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Abstract: Fungi-based materials (myco-materials) have been celebrated and experimented with for
their architectural and structural potential for over a decade. This paper describes research applied to
assembly strategies for growing large building units and assembling them into efficiently formed
wall prototypes. A major concern in the development of these two fabrication strategies is to design
re-usable formwork systems. La Parete Fungina demonstrates two undulating wall units standing
side-by-side, each composed of seventeen myco-welded slabs. L’Orso Fungino revisits the in situ
monolithic fabric forming of units that are repeated, stacked, and post-tensioned. Although the design
and research presented in this paper focuses on overcoming the challenges of growing large-scale
building components, this work also touches on issues of accessibility and technology, economic and
logistical systems needed for building-scale applications, and material ethics of energy and waste
associated with emerging biomaterial production.

Keywords: mycelium; myco-materials; myco-fabrication; sustainable buildings; sustainable
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1. Introduction

Within Euro-centric traditions of architecture, the significance of a building is often
tied to its permanence. The Pantheon in Rome, for example, is a nearly 2000-year-old
cementitious dome structure, whose resilience to time elevates it to a monumental status.
Notwithstanding the significance of cultural and economic factors associated with the
need for permanent buildings and structures, must all buildings be assembled with the
goal of being permanent? Globally, the lifespans of buildings are rapidly decreasing.
The average lifespan of buildings in China was recently reported to be 34 years [1], and
25 years for residential buildings in Japan [2]. To great detriment, buildings are more
than ever being demolished prematurely and yet, use materials that are manufactured
with energy-intensive processes and are expensive or impractical to recycle. In the United
States alone, the Environmental Protection Agency (EPA) reported there was 600 million
tons of construction and demolition waste generated in 2018 [3]. Structural materials,
including wood, and architectural metals, such as steel, copper, and brass, are valuable
commodities that can be reused and recycled. However, in present-day architectural
assemblies, these materials nearly ubiquitously inter-face with expanded foams, plastics,
and resins, sometimes in irreversible composites. For example, wood is widely treated with
synthetic resins and glues to increase its resistance to decay or structural performance.

Fossil-fuel-based materials are versatile and economical. They are used to create
building products such as floor and wall finishes, furniture, conduits, structural reinforce-
ments, insulation, and sealants, to name a few. From their manufacture to their end-of-life,
synthetic materials require significant amounts of energy and produce emissions that are
harmful to environmental and human health. Plastics, such as polyvinyl chloride (PVC),
use a known carcinogenic monomer (vinyl chloride) in their production [4], and are often
manufactured to be more ductile using phthalate plasticizers, a known class of toxins
posing risks to the immune response, reproductive health, and embryonic development [5].
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Particularly in Europe, sorting programs are improving, and assessments of recycling prod-
ucts, such as PVC from window frames [6], have demonstrated successful programs for
those contexts. Still, only 3 percent of PVC is diverted from the waste stream in Europe [4].
Expanded polystyrene (EPS), commonly used as a packaging material, is fully recyclable,
but due to its low density, the cost of transporting it to be recycled quickly outweighs the
benefit if performed over long distances [7]. The EPA reports that only 0.6 percent of EPS
waste produced in the United States is recovered [8]. While the championing of recycling
has kindled examples of robust systems that produce high recycling rates in Germany and
Singapore [9], the fate of most foams, plastics, and fossil-based composites is disposal in
landfills, elimination through thermal incineration, or pyrolysis [10].

At a time when buildings can be expected to have short, non-permanent lifespans
that commonly result in landfill disposal, new building materials are needed that can help
challenge our traditional perceptions of significance and building permanence, rethink
what materials we use to build, and gain awareness of where those materials go when we
are finished with using them. Wood has recently been championed for its potential as a low-
cost and affordable building material, but a labor shortage during the COVID-19 pandemic
caused the cost of wood to increase by nearly four times [11], exposing the fragility of
existing supply chains. In the face of material insecurity, there is a critical need to explore
and test alternate low-energy and rapidly renewable building materials that contribute
to circular material economies and lessen the impact of the architecture, engineering, and
construction industries on climate change. Adopting new materials into the standards
of contemporary and future construction is challenging, but necessary. Importantly, the
way such new materials are used to design and build at the architectural scale cannot be
assumed. Innovation is possible, and presenting physical demonstrations at the building
scale is an important aspect of research needed to prove that an emerging material is viable
for future building construction.

1.1. Mycelium Composite Materials

Fungi-based materials are among a class of biotechnologies showing promise in
vastly offsetting the impact of the short lifespans of buildings in the modern era. In their
most common form, lignocellulosic fibers sourced from agriculture or forestry material
streams are bound together with an entangled web of mycelia, the root-like structures
of fungi [12]. Commonly known as “myco-materials”, they are produced similarly to
commercial mushroom farming, and can be composted at end-of-life. Myco-materials have
become an international enterprise and are produced at an industrial scale. Companies
such as Ecovative [13], Mycoworks [14], and Mogu [15] have explored their unique and
variable properties to create products through different forms of production. Products
finding commercial success include packaging materials [16–18], interior products such
as lampshades and planters [19], and acoustical panels [15]. Mushroom leather products
that serve as a sustainable alternative to animal leather are demonstrating increasing
commercial success [14,20,21], and are created through the use of different solid- and
liquid-state techniques [22].

Growing myco-materials involves propagating fungal hyphae (often from the phylum
Basidiomycota) into a fibrous substrate for several days under correct environmental
conditions until it forms a composite mass. Mycelium biomass is formally agnostic, having
the capacity to be grown into nearly any shape by packing fibers inoculated with a living
fungus into a formwork composed of a breathable non-cellulose-based material (usually
plastic) to avoid the mycelium from permanently adhering to the mold. The limitations
for growth are biological and environmental. Important precautions are proper sterility to
avoid the contamination of unwanted organisms, access to food and nutrients, maximal
darkness, and access to warm, humid air. Depending on the region, the fungal species being
grown, and the scale of production, growth chambers may need to be actively controlled to
maintain an optimal temperature and humidity, representing a likely demand for energy
resources. A common issue myco-material growers face is the emergence of contaminants,
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sometimes dangerous molds, and other organisms that thrive in similar environmental
conditions. Typically, the fibrous substrates into which mycelia are grown need to be steam-
sterilized or pasteurized, which can also be prohibitively expensive due to the equipment
and energy needed for such processing. Another important precaution that relates to design
with myco-materials is that at certain thicknesses, mycelia do not grow sufficiently due to a
lack of oxygen, presenting a chance for contamination.

