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Abstract: Statistical parametric speech synthesis based on Hidden Markov Models has been an
important technique for the production of artificial voices, due to its ability to produce results with
high intelligibility and sophisticated features such as voice conversion and accent modification with
a small footprint, particularly for low-resource languages where deep learning-based techniques
remain unexplored. Despite the progress, the quality of the results, mainly based on Hidden Markov
Models (HMM) does not reach those of the predominant approaches, based on unit selection of
speech segments of deep learning. One of the proposals to improve the quality of HMM-based speech
has been incorporating postfiltering stages, which pretend to increase the quality while preserving
the advantages of the process. In this paper, we present a new approach to postfiltering synthesized
voices with the application of discriminative postfilters, with several long short-term memory (LSTM)
deep neural networks. Our motivation stems from modeling specific mapping from synthesized to
natural speech on those segments corresponding to voiced or unvoiced sounds, due to the different
qualities of those sounds and how HMM-based voices can present distinct degradation on each one.
The paper analyses the discriminative postfilters obtained using five voices, evaluated using three
objective measures, Mel cepstral distance and subjective tests. The results indicate the advantages of
the discriminative postilters in comparison with the HTS voice and the non-discriminative postfilters.

Keywords: deep learning; speech synthesis; postfiltering; lstm

1. Introduction

In the field of speech synthesis, pursuing the creation of artificial voices with natural
sound and flexibility, statistical parametric speech synthesis has been a hot topic for
researchers for more than a decade [1,2]. The most common statistical models used are
the Hidden Markov Models (HMM), modeling spectrum, duration, and pitch separately.
More recently, deep learning-based speech synthesis has also been reported in several
languages [3,4], and it can be considered the state-of-the-art for those languages where a
large corpus of speech information is available.

For under-resourced languages or the first development of artificial speech, HMM-
based speech synthesis is a technique commonly applied in many cases [5–8]. Despite the
advantages of this technique for speech synthesis, some shortcomings concerning natural-
ness and overall quality have been mentioned in the many implementations in languages
around the world, often referred to as buzzy and muffled sound [9]. The three principal
factors that affect the quality of statistical parametric speech synthesis are limitations of the
parametric synthesizer itself, the inadequacy of acoustic modeling, and the over-smoothing
effect of parameter generation [2].

To improve the results obtained with this technique, some researchers have imple-
mented postfilters, by adding algorithms as a final step to enhance the quality of the sound.
Some algorithms implemented are deep generative architectures [10], Restricted Boltzmann
Machines, and Long Short-term Memory (LSTM) [11].

In postfiltering with deep learning algorithms, a regression problem is established for
transforming the synthesized features into the natural ones, determining the best-fit model
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for the relationship between both. This regression problem is usually one single function
for a set of parameters, i.e., the spectrum information of the Mel Frequency Cepstrum
Coefficients (MFCC).

It is known that the set of parameters, obtained from a database of naturally spoken
utterances, comes from phoneme that has a different probability of occurrence. The
probabilities have been studied, for example, in [12], where the most common phoneme
of American English in the report was /@/ with 9.96% of frequency, followed by /i/ with
9.75%. On the other hand, phonemes like /g/ and /h/ had a frequency of occurrence as
low as 1.14% and 1.11% respectively.

Given that each HMM that represents phonemes in statistical parametric speech
synthesis is trained separately, with a different amount of data from the database, it is
straightforward to hypothesize that different distortions or shortcomings occur for the
phonemes. The differences mean that a complex relationship exists between synthetic and
natural data, relying on phonetic dependence.

Performing regression in data with such a complex relationship between groups
has been explored by clustering data to establish simpler regression analysis for clusters.
For example, in cluster-wise linear regression (CLR), the accuracy of linear regression is
increased by partitioning space into subspaces, as has been successful in many fields [13].

Previous experiences with postfilters for speech synthesis have shown considerable
enhancement of the speech signal without considering any clustering in applying the
postfilter. In our approach, before applying the postfilters, a discriminating process is
performed in order to separate voiced/unvoiced parameters, then train and implement the
postfilters for each group independently.

