29,30]. Our analysis begins with the examination of the phase
response curves of the deafferented CPG, then examines the consequences of coupling
the CPG with a simulated biomechanical model that incorporates sensory feedback. The
addition of limb mechanics can have important consequences for model performance,
either amplifying or suppressing the response of the system to perturbations [31].

We examine several aspects of the performance of this two-layer CPG. We first examine
the influence of the hypothesized cross-excitatory connection on the rhythm-generating
behavior. Specifically, we analyze how changes in this connection affect the locomotor fre-
quency and phase adjustments in response to perturbations. After that, we vary the synapse
strength between the two layers and evaluate the rhythm generator’s ability to phase lock
with the pattern formation network at different intrinsic frequencies. The two-layer CPG
is then connected to motoneuron pools and used to actuate a simulated biomechanical
rat hindlimb, which provides the CPG with sensory feedback. The movement speed is
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increased through two methods: (1) adding an external drive to stimulate the rhythm
generator, as from a direct connection between the midbrain locomotor region (MLR) and
the rhythm generator; and (2) increasing the conductance of the mutually excitatory con-
nections between the rhythm generator oscillators, as if neuromodulation were used to
increase the synaptic strength. Our results show that, despite trends in differences between
the two models during deafferented and air walking, no discernible difference in locomotor
behavior is found during ground walking experiments.

2. Methods
2.1. Neuromechanical Model

The development of the rat hindlimb model was completed in Animatlab [32], a
simulation platform for designing neural models and actuating biomechanical bodies with
proprioceptive feedback. The configuration and parameter values of the biomechanical
model (Figure 1A) are the same as reported in our previous model [21] and the model’s
motion is still constrained in the sagittal plane with hinge joints.
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Figure 1. (A) Biomechanical model of a rat hind limb from our previous work [21]. Each leg segment
is modeled as a rigid body (pelvis in red; femur in green; tibia in yellow; and tarsus in purple).
Muscles are indicated by blue lines, and yellow dots are the origin, insertion, and intermediate points.
(B) Joint control network; parameters labeled in red font were those investigated in the present study.
D: Supra-spinal drive; E: Extensor; F: Flexor; IN: Interneuron; RG: Rhythm generator; PF: Pattern
formation; RE: Renshaw cell; and MN: Motoneuron.

To inspect how the simulated models’ reactions to perturbation are influenced by
different two-layer CPG designs, the hip joint control network from the previous synthetic
nervous system (SNS) was isolated, as shown in Figure 1B. In this network, extensor and
flexor Ia feedback, which signals the rate of a stretch of the muscle, synapse onto the Ia
interneurons. The flexor and extensor Ib feedback, which signals the tension developed in
the muscle, synapses onto the corresponding motoneurons. To eliminate other influences
and simplify the problem for this study, only type II feedback was applied directly to the
two-layer CPG to coordinate the extensor-flexor timing. This is similar to how increased
stretching of hip flexors encourages the initiation of swing in animals, and increased
stretching of extensors encourages the initiation of stance [33–35].
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2.2. Neural Model

All neurons in the SNS are non-spiking neurons, where each neuron represents the
mean activity of a population of spiking neurons [36,37]. Each node in the network func-
tions as a leaky integrator [29]. Neglecting action potentials increases computational
efficiency and greatly reduces runtime [37]. Our model explores how signals propa-
gate through the network and how groups of neurons activate, deactivate, and con-
tribute to network behavior. The dynamics of the neurons are governed by the following
differential equations:

Cm
dV
dt

= Gm·(Er − V) + Iapp + ∑ Gsyn,i·(Es,i − V) + GNa · (ENa − V)·m∞·h

Gsyn,i = gsyn,i·min
(

max
(

Vpre − Elo

Ehi − Elo
, 0
)