Once fully grown, parts are typically actively dried to stop growth [23], resulting in a
material that resembles expanded polyurethane or polystyrene foam with a flame spread re-
sistance comparable to gypsum and low thermal conductivity. The numerous complexities
associated with growing myco-materials make it difficult to control the associated material
properties (whether mechanical, thermal, acoustical, or other) and are understood to be a
reported average. Different combinations of mycelium strains and fibrous substrates yield
varying properties of structural integrity, density, thermal conductivity, moisture resistance,
and visual quality [24]. Studies have reported on mechanical qualities [25,26], the impact
of moisture [27], acoustical properties based on mycelial growth [28], fire resistance [29],
and their biodegradability [30], and their aesthetic capacities [31], among several others.

One of the most significant challenges of using mycelium in large-scale structural
applications is that it is an inherently weak material (0.1–0.2 MPa of compressive stress
on average without mechanical compaction) and assumed to work best in compression.
Despite this limitation, myco-materials are also very lightweight, giving them advantageous
strength-to-weight ratios compared to concrete. This suggests that through advantageous
material placement large-scale and even long-span structures are possible. In the last
decade, several large-scale pavilion structures have demonstrated the potential of myco-
materials to be used for building structures. An important distinction must be determined
between those which use mycelium in a load-bearing capacity, and those which use the
material as a surface or cladding application. Pavilions such as “Shell Mycelium” in
India [32], the “Living Pavilion” in the Netherlands [33], and the pavilion at the Rensselaer
Polytechnique Institute, Troy, NY, USA [34], used mycelium cladding panels or units over
wooden frame structures. Ecovative used mycelium panels as the insulation of a tiny
house [35]. While these serve as examples of the building-scale use of myco-materials, they
are definitively non-structural applications. Curiously, there has been little diversity in
approaches to building with myco-materials, with fabrication techniques used to assemble
myco-structures remaining canonically familiar to architecture and engineering. These
include logical adaptations of assembly systems with bricks or blocks, monolithic castings,
3D printing-based, and hybrid techniques, which are described below.

1.2. Brick and Block Myco-Structures

The most common approach is based on the production of bricks or blocks grown
in custom-made molds, actively dried in ovens, transported to the site and assembled,
typically with the assistance of a temporary formwork and scaffolding structures. An
early structural application of myco-materials was the “Myco-tectural Alpha” [36], a small
catenary barrel vault built from bricks grown from reishi. The largest, and perhaps most
widely publicized mycelium structure was the “Hi-Fi” [37], a 40-foot tower installation by
David Benjamin and The Living in 2014, engineered by ARUP. The mycelium bricks sourced
from Ecovative were stacked atop of a wood and steel supporting structure. The “MycoTree”
exhibited at the 2017 Seoul Biennale [38] demonstrated how the structural capacity of
mycelium can be exploited maximally by placing it in compression-only configurations. In
each previous example, the structures were formed with the assumption that the material
would only work in compression, with dome/vault, tower, and column structural forms
dominating the literature. The masonry units themselves were grown in plastic formworks.
Three-dimensional printing techniques for myco-materials have also been explored, with
much attention being paid to the formulae of viscous living pastes to be extrude with
techniques adopted from digital ceramics [39]. Unit-based column structures have been
demonstrated by teams in Europe at Lund University, Lund, Sweden [40], and by Blast
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Studio, London, the UK [41]. Among the numerous exciting prospects of 3D printing myco-
materials, a significant benefit is that custom-designed building units can be produced
without needing a plastic formwork.

1.3. Monolithic and Bio-Welded Myco-Structures

Though much weaker and lighter than concrete, grow-in-place monolithic mycelium
techniques can inherit many of the advantages (and challenges) of cast-in-place concrete
techniques, including the use of traditional board, plank, sheeting, and flexible fabric
formwork techniques. Without some means of aeration, beyond a certain thickness (150 mm
or so), there is a risk that the fungi die prematurely from a lack of oxygen. Beyond
assemblies of discrete element techniques, other research has focused on stereotomic
approaches and monolithically growing large colonies of myco-materials in situ.

1.3.1. Monolithic Myco-Structures

Monolithic mycelium requires the design and fabrication of complex formworks that
permit the fungi to fully grow. Due to such challenges associated with the cultivation
of large volumes of live myco-materials and the constructing of formworks to facilitate
such growth, very little work on monolithic mycelium has been accomplished in the
context of architecture and structural design. In 2016, a master’s of science thesis on
civil engineering at Miami University, in Coral Gables, FL, USA [42] suggested analytical
methods for mycelium-based monolithic domes, but did not validate them through physical
means. At a small scale, Dutch artist Eric Klarenbeek demonstrated structural monolithic
growth [43] in combination with 3D printing to create furniture. Ecovative experimented
with monolithic mycelium and exhibited a chair in 2018 [44] that used a proprietary process
that aerated the growing colonies of myco-materials, allowing them to be grown at greater
thicknesses. A dissertation from the University of Newcastle in Newcastle upon Tyne,
the UK, explored the potential of monolithic mycelium chair structures [45] grown in a
conventional plastic formwork. Another interesting application of monolithic mycelium
was a functional canoe [46] that was over 2 m long, grown by a student at Wayne State
College in Wayne, NE, USA, in 2020.

Beyond these examples in product and furniture design, very few examples of architec-
tural structures have been attempted. A series of three prototype structures was previously
presented by the author of this paper [47], proving that grow-in-place monolithic mycelium
structures were feasible through novel constructive approaches. Two arch structures
(Figure 1) brought to light crucial considerations for successfully growing monolithic
mycelium structures. First, the external formwork must be strong enough to support
the weight of a wet substrate while maintaining its precise form, it must be composed of
removable non-cellulose materials, and must be sufficiently porous to allow promoting the
mycelia to breathe. Second, internal reinforcing strategies are advisable to handle eccentric
loadings and formal accuracy, and must be composed of a cellulose-based material to
permit the mycelia to bind and grow through the reinforcing structure.