1.1. Related Work

After the first published results of HMM-based speech synthesis, and the perception
of its quality compared to other established techniques, the researchers began to search
for new ways of modeling and reproducing the speech sound or to increase the quality of
the results obtained so far. The results of the first published results were voices with high
intelligibility and flexibility in most cases, but lack of naturalness in the sound.

One of the ideas presented to preserve the advantages of HMM-based speech synthesis
but which increases the quality in a final stage was the postfiltering. This idea was proposed
in [14], to reduce the gap between the sound of artificial speech and the natural speech [15].
The most common form of implementation of a postfilter is as a mapping function between
parameters, performed with artificial neural networks. For example, in [16], the spectrum
of the synthesized speech is enhanced using a mapping function estimated with Deep
Belief Networks.

The improvement in the results of artificial speech relies on the capacity of the neural
networks to perform the complex mapping between artificial speech and natural speech.
And to overcome this complexity, some variants of the posftilters approach have been pre-
sented. For instance, a combination of postfilters, made by cascading restricted Boltzmann
machines with one bi-directional associative memory was proposed in [17], to enhance the
spectrum of synthesized speech.

Recurrent Neural Networks (RNN), in contrast to standard feed-forward networks
for the postfiltering of synthesized speech was presented in [18]. The recurrent connections
and structure of RNNs have been evidenced to better model the time dependency nature of
the speech signal [15]. One of the types of RNN that has worked with better results is the
LSTM and its bidirectional counterpart BLSTM. For example, in enhancing the Mel-cepstral
coefficients of synthetic voices [19] and the fundamental frequency [11].

For both the complexity in the mapping function required to approximate the sound
of the artificial speech to those of the natural speech and the new types of neural networks
tested in close domains, the possibility of increasing the effectiveness of postfiltering is
an open research question, that handles the possibility of building HMM-based artificial
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voices (of particular importance in low resource languages) with better quality than those
of the base system.

In all the references cited previously, the mapping between artificial and natural speech
is performed using the entire sequence of parameters, without considering the specific
nature of such parameters. This is one of the main factors that made the mapping function
so complex. In our approach, we present for the first time a discriminative postfiltering, for
enhancing the synthesized speech by a group of deep learning networks trained to map
the voiced or the unvoiced sounds separately.

With this approach, the postfiltering is performed in the test stage, by separating the
utterances into voiced (those sounds with fundamental frequency f0 > 0) and unvoiced
segments (those sounds with fundamental frequency f0 = 0), to enhance each one with the
correspondent artificial neural networks. After the enhancing process, the segments are
concatenated and the utterance resynthesized.

1.2. Contribution

In this paper, we extend the single postfilter approach for the enhancement of artificial
speech previously presented in the literature, to a set of independent postfilters applied to
subsets of phonemes defined according to its voiced/unvoiced classification.

The objective of the study is to address the following questions: (I) is a discriminating
voiced/unvoiced postfilter based on LSTM capable of improving the traditional single
postfilter approach for enhancing HMM-based speech synthesis? Our experimental results
will affirm this question. (II) Does the discriminative postfilter allow a significant subjective
preference regarding naturality? The subjective and objective test reflect this fact.

The rest of this article is organized in the following sections: In the Section 2, the
Problem statement is presented. In Section 3, Long Short-term Memory neural networks
are briefly described. Section 4 presents our proposed system and Section 5 gives the
experimental setup. Section 6 presents the results, and finally, the conclusions are presented
in Section 7.

2. Problem Statement

In comparison to natural speech, the trajectories of parameters in HMM-based artificial
speech are smoothed, due to the statistical modeling that are performed in the training of
the mathematical models [20]. This smoothing influence the perceived quality of the result.

To overcome this problem, we consider the speech parameters, RY, of synthetic speech
as a corrupted version of the parameters, RX , of the natural speech. In a frame-by-frame
alignment of both versions of the same speech, every frame of speech is parametrized
using M features, which can be expressed as the vector:

~c = [c1, c2, . . . , cM]. (1)

With one vector representing a frame, a whole utterance of speech produces a matrix
of size M× T, where T is the number of frames. This matrix has the form

~R = [~c>1 ,~c>2 , . . . ,~c>T ] (2)

With this notation, let ~RY and ~RX be the matrices of the parameters extracted from the
synthetic and natural speech respectively, and ~RW the concatenation of ~RY and ~RX .