, 1
)

z∞ =
1

1 + Az· exp(−Sz (V − Ez))

dh
dt

=
h∞(V)− h

τh(V)
, τh(V) = τh·h∞(V)·

√
Ah· exp(−Sh (V − Eh))

where V is the membrane potential, Cm is the membrane capacitance, t is the time variable,
Er is the resting potential of the neuron, and Gm is the leak conductance. Iapp is an externally
applied current. ∑ Gsyn,i·(Es,i − V) are currents from synaptic connections, where Es is
the reversal potential of the ith synapse, gsyn is the maximum conductance of the synapse,
and Elo and Ehi are the lower and the upper thresholds of the synapse, respectively. Vpre is
the presynaptic neuron voltage. GNa · (ENa − V) is the persistent sodium current in CPG
neurons, which are gated by activation and inactivation of voltage-dependent channels
m and h, respectively. The variable z represents either m or h, as their equations have the
same form, except that m increases monotonically with V but h decreases monotonically
with V. Details of all neuronal and synaptic parameters can be found in Appendix A
(Tables A1 and A2).

2.3. Bifurcation Parameter

Szczecinski et al. used a bifurcation parameter, δ, to analyze the behavior of half-center
CPGs [29]. The bifurcation parameter is defined as:

δ = V∞,inh − Elo

where V∞,inh is the equilibrium potential of the inhibited half of the CPG and Elo is the
synaptic threshold it must cross to begin inhibiting the other half. When δ < 0, the inhibited
half will remain below the resting threshold for all time, establishing a stable equilibrium.
When δ > 0, the inhibited half can escape from its lower equilibrium and the CPG oscillates.
As δ grows larger, the CPG oscillates faster. This previous work showed that the strength
of mutual inhibition was related to the value of δ, suggesting a biophysical meaning for
this parameter. Thus, Szczecinski’s study [29] explained why δ is effective at predicting the
frequency and the phase response to stimuli for half-center oscillators.

The present study expands the analysis from Szczecinski’s work with two additional
variables as shown in Figure 2A: (1) the weak excitations conductance Gw between the two
halves of the rhythm generator; and (2) the descending drive D from the MLR.
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Figure 2. (A) Schematic of the detailed neural connections for the inhibited rhythm generator extensor
neuron in Figure 1b. (B) δ in the phase space of the rhythm generator. The red dashed line is the
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The equilibrium potential V∞ occurs when there is no change to the membrane voltage.
Thus, when dV/dt = 0, one can solve the neuron dynamics equation for V∞,inh:

V∞,inh =
Er + D + Gw·Ew + Ghyp·Ehyp + GNa·ENa·m∞·h

1 + Gw + Ghyp + GNa·m∞·h

where m∞ and h are both dependent on the value of V∞,inh, as shown above in Section 2.2.
When modeling the CPG circuit, usually the synaptic threshold Elo is set to equal the

resting potential of the neuron, Er. Hence, the bifurcation parameter δ in this study is de-
scribed by the following equation, in which each of the potentials has Er subtracted from it:

δ =
D + Gw·(Ew − Er) + Ghyp·(Ehyp − Er) + GNa·(ENa − Er)·m∞·h

1 + Gw + Ghyp + GNa·m∞·h

2.4. Overview of Analysis

All analysis of the two-layer CPG in this work is performed through MATLAB (MAT-
LAB 2021a, The MathWorks, Inc., Natick, MA, USA).

First, the experiment in Szczecinski et al.’s study was replicated, with δ, the bifurcation
parameter, being modified by varying Gw, the conductance of the cross-excitatory synapse
between the oscillators in the rhythm generator, and D, the descending drive. After that, the
effect of the connection strength Gc between the two layers was investigated. The two-layer
CPG was deafferented with no external inputs and the strength of mutual excitation was
adjusted until the rhythm generator oscillated at 1 Hz. The 1 Hz frequency is close to a
slow stride frequency of a rat, making comparisons to in vivo data easier. The intrinsic
frequency of the pattern formation layer was varied between 0.5 Hz and 2.3 Hz by adjusting
the mutual inhibition strength. Different connection strengths were then tested for phase
locking and phase shift between the two layers.