A third prototype structure, called the Monolito Micelio (Figure 2), was an architectural-
scale monolithic mycelium structure, grown in early 2018 from a one-ton colony of mycelium-
stabilized hemp procured from Ecovative. The structure was designed and executed in
the context of a graduate research seminar at the Georgia Tech School of Architecture. The
vaulted pavilion was a critical response to the observed monotony of brick/block-based
myco-fabrication methods and built upon the constructive principles of structures before
it. The pavilion demonstrated that myco-materials could inherit fabrication logics from
cast-in-place concrete techniques, including traditional board formwork and flexible fab-
ric formwork techniques. Importantly, the structure showed that much more work was
needed to uncover new and previously unimaginable construction logics that go beyond
the architectural cannon of traditional materials.



Biomimetics 2022, 7, 129 5 of 22
Biomimetics 2022, 7, 129 5 of 23 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 1. (a) Formwork for the “Mycoarch” composed of active bent PVC and plastic sheeting; (b) 
completed arch (late 2017, since renamed the “Diamond A Arch”), which collapsed due to inaccu-
rate form and a myco-material matrix that had not sufficiently dried; (c) packing the internal rein-
forcing for the “Thick and Thin Arch” composed of recycled cardboard; (d) complete “Thick and 
Thin Arch” (early 2018) held seventy-five kilograms. Photos by the author. 
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Figure 1. (a) Formwork for the “Mycoarch” composed of active bent PVC and plastic sheeting;
(b) completed arch (late 2017, since renamed the “Diamond A Arch”), which collapsed due to
inaccurate form and a myco-material matrix that had not sufficiently dried; (c) packing the internal
reinforcing for the “Thick and Thin Arch” composed of recycled cardboard; (d) complete “Thick and
Thin Arch” (early 2018) held seventy-five kilograms. Photos by the author.

The success of the project was also met with numerous failures, which provided the
grounds for such a future inquiry. Notably, as part of a super-structure, myco-materials are
highly susceptible to expansion and contraction in the face of external elements, making
them unsuitable for external use, unless for temporary structures where the lifespan of
the structure is understood to be short. Temperature swings and precipitation caused the
material matrix of the Monolito Micelio to crack, decay, and become infested by other
unfavorable organisms, including potentially dangerous mold (Figure 3). Furthermore, the
materials used for the internal reinforcing system were much stronger and rigid than the
myco-materials, which further exacerbated the cracking and decay of the structure.

While, in many regional contexts, there are minor active energy inputs needed to
grow myco-materials, their reliance on plastics and molds that have limited reusability
presents an ethical dilemma. For example, the plastic-lined plywood and woven nylon
fabric formwork system used for the Monolito Micelio was a waste byproduct that resulted
in land-fill disposal. The issue of formwork resulting in waste is an issue that has since been
taken up by researchers interested in monolithic mycelium. A prototype structure by the
multi-disciplinary collaboration in Europe called the FUNGAR project [48] provided early
evidence that woven Kagome structures are an advantageous replacement for the polymeric
in-situ formworks and molds typically needed to grow myco-materials. Such weaving crafts
are globally ubiquitous, formally flexible, and often use natural lignocellulosic materials
that are readily available. Such strong porous surfaces allow the fungi to breathe, provide a
humid environment, and serve as a source of nutrition for the fungi. In contrast to plastic
formworks, myco-weaves encourage mycelia to grow into the formwork and integrate
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into the biomass. More recently, the author of this paper grew a two-meter-tall monolithic
mycelium column [49] along with students at Kansas State University that used basket
weaving techniques. The woven formwork both participated in the visual expression of
the column and potentially strengthened the assembly due to the deep bonds between the
myco-materials and exoskeleton (Figure 4a).
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ogy. (a) Construction of the wooden internal reinforcing; (b) in a manner resembling cast-inplace 
concrete, mycelilum composite materials were processed on-site with water and nutritional addi-
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ture; (b) cracking, decay, and infestation of the structure after four months. Photos by the author. 
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ogy. (a) Construction of the wooden internal reinforcing; (b) in a manner resembling cast-inplace
concrete, mycelilum composite materials were processed on-site with water and nutritional addi-
tives and immediately packed into the plywood and geo-textile formwork; (c) finished structure,
used as a stage and pavilion for a choir performance and exhibited at the School of Architecture.
Photos by the author.
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University in spring 2021, shown in their final installation sites. The structures were both larger
than the available resources for actively drying the structures to stop growth, resulting in the emer-
gence of fruiting bodies on the structures. (a) Two-meter-tall woven monolithic mycelium column;
(b) half-scale myco-welded staircase with visible fruiting bodies that resulted from the two-stage
growing process inherent to the myco-fabrication technique. Photos by the author.

1.3.2. Bio-Welded Myco-Structures

An increasingly popular technique called “bio-welding”, or “myco-welding”, involves
assembling structures with discreet living parts and growing them together into monolithic
wholes. Myco-welding is challenging because it requires two stages of growth. First,
individual units are grown from loose inoculated substrates in molds. Second, assemblies of
living units are kept in an intended formal configuration for several days, while maintaining
necessary sanitary and environmental conditions. Drying and stopping the growth of
large assemblies is also a challenge inherent to myco-welding large assemblies. If not
completed quickly enough, fruiting bodies often grow on the structure (Figure 4b), which,
depending on the application or context, may or may not be desirable. The technique has
been demonstrated for small arch structures [50], furniture [51], for making monolithic
blocks for use with robotic-controlled abrasive wire cutting [52], and a load-bearing half-
scale spiral staircase recently grown by the author and their students [49]. At the large
scale, the technique was demonstrated in the form of a triumphal arch at a short-term art
installation in Europe [53].

1.4. Aims and Scope of This Research

The applied research described in this paper seeks to expand upon fabrication tech-
niques using myco-materials, with the primary motivation being the excessive waste
produced by contemporary construction practices. Among the numerous challenges and
limitations associated with the application of myco-materials in architecture, this work fo-
cuses on overcoming (1) the challenge of cultivating large colonies of living myco-materials
into precise forms and (2) the need for intuitive and re-usable formwork systems that reduce
waste byproducts from growing and fabrication processes. The myco-fabrication strategies
presented here were developed through the production of prototype structures that demon-
strate growing large blocks of myco-materials and assembling them into efficiently formed
wall structures. The prototypes share an underlying serpentine geometry deployed into
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assemblies that are categorically hybrids between monolithic and brick/block-based. One
wall prototype demonstrates units created from myco-welded slabs, while the other revisits
the in situ monolithic fabric forming of units that are repeated, stacked, and post-tensioned.
Both structures were produced in academic contexts in collaboration with students from
the University of Virginia (UVA) and Kansas State University (K-State), under the direction
of the author. The prototypes were exhibited publicly in early 2022 at the Biomaterial
Building Exposition (BBE) [54].