In deep-learning-based postfiltering, enhancing the features of the artificial voice is
made by approximating a function f directly from the data, with the aim of mapping
synthetic features to natural features, using models such as Recurrent Neural Networks.
This mapping can be performed by minimizing the error function [18]:

E( ~RW) = || f ( ~RY; ~RW)− ~RX ||2 (3)

In our approach, we consider the whole set of parameters of an American English
voice and perform a clustering dividing the set of phonemes into two mutually exclusive
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clusters, corresponding to voiced or unvoiced sounds. There are two functions, f21 and
f22 trained to map the parameters on each of this clusters to the corresponding natural
parameters.

Figure 1 illustrates the discriminative clustering and the regression performed: In
traditional postfiltering, a single regression function f11 is used to map features of all
synthetic phonemes to the natural phonemes. In our discriminative approach, one partition
to the space of phonemes is performed, and two independent functions, f21 and f22 are
used to map the features from cluster 1 of synthetic speech to the cluster 1 of natural speech,
and the same with cluster 2.

Figure 1. Illustration of the mapping function performed between synthetic and natural phonemes in the base system
(simple) and the proposed (discriminative).

The clustering and regression trained for each cluster are finally applied to a test set
of utterances, to evaluate the enhancing obtained each level of the hierarchical clustering
and determine at which level the enhancing is more successful, regarding several quality
measures.

For the regression task, we chose Long Short-Term Memory Neural Networks, which
have been proved successfully in several speech-related tasks, including postfiltering. The
next section gives details on this kind of neural networks.

3. Long Short-Term Memory Neural Networks

The LSTM neural networks are an extended kind of RNN, developed with the pur-
pose of store information in internal states of the network over long or short periods of
time. The proposal was first presented in [21], and has been successfully used in speech
recognition [22,23], which provides its significance in speech related tasks. But the storage
and use of long-term information is potentially useful for other applications where the
parameters develops depending on previous information.
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In a RNN, the outputs of the network, y = (y1, y2, . . . , yT) are computed from the
inputs x = (x1, x2, . . . , xT) and values from the hidden layers h = (h1, h2, . . . , hT) iterating
Equations (4) and (5) from 1 to T [24]:

ht = H(Wxhxt + Whhht−1 + bh) (4)

yy = Whyht + by (5)

where Wij is the weight matrix between layer i and j, bk is the bias vector for layer k andH
is the activation function for hidden nodes.

The LSTM architecture and the flow of information through the network is much more
complex than the traditional recurrent neural networks, given that each internal unit has
several extra gates to allow the pass or the storage of information. These gates: input it,
forget ft, output ot and cell activation ct are implemented using the equations:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (6)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(7)

ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc) (8)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (9)

ht = ot tanh(ct) (10)

where σ is the sigmoid function f : R→ R, f (t) = 1
1+e−t and Wmn are the weight matrices

from each cell to the gate vector.
A detailed description of the training procedure of LSTM networks can be found

in [25].

4. Proposed System

In our proposal, we use the HTS system to provide aligned versions of natural and
synthesized speech, in order to reduce the gap between them. Given each synthesized
utterance, we extract vectors of parameters in each frame, using the Ahocoder system [26].
Each vector consist of one coefficient for f0, one coefficient for energy, and 39 Mel-frequency
cestral coefficients (MFCC).

The parameters are processed independently, as proposed in previous references [11],
and after the parametrization, we separate the parameters in voiced (with a value of
f0 > 0) and unvoiced (with a value of f0 = 0 according to the Ahocoder parametrization),
both in the synthesized and natural utterances. The reason of this discrimination is that
voiced/unvoiced is one of the most distinctive features of the speech sounds, reflected
from the source filter model of speech production [27].