Phase response analysis was performed on the deafferented two-layer CPG neural
model and used to predict the behavior of the mechanical model when integrated, i.e., the
neural model generates muscle contractions and receives sensory feedback from the re-
sulting motion. In the deafferented neural model, the rhythm generator’s response to
changes in the external drive and the synaptic conductance between the rhythm gener-
ators was studied. Then, phase response curves (PRCs) of two rhythm generators, one
driven entirely by the external drive and one driven entirely by mutual excitation, were
numerically calculated by applying a square pulse stimulus to the RG flexor interneuron.
The advancement or delay of the cycle was measured and normalized to the entire cycle.
The perturbation current was either −0.5 nA or 0.5 nA with a duration of 5 percent of
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the oscillation period, which is consistent with the stimulus in Szczecinski et al.’s study;
keeping the same duration here allowed us to compare our results to those described in that
previous study. After that, for a two-layer CPG, external stimuli were applied to different
layers of the CPG, and the corresponding PRCs were analyzed and compared.

Frequencies of the two-layer CPGs were then increased to 2 Hz through (1) adding
an external drive to stimulate the rhythm generator; and (2) increasing the conductance of
the mutual excitatory connections between the rhythm generator oscillators. PRCs and the
phase shift between the two layers were calculated and compared. The faster frequency
(2 Hz) was chosen to compare how a baseline CPG responds to two different types of
stimulation, as though the animal is modulating its speed. In addition, 2 Hz is closer to the
locomotion frequency of rats observed in previous X-ray treadmill experiments performed
by our collaborators [21]. A similar frequency has also been reported in other studies [38].

Finally, each configuration of the network model was incorporated with the biomechan-
ical model. The response of each model to perturbations was tested, and the implications
with respect to future and past modeling work are discussed.

3. Results
3.1. The Effect of Variations in the Strength of Reciprocal Excitatory Connections and Descending
Drive on the Performance of the Rhythm-Generating Layer

In Szczecinski’s study [29], the half-center CPG’s oscillation frequency was found to
depend on the strength of mutual inhibition. However, this was the case when all other
parameters were held constant. The oscillation frequency is actually dependent on every-
thing that sets each neuron’s equilibrium voltage, which includes persistent sodium current
parameters, rest voltage, membrane conductance, and other parameters (Section 2.2).

In the present study, we expanded Szczecinski’s results by exploring two additional
variables: (1) the weak excitatory conductance Gw between the rhythm generator half-
centers and (2) the descending drive D from the MLR. We investigated how these parame-
ters influence the behavior of the rhythm generator. For instance, the frequency of 1 Hz
can be obtained by a rhythm generator with no mutual excitation (Gw equal to zero) and
external drive equal to 5.86 nA, or with a mutual excitation conductance equal to 0.57 uS
(reversal potential Es = −40 mV) and no external drive. However, the shape of each neural
burst underlying these oscillations with similar frequencies is substantially different. As
seen in Figure 3, the membrane voltages underlying these two oscillations are different
between the two networks, i.e., the rhythm generator that oscillates because of an external
drive (Figure 3A) has a larger voltage range and sharper peaks than the rhythm generator
that oscillates because of a weak mutual excitation (Figure 3B).

The sensitivity of the two networks to external inputs is also different. Figure 3C,D
present the phase response of rhythm generators oscillating at 1 Hz (with the same parame-
ters as in Figure 3A,B) when the external current Is was applied at different phases of the
oscillation cycle. As shown in Figure 3C,D, the magnitude and timing of the phase shift
differ between these two rhythm generators. To quantify the differences in phase response,
the PRCs were numerically calculated by applying a square pulse perturbation current to
the RG flexor interneuron and measuring the advancement or delay of the subsequent cycle,
normalized to the duration of one unperturbed cycle. The perturbation current Is was either
−0.5 nA (Figure 3E) or 0.5 nA (Figure 3F) with a duration of 5 percent of the oscillation
period. The rhythm generator which was driven by direct stimulus D = 5.86 displays a
smaller phase advancement and, thus, is less sensitive to external inputs compared to the
other model.
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(arrow). (E) PRCs for the rhythm generator driven by 𝐷 = 5.86 or 𝐺௪ = 0.57 at 1 Hz when perturbed 
by inhibitory stimuli of the same magnitude and duration as shown in part (C). (F) PRCs for the 
rhythm generator driven by 𝐷 = 5.86 or 𝐺௪ = 0.57 at 1 Hz when perturbed by excitatory stimuli of 
the same magnitude and duration as shown in part (D). 
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Figure 3. (A) Rhythm generators oscillating at 1 Hz driven by a descending drive, D = 5.86.
(B) Rhythm generators oscillating at 1 Hz driven by weak excitatory connections, Gw = 0.57.
(C,D) Comparisons between perturbed (dashed lines) and nominal (solid lines) membrane volt-
ages for rhythm generator extensors are shown in A (red lines) and B (purple lines); (C) the inhibitory
perturbation current Is = 0.5 nA was applied to the RG flexor interneuron at ϕ = 0.2 with a duration
of 5 percent of the oscillation period (arrow); (D) the excitatory perturbation current Is = 0.5 nA was
applied to the RG flexor interneuron at ϕ = 0.4 with a duration of 5 percent of the oscillation period
(arrow). (E) PRCs for the rhythm generator driven by D = 5.86 or Gw = 0.57 at 1 Hz when perturbed
by inhibitory stimuli of the same magnitude and duration as shown in part (C). (F) PRCs for the
rhythm generator driven by D = 5.86 or Gw = 0.57 at 1 Hz when perturbed by excitatory stimuli of
the same magnitude and duration as shown in part (D).

