# Experiments and Agent Based Models of Zooplankton Movement within Complex Flow Environments

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

#### 2.1. Relevant Dimensionless Numbers

#### 2.2. Macrophyte Models

#### 2.3. Flow Tank Set Up

#### 2.4. Measurements of Flow

#### 2.4.1. Particle Image Velocimetry

#### 2.4.2. Computational Fluid Dynamics

#### 2.5. Dispersal Experiments

#### 2.5.1. Preparation of Artemia Larvae

#### 2.5.2. Injection of Brine Shrimp into the Flow Tank

#### 2.5.3. Recording Dispersal of Plankton

#### 2.5.4. Processing Recordings

#### 2.6. Agent-Based Modeling (ABM) Framework: Planktos

- VTK-based import of 2D or 3D time-dependent fluid flow data and flow interpolation between grid points
- Fluid flow tiling with periodic boundary conditions to expand the domain
- Selection of boundary conditions for agents
- 2D and 3D plotting of agent movement, including summary statistics and density histograms

#### 2.7. Agent-Based Simulation and Experimental Results

## 3. Results

#### 3.1. Flow Fields

#### 3.1.1. Validation of COMSOL Results

#### 3.1.2. Flow Dependence on Cylinder Density and Height

#### 3.2. Artemia Concentration over Time

#### 3.3. Shelter Effect of Macrophyte Models

#### 3.4. Agent Based Model Results

## 4. Discussion

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Havenhand, J.N. Evolutionary ecology of larval types. In Ecology of Marine Invertebrate Larvae; McEdward, L., Ed.; CRC Press: Boca Raton, FL, USA, 1995; pp. 79–122. [Google Scholar]
- Fenchel, T. Marine plankton food chains. Annu. Rev. Ecol. Syst.
**1988**, 19, 19–38. [Google Scholar] [CrossRef] - Sarkar, R.R.; Chattopadhayay, J. Occurrence of planktonic blooms under environmental fluctuations and its possible control mechanism—Mathematical models and experimental observations. J. Theor. Biol.
**2003**, 224, 501–516. [Google Scholar] [CrossRef] - Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia
**1993**, 32, 79–99. [Google Scholar] [CrossRef] [Green Version] - Levin, L.A. Recent progress in understanding larval dispersal: New directions and digressions. Integr. Comp. Biol.
**2006**, 46, 282–297. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Cianelli, D.; D’Alelio, D.; Uttieri, M.; Sarno, D.; Zingone, A.; Zambianchi, E.; d’Alcala, M.R. Disentangling physical and biological drivers of phytoplankton dynamics in a coastal system. Sci. Rep.
**2017**, 7, 15868. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Lewis, D.M.; Brereton, A.; Siddons, J.T. A large eddy simulation study of the formation of deep chlorophyll/ biological maxima in unstratified mixed layers: The roles of turbulent mixing and predation pressure. Limnol. Oceanogr.
**2017**, 62, 2277–2307. [Google Scholar] [CrossRef] [Green Version] - Pena, M.A.; Masson, D.; Callendar, W. Annual plankton dynamics in a coupled physical-biological model of the Strait of Georgia, British Columbia. Prog. Oceanogr.
**2016**, 146, 58–74. [Google Scholar] [CrossRef] - Papworth, D.J.; Marini, S.; Conversi, A. A novel, unbiased analysis approach for investigating population dynamics: A case study on Calanus finmarchicus and its decline in the North Sea. PLoS ONE
**2016**, 11, e0158230. [Google Scholar] [CrossRef] - Schlacher, T.A.; Wooldridge, T.H. Small-scale distribution and variability of demersal zooplankton in a shallow, temperate estuary: Tidal and depth effects on species-specific heterogeneity. Cah. Biol. Mar.
**1995**, 36, 211–227. [Google Scholar] [CrossRef] - Lundquist, C.J.; Pilditch, C.A.; Cummings, V.J. Behaviour controls post-settlement dispersal by the juvenile bivalves Austrovenus stutchburyi and Macomona liliana. J. Exp. Mar. Biol. Ecol.
**2004**, 306, 51–74. [Google Scholar] [CrossRef] - Shurin, J.B.; Cottenie, K.; Hillebrand, H. Spatial autocorrelation and dispersal limitation in freshwater organisms. Oecologia
**2009**, 159, 151–159. [Google Scholar] [CrossRef] [PubMed] - McKenna, J.E., Jr.; Chalupnicki, M.A. A heuristic simulation model of Lake Ontario circulation and mass balance transport. J. Freshw. Ecol.
**2011**, 26, 123–132. [Google Scholar] [CrossRef] - Pepin, P.; Guoqi, H.; Head, E.J. Modelling the disperal of Calanus finmarchicus on the Newfoundland Shelf: Implications for the analysis of population dynamics from a high frequency monitoring site. Fish. Oceanogr.