The training procedure is illustrated in Figure 2, where the base systems consists in
a single postfilter, whilst the proposed system perform the enhancement separately for
voiced and unvoiced frames. For each group of voiced and unvoiced frames, we train a
collection of LSTM networks to enhance each parameter separately, proposing three cases
with collections of postfilters, describen as follows:

• In the first type of postfilter proposed (LSTM-1), a LSTM neural network with the
same number of units at the input and at the output (autoencoder) is trained, with
the inputs corresponding to the MFCC parameters of each frame of the HMM-based
voice, and the outputs correspond to the MFCC parameters of the natural voice for
the same aligned sentence.

• In the second type of postfilter, LSTM-2, the MFCC are enhanced in the same way as
the previous case LSTM-1, but a new LSTM is trained to map the energy parameter
from the HMM-based voice, to the energy parameter of the corresponding natural
voice, also using natural MFCC features at the input and the output during training,
in a particular form of auto-associative network.
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• In the third type of postfilter, LSTM-3, the difference with LSTM-2 is an additional
auto-associative LSTM network trained on the f0 parameter.

Feature
extracion

Feature
extracion

...

...

...

...

...

Inputs

Outputs

LSTM
Postfilter

Artificial
Speech

Natural
Speech

(a) Base system

...

...

...

...

...

Inputs

Outputs

LSTM
Postfilter 1:

Voiced
frames

...

...

...

...

...

Inputs

Outputs

Phoneme segmentation

Voiced Unvoiced

Feature
extracion

Feature
extracion

Feature
extracion

Feature
extracion

Phoneme segmentation

Voiced Unvoiced

LSTM
Postfilter 2:
Unvoiced

frames

Artificial
Speech

Natural
Speech

(b) Proposed system
Figure 2. Comparison of the (a) base system and (b) the proposal. In the base system, a single postfilter is applied to the
whole utterance, regardless of the nature of the individual sounds. In our proposal, the postfilter is applied selectively, by
discriminating the unvoiced/voiced nature of the sounds.

This procedure was similar to those presented in [11], but with the implementation of
an additional discriminative process, that allows a further improvement in the quality of
newly synthesized utterances with HTS, using distinct collections of networks as a way of
refining the voiced and unvoiced sounds.

Figure 3 shows the procedure followed for the enhancing of the new utterances (test
set): Each frame of the utterance is labeled with a sequential number. Then each block of
voiced/unvoiced frames is separated according to the value of f0. The blocks corresponding
to voiced or unvoiced sounds are enhanced using the corresponding postfilter. The number
of frames is used to properly reorganize the frames after the process and reconstruct the
utterance.
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Figure 3. Procedure followed in the test set. Each frame is labeled with a number, and according to the value of f0 is
enhanced by one of the postfilters. After the enhancing, the frames are concatenated again and the speech is re-synthesized.

5. Experimental Setup
5.1. Corpus Description

In this work, we use the CMU_Arctic database, developed by the Language Technolo-
gies Institute at Carnegie Mellon University. The database was designed to be phonetically
balanced, with several US English speakers, both male and female.

Each participant recorded around 1150 utterances selected from out-of-copyright
texts from Project Gutenberg. The details of this database are available in the Language
Technologies Institute Tech Report CMU-LTI-03-177 [28]. Each participant is labeled using
three capital letters: BDL (male), CLB (female), RMS (male), JMK (male) and SLT (female).

5.2. Experiments

As the general procedure for testing machine learning tasks, specially those based in
neural network, the whole set of vectors or each voice was divided into training, validation,
and testing sets. Table 1 shows the number of vectors in each set for each of the five voices.

Table 1. Amount of data (vectors) available for each voice in the databases.

Database Total Train Validation Test

BDL 676,554 473,588 135,311 67,655
SLT 677,970 474,579 135,594 67,797
CLB 769,161 538,413 153,832 76,916
RMS 793,067 555,147 158,613 79,307

The architecture of the LSTM networks were defined after a process of trail and error,
with 150, 100 and 150 units in each one of the hidden layers. The final selection was taken
also considering feasible training time for the total of 40 LSTM networks applied in the
postfilters of the work (one for each kind of postfilter and each voice, for the discriminative
and the non-discriminative cases). The training process was accelerated by a NVIDIA GPU,
and took about 7 h to train each LSTM.
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The following notation will be used in the results and analysis. The base system
correspond to the non-discriminative approach, and the Discriminative correspond to our
proposal:

• HTS: The HMM-based voice without postfiltering.
• Base-Type 1: Postfiltering of MFCCs of the HTS voice with one denoising autoencoder

of LSTM network, while the f0 and energy parameters remain the same of the HTS.
• Base Type 2: The same of Base-Type 1, with an additional auto-associative LSTM

network for separately enhance the energy parameter. The f0 parameter remain the
same of HTS.