There are further differences in circuit function on the bifurcation parameter δ between
changing the strength of the descending drive or the weak excitatory connections. For
the rhythm generator driven by constant drive D, δ equals 0.07, whereas, for the network
oscillating by mutual excitation Gw, the δ value is 0.03. As δ represents the sensitivity to
phase advancement/delay, it tells us how close the system’s equilibrium state is to the
threshold needed to disrupt the equilibrium (and thus start another cycle). For a small
δ, the CPG responds immediately to the inputs, and the phase advancement is directly
related to when the stimulus current is applied. However, for larger values of δ, the rhythm
generator’s sensitivity to inputs is reduced [29].

Figure 4A shows the oscillation frequency of the rhythm generator can be controlled
by both reciprocal connections and descending drive, showing that the two parameters
(Gw and D) have similar effects. For a given descending drive D, an increase in reciprocal
connection strength Gw will increase the frequency until the neurons’ only equilibrium
state is for both neurons to have equal membrane voltage (and thus, they do not oscillate;
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blue regions in Figure 4A). When D and Gw are too large, the system does not oscillate
(blue regions in Figure 4A). Figure 4B shows that although different combinations of
parameter values might result in the same δ values, the frequencies of the resulting circuits
are not equal. Figure 4C shows PRCs for three different parameter combinations for which
δ = 0.1. The curves exhibit the same general shape, but their details certainly differ at some
locations, especially at the phase delay portion of the curves. In the system driven by
descending command D, the phase delay timing is postponed compared to the model
driven by reciprocal excitation (i.e., less sensitive).
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Figure 4. The frequency of the rhythm generator and phase response curves vary as a function of
neural parameters (descending drive D or coupling conductance Gw). (A) Various combinations of
D and Gw can control the oscillation frequency (presented as a color map) of the rhythm generator.
(B) Different combinations of parameters might result in the same δ values, but the frequencies will
be different. (C) The phase response curves for δ = 0.1 with different parameter combinations. The
phase response curves are relatively similar, however, differences clearly exist.

In summary, a specific oscillation frequency can be obtained for the rhythm generator
by different combinations of parameter values but the resulting networks will possess
different bifurcation δ values. Since the sensitivity of the network to incoming perturbations
is determined by δ, which represents how close the system’s equilibrium state is to the
threshold that must be crossed for the CPG to switch states, the networks will have different
responses to perturbations.