2. Context, Design, and Methods

The BBE gathered five teams of architect scholars from across the United States to
develop and exhibit novel approaches for architectural-scale biomaterial research alongside
students at their respective universities. There were three components to the BBE: a
collaborative fabrication workshop with students in January 2022, full-scale installations
outdoors on the UVA grounds, and an accompanying indoor gallery exhibition at the UVA
School of Architecture. An opening symposium fostered discussion between the organizers
and exhibitors on how renewable, carbon-sequestering biomaterials could be utilized in
contemporary construction, while establishing a multi-institutional scholarly discourse
that raised public awareness of novel biomaterial construction.

The UVA’s academical village (now a UNESCO World Heritage Site) provided po-
tent inspiration behind the geometry of the two prototype structures presented in this
paper. Established and designed by Thomas Jefferson, a prominent feature of the grounds
are the brick “serpentine” walls (Figure 5) enclosing the gardens behind each residence
pavilion. The structures served as barriers to between the enslaved people and the white
university community and to mask the use of slave labor visually and acoustically [55].
The history of serpentine walls at the UVA and their connection to slavery is inescapable.
However, serpentine walls are not Jefferson’s invention. Straight masonry walls, unless
very thick or reinforced, cannot resist lateral loads [56]. Undulating walls can have a much
wider footprint, which helps resist lateral loads and can be much thinner than straight
walls. Therefore, the motivation to deploy serpentine wall technology for the BBE was to
recontextualize the serpentine geometry from its connections to slavery. The prototypes
intended to foreground that the inherent properties of myco-materials can through their
flexibility, stability, and material efficiency, also act as a means of promoting environmental
and human justice.

Biomimetics 2022, 7, 129 9 of 23 
 

 

  

Figure 5. Serpentine walls designed by Thomas Jefferson and built by slave labor that enclose the 
gardens at the rear of the residences of the historical academical village at the University of Virginia 
located in Charlottesville, VA, USA. Photos by the author. 

2.1. Parametric Design for Serpentine Walls 
To facilitate the generation of an expansive and diverse family of undulating wall 

geometries, a custom computational design script was developed in Rhino/Grasshopper 
[57]. The script generated a range of three-dimensional forms for serpentine walls. The 
geometries were generated from a periodic base curve that informed later design deci-
sions, including the generation of digital fabrication protocols for making the formworks. 
First, a curve was generated using design variables that included the number of control 
points that composed a V or U-shaped “unit”, the length and width of the unit, whether 
the curve was generated with poly-lines or poly-curves, and how many units composed 
the length of the curve. Figure 6a shows three examples of such basic walls in top view. 
Next, the underlying three-dimensional geometries of the wall units were represented as 
a planer ruled surface. The geometries used for the two prototypes were generated from 
the base curve and its mirror, according to a specified height. The final design stages con-
sisted of a set of thickening and geometrical extraction protocols (Figure 6b) that helped 
generate the formwork schema specific to the myco-fabrication technique being tested. 

 
 

(a) (b) 

Figure 6. (a) Examples of poly-line- and poly-curve-based periodic curves generated with the para-
metric design script for designing serpentine walls; (b) three-dimensional extractions and transfor-
mations afforded by the script. Vertical slicing and thickening were both used to design formwork 
schemes and to estimate material volume requirements. 

2.2. Summary of Myco-Fabrication Methods 
The experimental structures grown for the biomaterial building exposition tested 

myco-welding and fabric-forming techniques for growing large monolithic blocks and as-
sembling them into efficiently formed wall structures. Due to their inherent lightness, as-
semblies of large elements were not only possible, but also offered potential advantages 

Figure 5. Serpentine walls designed by Thomas Jefferson and built by slave labor that enclose the
gardens at the rear of the residences of the historical academical village at the University of Virginia
located in Charlottesville, VA, USA. Photos by the author.

2.1. Parametric Design for Serpentine Walls

To facilitate the generation of an expansive and diverse family of undulating wall ge-
ometries, a custom computational design script was developed in Rhino/Grasshopper [57].
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The script generated a range of three-dimensional forms for serpentine walls. The ge-
ometries were generated from a periodic base curve that informed later design decisions,
including the generation of digital fabrication protocols for making the formworks. First,
a curve was generated using design variables that included the number of control points
that composed a V or U-shaped “unit”, the length and width of the unit, whether the curve
was generated with poly-lines or poly-curves, and how many units composed the length
of the curve. Figure 6a shows three examples of such basic walls in top view. Next, the
underlying three-dimensional geometries of the wall units were represented as a planer
ruled surface. The geometries used for the two prototypes were generated from the base
curve and its mirror, according to a specified height. The final design stages consisted of a
set of thickening and geometrical extraction protocols (Figure 6b) that helped generate the
formwork schema specific to the myco-fabrication technique being tested.
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2.2. Summary of Myco-Fabrication Methods

The experimental structures grown for the biomaterial building exposition tested myco-
welding and fabric-forming techniques for growing large monolithic blocks and assembling
them into efficiently formed wall structures. Due to their inherent lightness, assemblies
of large elements were not only possible, but also offered potential advantages over other
previously demonstrated methods of building with myco-materials. Taking inspiration
from pre-cast concrete traditions, the goal for both prototypes was to demonstrate re-usable
formwork systems that produced large myco-material building components offsite in
semi-controlled working conditions. The strategies intended to reduce the demand of long
labor hours, reduce the risk of contaminating large colonies of myco-materials, and reduce
uncertainty during on-site assembly. Numerous practical and contextual considerations
had to be determined, which ultimately influenced the specific designs and techniques used
to complete them. These considerations included if the structure was going to be exhibited
indoors or outdoors, the location the structure’s parts were going to be grown, the materials
and fabrication resources on-hand for fabricating the formwork, how many students were
available to contribute to the project, and if the author would be present for the various
stages of growing and assembly. While the two structures shared a common underlying
formal logic for undulating “serpentine” walls, the formal character and complexity of
each serpentine wall prototype was intimately related to its respective method of myco-
fabrication. The two structures were grown in two different geographic locations in the
United States. At their core, these were academic projects, whereby the complexities in
the form and technique had to remain accessible to UVA and K-State students both at
undergraduate and graduate levels.
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2.2.1. Myco-Welding Slabs into Monolithic Building Units