• Base Type 3: The same of Base-Type 2, with an additional auto-associative LSTM
network for separately enhance the f0 parameter.

• Discriminative-Type 1: Postfiltering of MFCCs of the HTS voice with two denoising
autoencoder LSTM networks, discriminating one for voiced and one for unvoiced
MFCCs. The f0 and energy parameters remain the same of the HTS.

• Discriminative-Type 2: The same of Discriminative-Type 1, with two additional auto-
associative LSTM networks: one for enhancing the energy of voiced sounds and one
for the energy of the unvoiced segments of speech.

• Discriminative-Type 3: The same of Discriminative-Type 2, with one additional auto-
associative LSTM network for enhancing the f0 of the voiced sounds. The unvoiced
segments of speech remain with f0 = 0 and don’t need to be changed.

5.3. Evaluation

To assess the improvement in the quality of the synthetic voices, we use the following
objective measures:

• Segmental SNR (SegSNR): Is a measure of the relation of the energy of the speech and
the noise, commonly used to measure speech quality. Is implemented following the
equation:

SegSNR =
10
N

N

∑
i=1

log

 ∑L−1
j=0 s2(i, j)

∑L−1
j=0 (s(i, j)− x(i, j))2

 (11)

where x(i) is the original and si the ith processed speech samples, N is the total
number of samples and L is the frame length.

• PESQ: PESQ is a measure based on a predictive model of the subjective quality
of speech. This measure is defined in ITU-T recommendation P.862.ITU. Results
are reported in the interval [0.5, 4.5], where 4.5 is the perfect quality of the speech,
according to the reference sound (the natural recording).
PESQ is computed with the equation:

PESQ = a0 + a1Dind + a2 Aind (12)

where ak are adjusted to optimize the measure according to the signal distortion and
overall quality.

• Weighted-slope spectral distance (WSS): This is a measure calculated in the frequency
domain, comparing the slopes presented in the spectrum, calculated using the equa-
tion:

WSS =
1
N

N

∑
i=0

∑K
j=1 W(j, i)(Ss(j, i)− Sx(j, i))2

∑K
j=1 W(j, i)

(13)

where Ss(j, i) and Sx(j, i) are the slopes for the jth in the frame i. K is the total number
of spectral bands. The weights W(j, i) are established according to the magnitude of
the peaks in the spectrum.
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The Mean Absolute Distance between individual MFCCs was also calculated, to mea-
sure the difference between the HTS and postfiltered voices. Finally, subjective preference
score based on naturalness of the HTS and postfiltering approaches were also obtained
from surveys.

6. Results

The results are presented in two subsection: In the first one, the performance of the
algorithms within each of the discriminative and non-discriminative LSTM postfilters are
presented. Statistical significance of the improvement is judged by Tukey’s HSD. All tests
were performed using a significance of 0.95.

The second subsection present the results of subjective listening tests, in terms of
preference scores between both approaches. Some sample audio files of the results were
included as supplementary materials of this article (Audio S1–S4).

6.1. Objective Measures

The results for the WSS measure are shown on Table 2. In four of the five cases the
best results were obtained with the discriminative postfilters, and in the fifth (BDL voice),
the results of the discriminative postfilter do not differ significantly from the best.

Table 2. WSS Results for the hierarchical clustering levels. The lower values represent better results.
* indicates the best result. In bold are the results which are not significantly different from the best,
according to Tukey’s HSD test.