3.2. The Effect of Variations in the Connection Strength between Rhythm Generating and Pattern
Formation Layers

In the previous section, it was shown that the synaptic conductances (Gw and Ghyp in
Figure 2A) and external drive D influence the rhythm generator’s frequency and phase
response to stimuli. Different combinations of parameter values and stimuli lead to PRCs
with different shapes and sizes. In the following section, to evaluate the performance of the
system, unless otherwise noted, the pattern formation layers are tuned (by varying Ghyp) to
the same intrinsic frequencies as the rhythm generators.
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3.2.1. Effect of Signal Transmission Strength between Two Layers

When an excitatory synapse (Gc in Figures 1 and 5) connects the rhythm generator
(RG) to the pattern formation (PF) layer, the PF layer can become phase locked to the RG
layer even when the intrinsic frequency of the PF layer is different than that of the RG layer
(Figure 5A). For example, when Gc = 0.05 uS, PF layers with intrinsic frequencies ranging
from 0.73 to 1.1 Hz can be phase locked to an RG that has an intrinsic frequency of 1 Hz.
When the connection strength Gc is increased, PF layers with a wider range of intrinsic
frequencies can become entrained and phase locked to the RG’s frequency. Additionally,
different intrinsic frequencies of the PF network result in different phase shifts between the
two layers, even when there are no perturbations to the system (Figure 5B). For example,
when Gc = 0.1 uS, the phase shift between the two layers ranges from 0.1% to 4%. In
contrast to the trends seen in the frequency range, the range of phase difference between
the two layers is reduced when the Gc connection strength increases. However, when the
connection strength is too weak (Gc = 0.05), the system is less likely to phase lock, and
therefore, the range of phase differences is also reduced.
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Figure 5. The rhythm generator phase locks with the pattern formation layer. (A) The range of pattern
formation layer frequencies that phase locked to the rhythm generator is related to the connection
strength of Gc. (The top number reflects the maximum frequency that could phase lock, whereas
the bottom number reflects the minimum frequency that could phase lock.) Outside of the ranges
indicated by the bars, the two layers could not phase lock. (B) As connection strength increases, the
range of phase differences between the pattern formation layer and rhythm generator is reduced. (The
top number represents the maximum phase shift as a percentage of the normalized cycle, whereas
the bottom number represents the minimum phase shift as a percentage of the normalized cycle.)
However, when the connection strength is too weak (Gc = 0.05), the system is less likely to phase lock,
and therefore, the range of phase differences is also reduced.

Additionally, the coupling strength between the RG and the PF layers affects the
response of the network to perturbations. Strong coupling causes the PF layer to strictly
follow the signal pattern from the RG, even when the system is perturbed (Figure 6, brown
lines). When the connection between the layers is strong (Gc = 0.1 uS) and an inhibitory
perturbation current Is is applied at the RG or the PF layer, the phase shift difference
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between the layers is effectively zero (Figure 6C,D). The PF layer is less affected when the
connection strength is reduced (Figure 6, green dashed lines), especially for those stimuli
applied at the PF layer. This leads to phase shifts between the RG and the PF layer as
shown in Figure 6C,D. These phase shifts reflect how much flexibility the neural system has
during perturbed motion. There are no significant differences in the maximum phase shifts
when comparing RG perturbations vs. PF perturbations, indicating that the maximum
phase shift is primarily related to the connection strength.
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Figure 6. PRCs of the two-layer CPGs when perturbed with the stimulus of different magnitudes
or at different phases. (A) PRCs of the two-layer CPG when the inhibitory stimulus is applied to
the RG flexor interneuron. (B) PRCs of the two-layer CPG when the inhibitory stimulus is applied
to the PF flexor interneuron. (C) Maximum possible phase shifts between the two layers when the
stimulus is applied to the RG layer. (D) Maximum possible phase shifts between the two layers when
the stimulus is applied to the PF layer. (E) Range of possible phase shifts between the two layers for
different Is/Gc ratios when the stimulus is applied to the RG layer.

While stronger connections can explain the smaller phase shift difference between the
two layers, the ratio between the perturbation current and the direct connection conduc-
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tance (Is/Gc) also becomes smaller as the connections strengthen. One could surmise that
increasing the magnitude of the perturbation in relation to Gc could produce similar phase
responses as reducing the coupling strength Gc. To examine this, the PRCs of the same
ratio Is/Gc were also calculated for different Gc (Figure 6E). The results show that the phase
response difference for the same Is/Gc ratio is different, and the reduction in the range of
phase difference is largely due to the increase in Gc.