The structure exhibited outdoors on the grounds was intended to be cultivated and
assembled locally by UVA students. As such, the scale of the structure, the complexity of
its form, and the accessibility of the fabrication and growing techniques were precisely
selected. As a base technique, myco-welding offered numerous advantages that better
aligned with the number of students involved and how much time they could contribute. In
devising the proposed methodology, a driving consideration was that most of the physical
effort was during a week-long workshop with participating UVA students with design
and engineering backgrounds. Myco-welding was advantageous in this context because
the two phases of growth de-concentrated continuous labor hours needed for large in situ
monolithic mycelium casting techniques.

The prototype wall structure, later named La Parete Fungina, was created from two
wall units, each built from seventeen V-shaped slabs myco-welded into three “chunks”.
Nine different V-shaped formworks were needed (Figure 7a). Noting the labeling scheme
in the figure, the palindromic sequence <a, b, c, d, e, f, g, h, i, h, g, f, e, d, c, b, a> described
a complete wall unit, with eight of the forms being repeated in each unit. The formworks
were intended to function as re-usable slip-molds to address the ethical dilemma of plastic
or other non-cellulosic material being ubiquitously used in the production of myco-material
objects. These formworks were intended to be simple to make, and because they had very
limited contact with growing materials, they could be created from wood and fabricated
with basic tools. For assembly on-site, a friction-based connection system (Figure 7b) was
developed, so the structure could easily be disassembled when the Exposition was taken
down. A unique byproduct of prolonged growth inherent to myco-welding was that it
produced overgrowth: a thick layer of pure mycelium grew on the surfaces of the units.
The overgrowth was like a layer of hydrophobic defense for the fungal colony, both while
it was alive and after being dried and immobilized. Having such a performative benefit
meant that myco-welding was the logical choice for a structure being exhibited outdoors.
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2.2.2. Fabric-Forming Monolithic Units

The structure exhibited indoors in the UVA’s School of Architecture gallery was grown
in spring 2022 at K-State in the context of a research seminar instructed by the author
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on myco-materials and myco-fabrication. In the introduction of the course, the graduate
architecture students were immersed into the question of myco-fabrication techniques
for large monolithic blocks assembled into efficiently formed wall structures. They were
challenged to work collaboratively and contribute efforts toward an alternative expression
of myco-fabrication. In contrast to the structure being grown at the UVA, the prototype later
named L’Orso Fungino leveraged the lightweight properties of myco-materials using large
monolithic elements that were cast in re-usable wood and fabric formwork. The complexity
and fabrication methods chosen were tuned to the available resources, the skill levels of the
students involved, and the short 6-week timeline for all the design and production. In situ
monolithic mycelium casting techniques were deemed advantageous, because most of the
physical effort available from participating students and research assistants in the lab was
during a weekly four-hour session. The custom formwork apparatus for growing the wall
units (Figure 8a) was designed to be quickly assembled, collapsible, and re-usable. Vertical
perforated cardboard tubes were grown into the matrix of the units to provide air into the
thickest parts of the colony during growth and to later serve as a conduit for a post-tension
connection system (Figure 8b). The top and bottom surfaces of each unit were detailed such
that there were interlocking adjacencies between the two units, the top compression plates,
and the base. Due to the anticipated lightness of each unit, a post-tensioning system was a
key feature of this prototype. It was hypothesized that loading the units in compression
with cables running through the cardboard tubes would bring additional strength and
stability to the assembly.
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mechanically tightened cable between plywood base and top plate. Drawings by Emmett Lockridge.

2.3. Materials

The myco-materials used for both prototypes presented below were procured from
Ecovative [13] and paid for with funds provided by the exposition. Within the budget, each
prototype structure could be grown from at most one pallet of myco-materials, weighing
roughly 325 kg. For these prototypes, one pallet held sixty-five 5 kg bags or 0.6 cubic meters
in total volume of wet living material. Ecovative’s patented material was a hemp substrate
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inoculated with a fungus from the phylum Basidiomycota, whose fruiting bodies resembled
the brackets produced by reishi.

The storage of these materials could have been a major challenge, because they had
to be kept at approximately 4 ◦C to prevent the fungi from growing too quickly and fully
consuming the substrate. Ideally, they should have been freight-shipped in refrigerated
containers and if proper refrigerated storage was not available, immediately processed and
packed into formworks. If kept unrefrigerated, the material would grow into a hardened
mass in the bags within 3 to 4 days, making it labor- and time-intensive to break the
hemp fibers apart. The structures grown at the UVA and K-State were grown in schools of
architecture, which did not have access to large-scale refrigeration.

3. Results and Discussion: Two Serpentine Wall Prototypes

Each structure tested assembly strategies for growing large mycelium building units
and assembling them into prototypes of efficiently formed serpentine wall prototypes.
As a pair, they demonstrated the flexibility and facility of myco-materials to adapt to
different approaches of fabrication based on the available tools, materials, and knowledge.
La Parete Fungina demonstrated two undulating wall units standing side-by-side, each
created from seventeen myco-welded slabs. L’Orso Fungino revisited the in-situ monolithic
fabric forming of units that were repeated, stacked, and post-tensioned. While developing
the two techniques, a major concern was to design the formwork systems to be re-usable.
Consequently, the formal character and complexity of each structure were intimately related
to their respective method of myco-fabrication. Both were assumed to be compression-
bearing structures, even if they were not exhibited resisting external loads.