**2013**, 22, 371–387. [Google Scholar] [CrossRef] - Hill, A.E. Advection-diffusion-mortality solutions for investigating pelagic larval dispersal. Mar. Ecol. Prog. Ser.
**1991**, 70, 117–128. [Google Scholar] [CrossRef] - Lefebvre, A.; Ellien, C.; Davoult, D.; Thiébaut, E.; Salomon, J. Pelagic dispersal of the brittle-star Ophiothrix fragilis larvae in a megatidal area (English Channel, France) examined using an advection/diffusion model. Estuar. Coast. Shelf Sci.
**2003**, 57, 421–433. [Google Scholar] [CrossRef] - Shanks, A.L.; Grantham, B.A.; Carr, M.H. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl.
**2003**, 13, 159–169. [Google Scholar] [CrossRef] - Gibson, R. Go with the flow: Tidal migration in marine animals. Hydrobiologia
**2003**, 503, 153–161. [Google Scholar] [CrossRef] - McManus, M.; Woodson, C. Plankton distribution and ocean dispersal. J. Exp. Biol.
**2012**, 215, 1008–1016. [Google Scholar] [CrossRef] [Green Version] - Clay, T.W.; Grunbaum, D. Morphology-flow interactions lead to stage-selective vertical transport of larval sand dollars in shear flow. J. Exp. Biol.
**2010**, 213. [Google Scholar] [CrossRef] [Green Version] - Desai, N.; Ardekani, A.M. Modeling of active swimmer suspensions and their interactions with the environment. Soft Matter
**2017**, 13, 6033–6050. [Google Scholar] [CrossRef] - Nepf, H. Flow and Transport in Regions with Aquatic Vegetation. Annu. Rev. Fluid Mech.
**2012**, 44, 123–142. [Google Scholar] [CrossRef] [Green Version] - Belcher, S.E.; Harman, I.N.; Finnigan, J.J. The wind in the willows: Flows in forest canopies in complex terrain. Ann. Rev. Fluid Mech.
**2012**, 44, 479–504. [Google Scholar] [CrossRef] - Jadhav, R.S.; Buchberger, S.H. Effects of vegetation on flow through free surface wetlands. Ecol. Eng.
**1995**, 5, 481–495. [Google Scholar] [CrossRef] - Raupach, M.R.; Finnigan, J.J.; Brunet, Y. Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Bound.-Layer Meteorol.
**1996**, 78, 351–382. [Google Scholar] [CrossRef] - Poggi, D.; Katul, G.G.; Albertson, J.D. A note on the contribution of dispersive fluxes to momentum transfer within canopies. Bound.-Layer Meteorol.
**2004**, 111, 615–621. [Google Scholar] [CrossRef] - Bos, A.R.; Bouma, T.J.; de Kort, G.L.J.; van Katwijk, M.M. Ecosystem engineering by annual intertidal seagrass beds: Sediment accretion and modification. Estuar. Coast. Shelf Sci.
**2007**, 74, 344–348. [Google Scholar] [CrossRef] - Temmerman, S.; Bouma, T.J.; Govers, G.; Wang, Z.B.; Vries, M.B.D.; Herman, P.M.J. Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh. J. Geophys. Res.
**2005**, 110, F04019. [Google Scholar] [CrossRef] - Pasour, V.B.; Ellner, S.P. Computational and Analytic Perspectives on the Drift Paradox. SIAM J. Appl. Dyn. Syst.
**2010**, 9, 333–356. [Google Scholar] [CrossRef] [Green Version] - Gambi, M.C.; Nowell, A.R.; Jumars, P.A. Flume observations on flow dynamics in Zostera marina (eelgrass) beds. Mar. Ecol. Prog. Ser.
**1990**, 61, 159–169. [Google Scholar] - Jarvela, J. Flow resistance of flexible and stiff vegetation: A flume study with natural plants. J. Hydrol.
**2002**, 269, 44–54. [Google Scholar] [CrossRef] - Ackerman, J.D.; Okubo, A. Reduced mixing in a marine macrophyte canopy. Funct. Ecol.
**1993**, 7, 305–309. [Google Scholar] [CrossRef] - Finnigan, J. Turbulence in plant canopies. Annu. Rev. Fluid Mech.
**2000**, 32, 519–571. [Google Scholar] [CrossRef] - Raupach, M.R.; Shaw, R.H. Averaging procedures for flow within vegetative canopies. Bound.-Layer Meteorol.
**1982**, 22, 79–90. [Google Scholar] [CrossRef] - Wilson, N.R.; Shaw, R.H. A higher order closure model for canopy flow. J. Appl. Meteorol.
**1977**, 16, 1197–1205. [Google Scholar] [CrossRef] [Green Version] - Strickland, C.; Miller, L.; Santhanakrishnan, A.; Hamlet, C.; Battista, N.A.; Pasour, V. Three-Dimensional Low Reynolds Number Flows near Biological Filtering and Protective Layers. Fluids
**2017**, 2, 62. [Google Scholar] [CrossRef] [Green Version] - Miller, L.A.; Santhanakrishnan, A.; Jones, S.; Hamlet, C.L.; Mertens, K.; Zhu, L. Reconfiguration and the reduction of vortex-induced vibrations in broad leaves. J. Exp. Biol.
**2012**, 215, 2716–2727. [Google Scholar] [CrossRef] [Green Version] - Maltese, A.; Cox, E.; Folkard, A.M.; Ciraolo, G. Laboratory measurements of flow and turbulence in discontinuous distributions of ligulate seagrass. J. Hydraul. Eng.