Voice HTS Base-Type Discriminative-Type

1 2 3 1 2 3

SLT 46.30 42.78 43.21 69.54 42.18 41.97 33.84 *
RMS 38.30 32.39 32.54 38.62 30.76 * 31.39 31.45
JMK 35.26 31.69 31.45 35.65 30.50 * 31.18 32.10
CLB 37.20 34.96 34.94 36.92 32.55 32.23 * 36.61
BDL 41.71 37.20 37.09 * 41.59 37.82 37.60 38.72

It is also noticeable that the WSS measure for the SLT voice, the best result was for
the Discriminative postfilter type 3, none of the other algorithms have a similar result.
Similar results were obtained for the PESQ, as shown in Table 3 where the discriminative
postfilters obtained the best results or significantly different from the best, with the SLT
result of PESQ as the best, and none of the other algorithms obtained comparable results.

Table 3. PESQ Results for the hierarchical clustering levels. The higher values represent better results.
* indicates the best result. In bold are the results which are not significantly different from the best,
according to Tukey’s HSD test.

Voice HTS Base-Type Discriminative-Type

1 2 3 1 2 3

SLT 1.0 1.0 1.0 0.6 1.0 1.0 1.3 *
RMS 1.5 1.6 * 1.5 1.4 1.6 * 1.4 1.4
JMK 1.3 1.4 * 1.4 * 1.2 1.3 1.2 1.2
CLB 1.3 1.2 * 1.2 * 1.1 1.2 * 1.1 1.0
BDL 1.4 1.4 * 1.4 * 1.1 1.4 * 1.4 * 1.3

The result for the SegSNRf results are shown on Table 4, where three of the five voices
have the best result for this measure with the discriminative postfilters, and the RMS and
BDL voice without a significant difference from the best.
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Table 4. SegSNRf Results for the hierarchical clustering levels. The higher values represent better
results. * indicates is the best result. In bold are the results which are not significantly different from
the best, according to Tukey’s HSD test.

Voice HTS Base-Type Discriminative-Type

1 2 3 1 2 3

SLT 0.5 1.2 1.7 0.3 1.5 1.8 2.8 *
RMS 1.4 2.4 2.5 * 1.4 2.2 2.0 1.8
JMK 1.7 1.9 1.1 0.8 2.0 2.1 * 2.0
CLB 2.4 2.7 2.2 2.4 3.4 * 3.1 2.8
BDL 0.5 1.4 1.5 * 0.7 1.3 1.3 1.2

The previous results show that the discriminative postfilters have the best results for
the majority of voices, and in the rest, the results are not significantly different from the
best, showing the benefits of the discriminative approach to postfiltering.

On Figure 4, the Mean Absolute Distance between the MFCC of the discriminative
system proposed and the standard multi-stream postfilters are presented, both compared
with the MFCCs of the HTS voices without postfiltering.

(a) CLB

(b) BDL
Figure 4. Cont.
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(c) JMK

(d) RMS

(e) SLT
Figure 4. Comparison of mean differences between MFCC of each algorithm and natural voice.

Discriminative-LSTMA-1 provides better approximation to natural MFCC than regular
LSTMA-1 in 20 of 39 coefficients from SLT voice (51.28%), as seen in Figure 4. Similar
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or greater improvements have been obtained with the other voices. The most notorious
improvement comes from the JMK voice, where 29 out of 39 MFCC coefficients have been
improved with the Discriminative-LSTMA-1 algorithm (74.36%) in comparison to the
LSTMA-1, and the BDL voice where 24 out of 39 MFCC (61.54%) are better estimated with
the Discriminative-LSTMA-1 in comparison with the LSTMA-1.

6.2. Statistically Significant Enhancement of the Noisy Speech Signal

In this section, we present a statistical analysis in order to determine when the results
presented so far significantly enhance the HTS voice. One reason for this is the fact that
a system may give the best result for a measure without significantly enhancing the HTS
voice.

For the statistical analysis, we applied Tukey’s HSD test to assess significant differ-
ences between the enhanced speech signal and the HTS voices. This test gives pairwise
comparisons between all results. In Table 5 the results of the test are summarized, and
reported from the best case of the types described in Section 5.2. The statistical test shows
the capacity of the discriminative postfilters to enhance the WSS of the HTS voice in more
cases than the correspondent non-discriminative approach.