3.1. La Parete Fungina

For the structure grown by UVA students, pre-emptive planning took place two
weeks before the workshop in January 2022. This included the development of the script
described above in Section 2.1, hiring and coordinating with a research assistant at the
UVA, and purchasing materials for the formwork. The five-day workshop was attended by
undergraduate students from both engineering and design backgrounds during daily four-
hour sessions. For the first three days of the workshop, the primary goals were fabricating
the wooden formwork and creating a growing cart. Nine wooden formworks (Figure 9a)
were hand-built from 17 mm unfinished whitewood boards, cut into 75 mm strips. Each
slab was 1200 mm long end-to-end and had a common rectangular cross-section 150 mm
wide and 70 mm thick. The underlying poly-line V-shape of this structure produced nine
formworks whose forms lay between a V and a rectangle, required measuring several
non-orthogonal cuts with varying angles. This was a minor technical challenge, but was
time consuming and would have benefited from digital fabrication resources. Grow-space
was limited too; no more than 3 m × 3 m under a staircase. A moveable growing cart
(Figure 9b) was improvised using three heavy-duty wire shelves, plastic zip ties, and black
plastic sheeting. The cart had five 1220 mm × 1370 mm shelves, resulting in approximately
8.3 square meters of growing surface.

The final two workdays during the workshop were used to form and start growing
the slabs. First, the inoculated hemp substrate had to be broken up until the fibers were
completely loose (Figure 9c). As it was being fiberized, 250 g of kitchen flour was mixed
for each 5 kg bag of living substrate. The flour was recommended by the manufacturer
as a nitrogen-rich nutrient to promote the rapid growth of fungal hyphae, but for this
project, the recommended quantity was doubled. The intention was to have the flour
act as a temporary binder while the mycelia formed their bonds between fibers. Water
was added to the extent that when a handful of fibers were squeezed, only one drop of
water was released. Once fully prepared, the loose fibers were compacted by hand into
the formworks on the plastic lined shelves of the cart (Figure 9d), and the wood formwork
could be carefully slipped off, and reused to form multiples of the same shape (Figure 9e).
As a means of providing a clean and humid environment to each slab, they were covered
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in food-safe plastic film (Figure 9f). The cart was covered with a black plastic covering
(Figure 9g) that kept the slabs in the dark while they grew, and, more importantly, provided
a second means of keeping a clean and humid growing environment. Approximately
one-third of the bags were used with two days of delivery to grow a first round of slabs.
During the first week-long grow period, the students stored the remaining bags in a covered
outdoor space, stacked on shelves and wrapped in black plastic sheeting. This was the
best option due to the lack of access to large-scale cold storage. The bags encountered
temperature swings between roughly −2 and 18 ◦C between day and night.
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for roughly two months, after which it was taken down. 

Figure 9. Preparation and process for forming and growing myco-material slabs: (a) re-usable wood
formworks created in the first days of the workshop; (b) growing cart in its space under a staircase in
the school of architecture; (c) fiberizing the living hemp substrate and mixing in additives prior to
packing the formwork; (d) hand packing the wood formwork directly on the grow cart; (e) removing
the mold for reuse; (f) slabs individually wrapped in food-safe plastic to keep the fibers humid and
warm; (g) plastic “cloak” which covered the entire grow cart to keep growing specimens dark warm
and humid; (h) myco-welding slabs with loose inoculated substrate as mortar. Photos by the author
and Leila Ehtesham.

In the weeks that followed the workshop, the UVA research assistant and one of the
participants continued to form and grow the remaining slabs while also myco-welding the
slabs that were sufficiently cultivated. The living slabs were stacked into “chunks” between
five and six layers thick, with loose substrate in between to level the assembly (Figure 9h).
The assembly of living parts had to be completed in rigorously clean conditions, while
keeping the assembly in the correct and intended configuration. While the slabs were being
stacked, they were gelatinous and fragile and had to be handled with care by at least two
people at a time. Furthermore, while slabs bonded and grew together, they needed to be
kept in an appropriately clean, dark, warm, and humid environment. The wall chunks
were grown into monolithic-like masses for roughly two weeks, after which they were
passively dried until installation.

At the time of assembly, all the myco-welded chucks had at minimum one week of
drying time. The on-site installation of La Parete Fungina was completed in approximately
one hour. The six wall chunks were driven to the site in a small passenger van. Wooden
anchoring stakes (40 mm diameter) were driven into the ground and the base chunk was
friction-fitted in place (Figure 10a). The remaining chunks were dry stacked (Figure 10b)
each with similar wooden stakes in between. The simple friction-fitting system was ideally
suited for this application, because the exhibition was temporary and needed to be taken
down after a period of three months with minimal impact or damage to the UVA grounds.
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The two undulating units (Figure 10c) were approximately 1200 mm tall, configured in a
manner such that the serpentine wall geometry produced a gap in the wall. The myco-
welded objects were highly didactic due to their long growing time shown through artifacts
such as changes in color to the formation of fruiting bodies. In the days following the
installation, the structure was subjected to wind and snow, which did not cause a collapse,
nor was the material compromised. The thick layer of overgrowth demonstrated its inherent
resilience that would be well suited to its exhibition outdoors for roughly two months, after
which it was taken down.
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Figure 10. Installation of the prototype onsite: (a) friction fitting base chunk to the anchoring stakes
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3.2. L’Orso Fungino

For the structure grown at K-State, pre-emptive planning took place for two weeks
following the week-long workshop at the UVA. With the change in strategy for growing
the wall chunks, notable adjustments to the scale and geometry were determined. An
important driver was that the structure needed to be shipped 1800 km from Manhat-
tan, Kansas, to Charlottesville, Virginia. Within the budget, two pallets could be sent
(1220 mm × 1016 mm in area for each). Sized according to the freight limitations, wall
units were designed, each approximately 750 mm long and 750 mm tall. The prototypes
intended to demonstrate the wall units was vertically stacked in twos. The formwork
was designed to be quickly assembled, collapsible, and re-usable. The rigid portion of the
apparatus (Figure 11a) was created with a combination of hand-cut nominal timber frames,
CNC-cut plywood panels, and 3 mm plastic laminations for surfaces in direct contact
with living materials. The hand-stretched fabric portions (Figure 11b,c) were composed of
breathable synthetic geotextile. Several formworks were fabricated so that multiple units
could be grown simultaneously.