**2007**, 133, 750–760. [Google Scholar] [CrossRef] - Kohler, B.R.; Swank, R.J.; Haefner, J.W.; Powell, J.A. Leading Students to Investigate Diffusion as a Model of Brine Shrimp Movement. Bull. Math. Biol.
**2010**, 72, 230–257. [Google Scholar] [CrossRef] [Green Version] - Railsback, S.F.; Grimm, V. Agent-Based and Individual-Based Modeling: A Practical Introduction; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Huth, A.; Drechsler, M.; Köhler, P. Multicriteria evaluation of simulated logging scenarios in a tropical rain forest. J. Environ. Manag.
**2004**, 71, 321–333. [Google Scholar] [CrossRef] - D’Orsogna, M.R.; Chuang, Y.L.; Bertozzi, A.L.; Chayes, L.S. Self-propelled particles with soft-core interactions: Patterns, stability, and collapse. Phys. Rev. Lett.
**2006**, 96, 1–4. [Google Scholar] [CrossRef] [Green Version] - Liedloff, A.C.; Cook, G.D. Modelling the effects of rainfall variability and fire on tree populations in an Australian tropical savanna with the FLAMES simulation model. Ecol. Model.
**2007**, 201, 269–282. [Google Scholar] [CrossRef] - Schulze, J.; Müller, B.; Groeneveld, J.; Grimm, V. Agent-Based Modelling of Social-Ecological Systems: Achievements, Challenges, and a Way Forward. J. Artif. Soc. Soc. Simul.
**2017**, 20, 8. [Google Scholar] [CrossRef] [Green Version] - Netlogo References. Available online: https://ccl.northwestern.edu/netlogo/references.shtml (accessed on 3 September 2018).
- Topaz, C.M.; Bernoff, A.J.; Logan, S.; Toolson, W. A model for rolling swarms of locusts. Eur. Phys. J. Spec. Top.
**2008**, 157, 93–109. [Google Scholar] [CrossRef] [Green Version] - Nilsen, C.; Paige, J.; Warner, O.; Mayhew, B.; Sutley, R.; Lam, M.; Bernoff, A.J.; Topaz, C.M. Social Aggregation in Pea Aphids: Experiment and Random Walk Modeling. PLoS ONE
**2013**, 8, e83343. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Railsback, S.F.; Lytinen, S.L.; Jackson, S.K. Agent-based Simulation Platforms: Review and Development Recommendations. SIMULATION
**2006**, 82, 609–623. [Google Scholar] [CrossRef] - Purcell, E.M. Life at low Reynolds number. Am. J. Phys.
**1977**, 45, 3–11. [Google Scholar] [CrossRef] [Green Version] - Williams, T.A. Locomotion in Developing Artemia Larvae: Mechanical Analysis of Antennal Propulsors Based on Large-Scale Physical Models. Biol. Bull.
**1994**, 187, 156–163. [Google Scholar] [CrossRef] - Williams, T.A. A Model of Rowing Propulsion and the Ontogeny of Locomotion in Artemia Larvae. Biol. Bull.
**1994**, 187, 164–173. [Google Scholar] [CrossRef] - Vogel, S.; LaBarbera, M. Simple Flow Tanks for Research and Teaching. BioScience
**1978**, 28, 638–643. [Google Scholar] [CrossRef] - Raffel, M.; Willert, C.; Kompenhans, J. Particle Image Velocimetry: A Practical Guide; Springer: New York, NY, USA, 1998. [Google Scholar]
- Willert, C.E.; Gharib, M. Digital particle image velocimetry. Exp. Fluids
**1991**, 10, 181–193. [Google Scholar] [CrossRef] - MATLAB. Version 9.3.0.713579 (R2017b); The MathWorks Inc.: Natick, MA, USA, 2017. [Google Scholar]
- Strickland, C. Planktos Agent-Based Modeling Framework. 2018. Available online: https://github.com/mountaindust/Planktos (accessed on 20 May 2019).
- Leiderman, K.M.; Miller, L.A.; Fogelson, A.L. The effects of spatial inhomogeneities on flow through the endothelial surface layer. J. Theor. Biol.
**2008**, 252, 313–325. [Google Scholar] [CrossRef] [PubMed] - Altukhov, D.A.; Gubanova, A.D.; Mukhanov, V.S. New invasive copepod Oithona davisae Ferrari and Orsi, 1984: Seasonal dynamics in Sevastopol Bay and expansion along the Black Sea coasts. Mar. Ecol.
**2014**, 35, 28–34. [Google Scholar] [CrossRef] - Hoyer, A.B.; Wittmann, M.E.; Chandra, S.; Schladow, S.G.; Rueda, F.J. A 3D individual-based aquatic transport model for the assessment of the potential dispersal of planktonic larvae of an invasive bivalve. J. Environ. Manag.
**2014**, 145, 330–340. [Google Scholar] [CrossRef] [PubMed] - Scandol, J.P.; James, M.K. Hydrodynamics and larval dispersal: A population model of Acanthaster planci on the Great Barrier Reef. Mar. Freshw. Res.
**1992**, 43, 583–595. [Google Scholar] [CrossRef] - Van der Laan, J.; Bradbury, R. Futures for the Great Barrier Reef ecosystem. Math. Comput. Model.
**1990**, 14, 705–709. [Google Scholar] [CrossRef] - Cheer, A.; Koehl, M. Paddles and rakes: Fluid flow through bristled appendages of small organisms. J. Theor. Biol.
**1987**, 129, 17–39. [Google Scholar] [CrossRef]