3.2.2. Speed Modulation

Descending commands from the high-level midbrain locomotor region (MLR) have
been reported to be responsible for changing gait and posture while an animal is in mo-
tion [39]. Our analysis of the rhythm generator examines two mechanisms that could be
used to increase the CPG frequency: direct stimulus D of the RG neurons, or neuromod-
ulation of the weak excitatory synapse conductivity Gw. Further analysis of these two
mechanisms on the two-layer CPG indicates that increasing CPG frequency through either
mechanism makes the system less sensitive to perturbations (Figure 7A). The maximum
range of the phase shift between the two layers for a CPG operating at 2 Hz driven by the
direct stimulus D is around 32.4% smaller than the one driven through neuromodulation
(Figure 7B). This demonstrates that the two-layer CPG driven by the direct stimulus D is
less sensitive to perturbation than the one driven by neuromodulation, which is consistent
with what we found for the deafferented rhythm generator above, as shown in Figure 3.
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3.3. Performance of Two-Layer CPG with Simulated Mechanical Model

In previous sections, the experiments were performed by simulating a deafferented
two-layer CPG without a simulated mechanical model or sensory feedback. However,
feedback plays an important role throughout locomotion, and it is unclear if the inclusion
of feedback would give different results in response to perturbations. Therefore, a single
joint (hip) model actuated by pairs of antagonistic muscles (Figure 8A) was created to
investigate the CPG’s performance under different combinations of parameters during
air walking. Type II afferent feedback from the muscles is connected to the RG and PF
CPG interneurons through inhibitory connections (Figure 8B). This feedback reduces the
cross-inhibition within the CPG, enabling the suppressed half to escape sooner. The leg
model is suspended in the air, and parameters are set to produce ‘air-walking’ movements
of the hip joint. Synapse properties were hand-tuned to produce similar maximum joint
angles as seen in the walking rat (approximately 20 degrees in the flexion direction and
40 degrees in the extension direction).
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Figure 8. Schematics for the single joint biomechanical model. (A) Single joint (hip) physics model
shown in the neutral position (θ = 0). (B) Type II afferent feedback of the muscles was connected to
CPG interneurons (CPG part of Figure 1B) on the opposite side through inhibitory connections.

We then recorded the response of the neuromechanical system to external torque
perturbations applied to the joint at different points of the locomotor cycle. Figure 9
presents the joint angle vs. time for the single joint model with a frequency of 2 Hz. The
torque perturbation is applied at 0.5 s and ends at 1 s. When the external torque is small
(Figure 9A), both models recover after the perturbation ends. However, the model driven
by direct stimulus recovers slightly sooner and returns more closely to its unperturbed step
timing. When a large perturbation torque is applied, one step cycle is deleted (Figure 9B),
and the simulated hip joint receiving the external drive recovers joint motion faster (blue
line, Figure 9B) than the network with weak excitatory connections (red line, Figure 9B).
The simulated hip joints in Figure 9 do not fully recover to their original step timing due to
limited feedback and alteration of the rhythm generator timing.
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Figure 9. Hip joint angles vs. time during stepping with an external perturbation torque applied to
the joint during ‘air-walking’ in which the leg does not touch the ground. The torque is applied on the
femur at the start of the second stance phase at 0.5 s and ends at 1 s, with a duration of one step cycle.
The blue 2 Hz D line indicates that the CPG is operating at 2 Hz and driven by the direct stimulus D.
The red 2 Hz Gw line indicates that the CPG is operating at 2 Hz by neuromodulation of the weak
excitatory synapse conductivity Gw. Dashed lines indicate when the transition from extension to
flexion would occur if there was no perturbation. (A) Given a small torque perturbation (−0.02 Nm),
both models recover after the perturbation ends. (B) A large torque perturbation (−0.1 Nm) causes
the deletion of an entire step cycle.
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In the next experiment, we investigated if the simulated air-walking results above
would translate to simulated locomotion with ground contact. Therefore, we used the
same neural parameters in the walking simulation model with two hindlimbs described
above (Figure 1A). We then placed the simulated hindlimb model on the ground and
applied Ib feedback from the ankle extensor to the RG and PF CPG extensor interneu-
rons. Figure 10 shows the perturbed motions for the hip joint in our ground walking
model walking at 2 Hz. For both models, D excitation or Gw neuromodulation, the hip
joint quickly recovers to its original step timing after both small and large perturba-
tions. Neural models using either mechanism exhibit powerful stability against the
disturbance, and it is difficult to distinguish the difference in kinematic offset for these
two mechanisms (Figure 10D).
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Figure 10. Hip joint angle vs. time during stepping with an external torque applied to the joint
during ground walking. The blue 2 Hz D line indicates that the CPG is operating at 2 Hz and
driven by the direct stimulus D. The red 2 Hz Gw line indicates that the CPG is operating at 2 Hz
by neuromodulation of the weak excitatory synapse conductivity Gw. The torque is applied on the
left femur at the start of the second stance phase with a duration of one step cycle. Dashed lines
indicate when the transition from extension to flexion would occur if there was no perturbation.
(A) Small torque perturbation (−0.02 Nm) as in Figure 9A. (B) Large torque perturbation (−0.1 Nm)
as in Figure 9B. (C) Bars present the range of joint offset from the nominal profile during and after
applying a small external torque as in (A). (D) Bars present the range of joint offset from the nominal
profile during and after applying a large external torque as in (B).