The first fabric formwork apparatuses were packed roughly one month before the
opening of the exposition. Within the time constraints, two units could be packed by
six people. As a safeguard from potential failures, additional units were accounted for
in the materials budget. Due to a limited supply of materials, it was decided that non-
sterilized and non-inoculated hemp fibers would be mixed in with the inoculated substrate
to increase the yield volume. Several previous experiments in the MycoMatters Laboratory
successfully propagated Ecovative materials into ratios of up to one part inoculated to four
parts non-inoculated and non-sterilized hemp fibers (1:4) by volume. The fabric formworks
were packed with a 1:2 ratio to increase the volume with less risk. In addition to the hemp,
250 g of kitchen flour per 5 kg bag of living material and water was added such as above.
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upholstered into the rigid frame. Photos by the author.

Within a four-hour work period, two formworks were filled with inoculated sub-
strate (Figure 12a). The formworks were packed monolithically by hand and with the
help of tools to compress the material around the perforated cardboard tubes (Figure 12b).
Each unit used between nine and ten bags of pre-inoculated material due to overpacking,
which caused the fabric to stretch, ultimately requiring more material to fill the formwork
(Figure 12c). The formwork was then covered with a black plastic covering that kept the
material humid and dark while the mycelium grew (Figure 13a). After the first two units
were packed, a third was packed a day later. During the growth period of the first three
units, approximately fifteen bags could be stored in the lab refrigerator. The remain-
ing twenty bags (approximately) had to be kept on a pallet in the lab. After only four
days, mycelium from the first two units had already grown through the stretched fabric
(Figure 13b). The formwork of the first two units was removed (Figure 13c), which meant
they would have two full weeks to passively dry in the lab before being shipped. The
third unit became contaminated (Figure 13d) deep in the monolithic colony, despite that
surface mycelium managing to grow in many areas. This suggested that a contaminant
from the non-sterilized hemp and a lack of air were probably contributing causes. The
first two formwork apparatuses were re-assembled and re-used to grow two more units.
Of those two, one more unit became contaminated. The remaining three fabric-formed
monolithic units and a wooden formwork apparatus were palletized (Figure 14a) and
shipped to the UVA.

The on-site installation of L’Orso Fungino was completed in approximately two hours.
The assembly of the prototype began by stringing cables through cardboard conduits of the
lower wall unit (Figure 14b). The steel cables were mechanically fastened to the plywood
base compression plate. Next, the cables were strung through the top wall unit (Figure 14c),
this time with more difficultly because one of the cardboard tubes bent during the packing
process. None of the units was fully dry which was an advantage because the cable could be
forcefully pushed through the spongy mycelial matrix. Cables were mechanically fastened
to threaded eyebolts. The stack of two units (Figure 14d) had a top plate that was put in
compression by the tightening of each eyebolt against a washer (Figure 15a). The assembly
was allowed to compress by one centimeter from post-tensioning. L’Orso Fungino was
exhibited in the gallery at the School of Architecture at the UVA, alongside the third wall
unit and the formwork apparatus (Figure 15b,c). The post-tension system was successful as
a technique for stabilizing myco-structures. The connection details are in need of future
iterations. A larger open question was how such post-tensioned wall structures would
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support the load of a vault, a truss, or a beam. In its current state, the post-tensioning
system was simple to disassemble at the end of the exposition.
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Figure 13. Growing fabric-formed monolithic wall units: (a) black plastic covered the formworks as
the material grew in the MycoMatters Laboratory; (b) after four days of growth, healthy mycelium
was found growing through the fabric; (c) first two fabric-formed monolithic units with all formworks
removed after growing four days; (d) third unit found with a contamination compromising mycelial
growth deep into the unit. Photos by the author.
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3.3. Discussion and Future Work

La Parete Fungina and L’Orso Fungino both served as demonstrations of wall assembly
systems that challenged the status quo of myco-fabrication. Myco-welding and fabric-
forming techniques were tested for their capacity to create complex yet efficiently formed
wall structures from large building units grown in re-usable formwork systems. The
structures initiated a new dialog of architecture-scale myco-fabrication techniques that
were positioned between those which used building units the size of a brick and those
which used units the size of a room. They demonstrated the flexibility and ease with which
myco-materials could adapt based on available tools, materials, and knowledge.

Working in educational contexts, the strategies generated material knowledge directly
through the production of physical artifacts. For novice student collaborators, this approach
was productive toward fostering their appreciation and mastery of building material assem-
blies through the technical lens of myco-materials. Furthermore, students had the freedom
to exercise their creativity and experience working at full-scale through experiments that left
room for improvised adjustments. Insights on the craft of growing myco-structures were
never assumed, were developed directly in collaboration with the students, and generated
through creating. The students learned first-hand that building (with any material) is chal-
lenging, but also joyful and rewarding. Thus, the impacts of the methods presented below
were both technological and educational. Myco-materials were challenging for students
because they required greater care and attention compared to common, inert materials. For
example, compared to handling live materials, personal protection practices, including wear-
ing masks and gloves and thoroughly cleaning all working surfaces and formwork, are not
an inherent protocol for a typical design or engineering student. Lessons learned through
minor frictions, failures, and contaminations were vital to provoke important questions
about the material ethics and the appropriateness of the methods.

Rather than demonstrate methods ready to grow buildings entirely from myco-
materials the prototypes suggested new hybrid techniques that could contribute to the
broader cannon of myco-fabrication; adding to well-established discrete element, 3D print-
ing, and monolithic techniques. The prototypes detailed above operated between the scales
of a brick and a monolithic pavilion. At the scale of a house (for example), a building
structure grown from myco-materials would likely require multiple prefabricated units or
“chunks” that would be assembled on-site. Without commercial-scale growing resources,
there are practical and biological limits to the scales of colonies one can grow. The Monolito
Micelio [47] was 2.5 m × 2.5 m × 2.5 m, and its scale presented several notable disad-
vantages, including the significant demand for time and labor, the risk of handling such
significant quantities of living material in uncontrolled environments, the need for pliable
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internal reinforcing, and the challenge of drying large colonies to stop growth without
large ovens. While there were few active energy inputs needed to grow the myco-materials,
the near-ubiquitous plastic formworks in which they were grown presented an ethical
dilemma. The plastic-lined plywood and woven nylon fabric formwork system that formed
the Monolito Micelio were a waste byproduct that resulted in landfill disposal. However, if
a sufficient volume of living myco-materials was available and there was enough funding
to hire labor for such a project, most of the formwork could have been reused to create
several pavilion-scale units that could be aggregated to form larger spaces. This suggested
that the techniques demonstrated by the Monolito Micelio could be scaled to grow parts
two to four times larger. The goal for myco-fabrication in architecture should be to develop
the capacity to grow parts at the same scale as current glue-laminated and cross-laminated
timber manufacturing.