**Figure 1.**Experimental set up of submerged macrophyte models in the flow tank: (

**a**) the view of flow tank setup from side; and (

**b**) the view of flow tank from above. Flow tank is 100 cm (L) × 8 cm (W) × 8 cm (H).

**Figure 2.**Position of laser sheet for the empty tank (

**a**) and the cylinder models (

**b**). Light and dark green lines denote the position of the laser at different times. The vertical dashed-dotted line is the y-axis. Dashed-dotted horizontal lines represent the x-axis for each setup. Red dashed-lines denote the beginning and the end the region that the camera can capture for PIV. The dark blue arrow shows the direction of flow during PIV measurements.

**Figure 3.**Computational domain for COMSOL fluid physics simulations. The domain represents the experimental setup in the flow tank and is an 80 mm × 640 mm × 80 mm box. Parabolic inflow conditions and zero pressure outflow conditions are used. No slip conditions were used elsewhere.

**Figure 4.**Larvae injector with a modified tip design: (

**a**) the injector was constructed using a 1-mL insulin injector, 65-mm and 10-mm sections of aquarium tubing with 5 mm diameter, a straight 45-mm plastic straw piece, a 19-mm bendy section of the straw, and the tip of a 3-mL pipette that has an opening that is 2 mm in diameter and 35 mm in length; (

**b**) the complete injector as assembled; and (

**c**) flow tank setup for the dispersal experiments. The injector was positioned immediately upstream of the macrophyte model. Green and blue rectangles denote the green and blue zones, respectively, where the concentrations of brine shrimp were recorded. A circular diffuser and LED panel wrapped in plain paper to serve as a diffuser were placed above and below the tank immediately after the model.