Table 5. Tukey’s test results. Ticks indicate a significant enhancement of the artificial speech, and
ns means an improvement but not statistically significant. And empty space represent that no
improvement were measured.

Voice Base-Type Discriminative-Type

WSS PESQ SegSNRf WSS PESQ SegSNRf

SLT ns ns X X X X
RMS X ns X X ns X
JMK X ns ns X ns ns
CLB ns ns X X
BDL X ns X X ns ns

For the PESQ measures, the results show two remarkable facts: none of the postfilter
enhances the PESQ measure for the CBL voice, and the Discriminative-Type was the
only postfilter that obtained significant enhancement of the HTS voice for the case of
SLT. The rest of the results show improvements, but not statistically significant. The
significant enhancement of the SegSNRf present similar results of the WSS results, where
the Discriminative postfilters enhance all the voices significantly in most cases than the
base case.

6.3. Subjective Results

The performance of the discriminative postfilters, in comparison with the non-
discriminative postfilters and the HTS voices, were subjectively evaluated by percep-
tual tests. Twenty utterances, which were randomly selected from the testing set of all
systems and voices, were evaluated according to preference tests participated by 60 subjects
through an online system. All subjects are native American English speakers, both male
and female, with ages between 20 and 50 years old.

The preference scores are shown in Figure 5. It shows that the speech enhanced by
the Discriminative postfilters is significantly preferred than the best HTS and the non-
discriminative postfilters for all voices, with the most notorious differences in the RMS and
BDL voices.
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Figure 5. Preferece score for the HTS voices and the non-discriminative (single) and discriminative postfilters.

7. Conclusions

In this paper, the proposal to use discriminative postfilters to enhance the quality
of artificial voices produced with statistical parametric techniques based on HMM was
analyzed. The postfilters applied are based on LSTM neural networks, previously presented
in the literature for their applicability in improving speech signals.

The discriminative approach of postfiltering refers to the distinction of voiced and
unvoiced segments, and the consequent application of specific postfilter to each, in contrast
to a single postfilter for all speech segments, as is done in the base case. The assumption
for applying this discriminative approach is that the nature of voiced and unvoiced sounds
differs sufficiently to treat their improvement separately.

The advantages of the proposal were verified using three objective measurements.
The significant improvements were verified in comparison to the quality of the artificial
voice. And also in contrast to the base case where a single postfilter is applied to the whole
sentence. The improvement was also verified with subjective evaluations by a group of
listeners, who indicate their preference for the sound quality of the voices processed with
discriminative postfilters.

Therefore, with the results of this work, there is evidence to support the advantages of
enhancing specific speech segments, produced with HMMs, instead of complete speech
sentences. In the instante of mapping between complete sentences, postfilters based
on LSTM neural networks must learn more complex mapping functions, contemplating
mapping functions between sounds that differ much or little between natural and artificial
speech.

The discrimination of sounds to enhance the quality of speech represents an advantage
that could be analyzed further with more specific types of sounds; for example fricatives,
plosives, liquids, or other linguistic categories. Following this path, the postfilters can be
trained to provide more specific mappings and produce more significant improvements in
the artificial voices.

Supplementary Materials: The following are available online at https://www.mdpi.com/2313-767
3/6/1/12/s1, Audio S1: Artificial speech, Audio S2: Artificial Speech with Discriminative Postfilter-
ing, Audio S3: Artificial Speech, Audio S4: Artificial Speech with Discriminative Postfiltering.
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Abbreviations
The following abbreviations are used in this manuscript:

BAM Bidirectional Associative Memory
CMU Carnegie Mellon University
DBN Deep Belief Network
DNN Deep Neural Network
f0 Fundamental frequency
GPU Graphics Processing Unit
HMM Hidden Markov Models
HTS H-Triple-S: HMM-based Speech Synthesis System
LSTM Long Short-term Memory
MFCC Mel-Frequency Cepstral Coefficients
PESQ Perceptual Evaluation of Speech Quality
RBM Restricted Boltzmann Machine
RNN Recurrent Neural Network
SegSNR Segmental Signal-to-noise Ratio
SNR Signa-to-noise Ratio
WSS Weighted-slope Spectral Distance
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