4. Discussion

This work investigates some of the details of the hypothesized two-layer CPG model
thought to underlie mammalian-legged locomotion [18,20,22] and how the two-layer
CPG and its associated biomechanical model react to perturbations when the locomotion
frequency is changed. This study builds upon our previous work [21] and investigates
how neural parameters in the CPG cooperatively generate patterned signals needed for
locomotion. These analyses provide guidelines for future computational neuroscience
designs for mammalian locomotion modeling studies.

The sensitivity analysis of the rhythm generator reveals that both the external drive
(e.g., from the MLR) and the weak excitatory strength between oscillators influence the
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oscillation frequency. Increasing the excitatory strength proportionally alters the bifurcation
parameter, δ, similar to previous work that demonstrated increases in δ due to increases in
direct stimulus [29]. However, the neural activity for these two mechanisms is different
even when the oscillation frequency is the same. Half-centers in the model driven by the
direct drive have a stronger onset of activity and a flatter plateau when compared to the
model driven by mutual excitation. The phase response curves of the rhythm generators
in response to perturbations are also different; the model driven by the direct stimulus
is less sensitive to external perturbations as it has a higher value of δ given the same
intrinsic frequency.

The connection strength between the two layers determines whether the two layers will
lock phases and if so, the phase delay between the layers. A high connection strength forces
the pattern formation network to replicate all phase shifts and phase resetting that occur in
the rhythm generator. This replicates the type of connection that has been observed at the
hip joint, where the joint position is closely related to the swing-stance transition [33–35].
However, this behavior does not apply to all the joints as it is not very flexible when it is
necessary to adapt patterned signals in response to perturbations (e.g., sensory feedback
altered by uneven terrain) and can lead to stability problems during locomotion. For
example, the ankle joint is known to have a more flexible pattern as foot placement relies
significantly on feedback from muscle spindles during walking [35]. The results here show
that a weaker connection strength can provide this additional phase shift flexibility between
the two layers.

Increasing the frequency of the two-layer CPG generally decreases the system’s sensi-
tivity to external inputs. This holds true for both the deafferented neural circuit, as well as
for the neuromechanical model performing air walking. When connecting the CPG with a
physical body and type II feedback, trends in the PRCs analyzed in the deafferented model
are directly reflected in the behavior of the neuromechanical model. The simulated hip
joint driven by the direct stimulus is less disturbed during a small torque perturbation and
recovers faster when a step cycle is totally deleted during air walking.

In contrast, when either model is implemented in a neuromechanical model of
two hindlimbs walking on the ground, most of these differences disappear. Both neural
models exhibit powerful stability against the disturbance and there is no functional
difference in step timing for these two mechanisms. These results suggest that the
precise behavior of the deafferented neural circuit may be of little importance to how the
whole system performs in the real world. This finding is consistent with observations
based on sea slug feeding behaviors [40], where the isolated ganglia motor patterns
are very individualized and sensory feedback reduces individuality. Indeed, for any
controller, neural or artificial, to be robust and capable, it must not be highly sensitive
to internal parameters, and must properly incorporate sensory feedback to shape and
coordinate overall behavior.