Experimentation with myco-fabrication at architectural scale is still nascent as a field
and faces massive challenges that need to be overcome to achieve results other than
prototype structures and fanciful pavilions. Limitations for building-scale deployments of
myco-materials are foremost caused by the challenge of supply and access to commercial
quantities of material. Currently, the lack of myco-material production infrastructure makes
it both energetically and financially costly to transport wet, living mycelium composites
over long distances. Ecovative, which is based in Troy, NY, has pioneered the scaling-
up of myco-material production by closely studying and collaborating with commercial
mushroom farming industries, especially in the neighboring state of Pennsylvania, where
over 60% of all mushrooms in the United States are grown [58]. As a result, they offer a
biotechnology that grows quickly and reliably under favorable environmental conditions
and with some resilience to contamination. The ability to grow mycelium entirely through
the lignocellulosic substrate within just a few days is a major advantage that makes growing
structures a relatively fast process. However, such speed and reliability come with costs
that can be a barrier to using myco-materials at a large scale. Beyond the cost of the material
itself, the need to hire expedited refrigerated transport and have access to large-scale
refrigerated storage are other potential barriers.

Radical approaches to sustainable construction raise questions of material ethics when
evaluating what and how much was wasted in different approaches to myco-fabrication.
Although in many regional contexts myco-material technologies have the capacity to
require less energy than petrochemical foams and plastics they seek to replace, there are
critical ethical questions that must be considered. In addition to the near-ubiquitous use
of plastic and issues of waste-producing formworks, transporting myco-materials long
distances with petroleum-consuming vehicles should be scrutinized. For the prototypes
presented here, live myco-materials were procured from Ecovative’s spawn supplier in
Pennsylvania and transported either to the UVA or K-State. For both, it was cost-prohibitive
to hire a refrigerated truck to deliver from the spawn supplier directly to the university.
Thus, more improvisatory and self-motivated methods were needed. For the UVA-grown
structure, shipping delays were going to have the material arrive after the workshop was
over. To keep the project on schedule, the author drove a 750 km round-trip to the spawn
supplier. For the structure grown at K-State, creative logistical planning was required to
organize a two-step relay delivery. For a pro-rated cost, the pallet was first “hitch-hiked”
1700 km with a scheduled refrigerated shipment of button mushrooms spawned on a farm
in the neighboring state of Oklahoma. Research assistants in the MycoMatters Laboratory
then drove an 800 km roundtrip to bring the pallet back from the farm. It would be ideal for
the distribution of myco-materials to exist in a model where they are regionally produced
as a way of reducing transportation distances. More immediately, the opportunity to
overlay the myco-material demand with existing food supply chain maps from existing
spawn suppliers presents an opportunity to cultivate deep bonds between agriculture and
biomaterial industries.

For myco-materials to succeed in the future, they must remain in the current dialog,
both in academic and professional contexts. Collaborations across the fields of design,
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engineering, biological sciences, agriculture, and economics (for example) are essential to
developing new knowledge essential for the scaling of new material technologies in ways
relevant to building construction. Importantly, knowledge about growing structures must
be as commonly accessible such as knowledge needed for building with wood, steel, or
concrete. The craft of growing myco-structures is clearly in need of time to mature, but
will only do so through continued study and experimentation. Future work should seek
cooperative logics between fungal growth, computational design, and digital fabrication
to further discover constructive possibilities with myco-materials. For example, digital
reference technologies, such as 3D-scanning and augmented reality, may be important com-
ponents of future work on myco-welding. The ability to grow twine and other natural-fiber
textiles into the material matrix suggests that through computational design and analysis,
the strategic placement of such reinforcements could be deployed to selectively strengthen
and enhance myco-materials. Such advancements could help fully integrate forming mate-
rials into the building components being grown. Pre-stressing and post-tensioning have
probable futures in myco-fabrication for certain structural scenarios. Robotic fiber winding
and CNC knitting are two technologies that have been widely demonstrated and could be
immediately applied in the context of myco-fabrication. The raising popularity of “co-bots”
also suggests a future in which machines could collaborate with craftsmen and carry out
improvisational tactics with greater precision, reduced demand for labor, and potentially
much safer and cleaner fabrication conditions.

4. Summary and Conclusions

There is an urgent need for low-energy and renewable building materials that divert
building and demolition waste from landfills and lessen the impact of the construction
industry on climate change. The ability to rapidly grow building structures from myco-
materials, particularly for short-term or temporary functions, has the potential to greatly
reduce building and demolition waste. This paper provided an extensive overview of
the state-of-the-art in deploying myco-materials at the architectural scale, highlighted the
numerous case studies of researchers in diverse global contexts growing building-scale
structural parts and pavilions, and gave first-hand insight about the significant challenges
and limitations associated with the application of myco-materials for architectural struc-
tures. The applied research presented here developed hybrid myco-fabrication techniques
that overcame the challenge of cultivating large colonies of living myco-materials into
precise forms, and demonstrated intuitive and re-usable formwork systems that reduced
waste byproducts from growing and fabrication processes. The techniques were developed
in academic environments that gave young designers and engineers the access, space, and
resources for working with myco-materials. The two prototype wall structures demon-
strated the ability to grow large and complex shapes outside of rigorously controlled
biolab environments, and with fewer risks than monolithic structures grown in situ. The
lightweight properties of mycelium composites were an advantage in this context, where
large, complex building components could be pre-grown and pre-dried off-site in semi-
controlled environments and assembled with less continuous on-site labor compared to the
production of brick/block or monolithic mycelium structures.

Realistically, the greatest potential for these techniques is in applications that replace
EPS and other varieties of foam and insulation materials for insulated concrete formworks,
large-scale acoustical arrays, temporary self-supporting structures, interior furnishings,
scenography or theatre stage projects, and others, leveraging the inherent absorptive,
insulative, and fire-resistant properties of myco-materials. Whether these techniques are
applicable to load-bearing building structures is still an open question that demands
further research. Nonetheless, large-scale building and long-span myco-material structures
continue to gain interest in trends of research and commercialization that seek to vastly
offset the impact of the short lifespans of buildings in the modern era.
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