**Figure 5.**The x-component of the velocity as a function of height taken along a vertical line positioned in the middle of the model for the COMSOL simulation (solid line) and experiment (dashed line): (

**a**) the flow profiles with no model; and (

**b**) the profiles with the 10 × 20 2-cm model.

**Figure 6.**Velocity magnitude of the flow through models of varying cylinder density: (

**A**) the velocity magnitude in mm/s taken in a vertical plane tangential to the direction of flow and through the center of the tank; and (

**B**) the velocity magnitude in a horizontal plane 1 cm above the bottom of the tank. The models considered include: (i) no model; (ii) 8 × 15 cylinders; (iii) 10 × 20 cylinders; and (iv) 15 × 30 cylinders.

**Figure 7.**Velocity magnitude of the flow through models of varying cylinder height: (

**A**) the velocity magnitude in mm/s taken in a vertical plane through the center of the tank; and (

**B**) the velocity magnitude in a horizontal plane 1 cm above the bottom of the tank. The models considered include the 10 × 20 model with cylinder height equal to: (i) 1 cm; (ii) 2 cm; and (iii) 3 cm.

**Figure 8.**Streamlines showing the flow trajectories through the 10 × 20 model that is 2 cm in height. The color of the streamline corresponds to the velocity magnitude: (

**A**) side view showing the magnitude and direction of flow through the cylinders using streamlines seeded in the vertical plane parallel to flow; (

**B**) top view of streamlines that start at the midpoint of the cylinders in the z-direction along a horizontal line; and (

**C**) the same streamlines as (

**B**) in side view.

**Figure 9.**Normalized brine shrimp count over time in the green (left) and blue (right zones). Each panel shows models of the same height, namely: 1-cm cylinders (

**a**,

**b**); 2-cm cylinders (

**c**,

**d**); and 3-cm cylinders (

**e**,

**f**). The solid black lines show results for the no model case. Blue dotted-dashed lines, red dashed lines, and green dotted lines are for the 8 × 15, 10 × 20, and 15 × 30 models, respectively.

**Figure 10.**Box plots showing the mean (red dot), median (red line), upper and lower quartiles, and minimum and maximum of the distributions shown in Figure 9. Note that these statistics describe the typical times from the start of the experiment when the brine shrimp appear in the green (left) and blue (right) zones. The panels show cylinder heights set equal to: 1 cm (

**a**,

**b**); 2 cm (

**c**,

**d**); and 3 cm (

**e**,

**f**).

**Figure 11.**Sheltered region formed downstream of the macrophyte models. The red rectangle is a symbolic depiction of the sheltered region. This sheltered region begins at the downstream end of the macrophyte model and continuous downstream of the model. “L” is the length of the sheltered region, and it varies with the density and height of the macrophyte model.

**Figure 12.**The average arrival time vs. cylinder height for agents in the simulations into: the green zone (

**left**); and blue zone (

**right**).

**Table 1.**Statistics for the timing of brine shrimp agents entering the green zone by model. All values are given in units of seconds, and both skewness and kurtosis are calculated as Pearson standardized moments.

Mean | Median | Mode | Std | Skewness | Kurtosis | |
---|---|---|---|---|---|---|

plate | 10.26556 | 7.60 | 4.8 | 6.644776 | 1.577448 | 5.648092 |

8 × 15_1 cm | 16.60715 | 11.80 | 7.1 | 12.855364 | 1.867912 | 7.226498 |

8 × 15_2 cm | 16.34799 | 12.80 | 7.1 | 10.679333 | 1.703749 | 6.641543 |

8 × 15_3 cm | 14.50401 | 11.40 | 5.4 | 9.753728 | 1.685753 | 6.397291 |

10 × 20_1 cm | 16.60729 | 11.80 | 7.1 | 12.855351 | 1.867895 | 7.226457 |

10 × 20_2 cm | 24.37854 | 20.55 | 15.9 | 12.792898 | 1.755368 | 7.025288 |

10 × 20_3 cm | 20.02696 | 16.80 | 11.0 | 10.779727 | 1.657012 | 6.375421 |

15 × 30_1 cm | 25.48717 | 15.20 | 7.5 | 29.562239 | 3.637440 | 21.971364 |

15 × 30_2 cm | 53.94625 | 35.00 | 20.3 | 51.528729 | 2.332308 | 9.424739 |

15 × 30_3 cm | 53.52796 | 51.20 | 48.6 | 23.670932 | 0.971755 | 4.696066 |

**Table 2.**Statistics for the timing of brine shrimp agents entering the blue zone by model. All values are given in units of seconds, and both skewness and kurtosis are calculated as Pearson standardized moments.