Moreover, biomechanics plays a significant role in stabilization. A study from Matran-
gola et al. [41] suggests that musculoskeletal properties might be important in perturbation
corrections: increases in body mass and inertia are beneficial to balance recovery, as it
increases the resistance to a perturbation. Additionally, mechanical interactions, such as
the stretching of elastic tissue, start instantaneously after a perturbation. These so-called
‘preflexes’ [42] occur much faster than sensory information can be processed and usually
serve as the first line of defense against perturbations [43]. These previous studies clearly
demonstrate that peripheral biomechanics can significantly improve stability, and our work
provides further support for this important observation. Finally, our results also show
that sensory feedback pathways within the spinal cord can provide further stabilization of
locomotor gaits, demonstrating that locomotor stability is not strictly a feature of central
neural circuits but likely results from the combined contributions from several elements in
the peripheral motor system [44].

What causes the air-walking and ground-walking models to behave differently? There
are two changes made from air walking to ground walking: the ground contact and Ib
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feedback from the ankle extensor, which is the load sensory feedback. We tried to build a
ground walking model without Ib afferent. However, as the inclusion of Ib feedback makes
ground walking more stable, we still do not know the answer. More attention should be
paid to investigating the influence of load feedback in the future. Would the system become
more sensitive to perturbations if the feedback strengths were reduced? Or is it the shape
of the load feedback or the ground contact timing that stabilizes the phase transition from
swing to stance? Further experiments exploring a range of perturbations to investigate
time-torque relationships and the strength of sensory feedback might help resolve some of
these issues.

There is another limitation in this study that may be important. We only implemented
II and Ib feedback into the CPG. As joint motion profiles are used to tune the neural
parameters, presumably, the strong velocity sensitivity afferent would be similar for air-
walking and ground-walking models. However, the Ia feedback might also strongly
affect CPG phase relations. Hence, the air-walking and ground-walking models might be
expected to perform differently. Therefore, further inspection of how Ia feedback influences
CPG phase relations is also necessary for future studies.

The results of this study suggest that the strengths of excitatory connectivity do not
have to be fixed precisely for stable walking. This suggests focusing on more detailed
biomechanical models to investigate whether additional muscles or muscle groups provide
benefits to the stability of the model as suggested by some previous work with biarticular
muscles [45]. Biarticular models require a more complex neural system than monoarticular
models. This present study suggests how parameters might be set in the CPG of a biarticular
muscle model. This work also provides guidelines for future mammalian locomotor
modeling by constraining parameter value ranges and reducing computational costs during
parameter searches.
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Appendix A

Table A1. Neural parameters.

Neuron Cm(nF) GmµS) Er(mV) GNa(µS) Ah Sh Eh(mV) τh(ms) Am Sm Em(mV) τm(ms)

RG 5 1 −60 1.5 0.5 −0.6 −60 0.35 1 0.2 −40 2
PF 5 1 −60 1.5 0.5 −0.6 −60 0.35 1 0.2 −40 2

MN 5 1 −100 0 - - - - - - - -
IN 5 1 −60 0 - - - - - - - -
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Table A2. Synapse parameters for 1 Hz.

Synapse g(µS) gext(µS) gflx(µS) Es(mV) Elo(mV) Ehi(mV)

RG to IN 1.625 - - −40 −60 −25
IN to RG 1.625 - - −70 −60 −25

Between RG 0.01 - - −40 −65 −40
PF to IN 1.613 - - −40 −60 −25
IN to PF 1.613 - - −70 −60 −25
RG to PF 0.1 - - −40 −60 −40
PF to MN - - - −10 −60 −50

Hip - 2.546 3.722 - −60 −40
Knee - 1.6 2 - −60 −40
Ankle - 3.2 4.5 - −60 −40

PF to Ia 0.5 - - −40 −60 −55
Between Ia 0.5 - - −70 −60 −40
Ia to MN 2 - - −100 −60 −40
MN to RE 0.5 - - −40 −100 −10
Between R 0.5 - - −70 −60 −40
R to MN 0.5 - - −100 −60 −40
R to Ia 0.5 - - −70 −60 −40
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