Mean | Median | Mode | Std | Skewness | Kurtosis | |
---|---|---|---|---|---|---|

plate | 16.73456 | 14.1 | 8.5 | 8.821590 | 1.266366 | 4.496077 |

8 × 15_1 cm | 24.60723 | 19.4 | 12.3 | 15.809911 | 1.596273 | 6.157659 |

8 × 15_2 cm | 28.81300 | 25.1 | 21.7 | 13.554596 | 1.344732 | 5.116872 |

8 × 15_3 cm | 24.74002 | 21.7 | 16.3 | 11.189394 | 1.478259 | 5.706537 |

10 × 20_1 cm | 24.60797 | 19.4 | 12.3 | 15.810498 | 1.596170 | 6.157190 |

10 × 20_2 cm | 46.45774 | 38.0 | 29.0 | 27.945304 | 1.706768 | 6.729241 |

10 × 20_3 cm | 36.81893 | 32.8 | 25.4 | 14.341388 | 1.438209 | 5.511163 |

15 × 30_1 cm | 31.69173 | 20.6 | 12.3 | 31.655163 | 3.339417 | 19.205411 |

15 × 30_2 cm | 65.00588 | 42.2 | 23.5 | 62.218139 | 2.383948 | 9.495929 |

15 × 30_3 cm | 77.31394 | 67.3 | 39.9 | 48.245441 | 2.082177 | 10.752551 |

**Table 3.**Statistics for the timing of brine shrimp agents entering the green zone by diffusivity. All values are given in units of seconds, and both skewness and kurtosis are calculated as Pearson standardized moments.

$2\xb7\mathit{D}$ (mm${}^{2}$/s) | Mean | Median | Mode | Std | Skewness | Kurtosis |
---|---|---|---|---|---|---|

0 | 13.50000 | 13.50 | 13.5 | 0.000000 | 0.000000 | 0.000000 |

0.25 | 34.90953 | 21.40 | 11.5 | 36.072997 | 2.916802 | 13.992966 |

0.5 | 33.21686 | 23.90 | 11.7 | 27.674093 | 2.490382 | 11.650339 |

0.75 | 31.17568 | 23.60 | 12.2 | 23.050775 | 2.357897 | 10.953085 |

1 | 29.57997 | 23.20 | 13.9 | 19.933192 | 2.237405 | 10.726133 |

2.5 | 24.37854 | 20.55 | 15.9 | 12.792898 | 1.755368 | 7.025288 |

5 | 20.75572 | 18.30 | 15.8 | 9.750290 | 1.376773 | 5.397198 |

7.5 | 18.78547 | 17.00 | 13.9 | 8.774293 | 1.223732 | 5.023428 |

10 | 17.39927 | 15.90 | 16.0 | 8.201403 | 1.088226 | 4.535014 |

25 | 13.30244 | 11.90 | 7.3 | 6.887721 | 0.957236 | 3.731665 |

**Table 4.**Statistics for the timing of brine shrimp agents entering the blue zone by diffusivity. All values are given in units of seconds, and both skewness and kurtosis are calculated as Pearson standardized moments.

$2\xb7\mathit{D}$ (mm${}^{2}$/s) | Mean | Median | Mode | Std | Skewness | Kurtosis |
---|---|---|---|---|---|---|

0 | 69.30000 | 69.3 | 69.3 | 0.000000 | 0.000000 | 0.000000 |

0.25 | 85.77890 | 59.9 | 42.1 | 65.286745 | 2.185369 | 8.832309 |

0.5 | 74.05316 | 54.6 | 35.8 | 52.298372 | 2.005044 | 7.897292 |

0.75 | 66.46952 | 50.3 | 33.8 | 45.059692 | 2.005264 | 8.396994 |

1 | 61.38943 | 47.3 | 34.7 | 40.119159 | 1.877701 | 7.387855 |

2.5 | 46.45774 | 38.0 | 29.0 | 27.945304 | 1.706768 | 6.729241 |

5 | 37.13526 | 31.4 | 17.5 | 21.720836 | 1.463269 | 5.702837 |

7.5 | 32.43831 | 27.5 | 21.2 | 19.078510 | 1.347951 | 5.084803 |

10 | 29.31992 | 24.8 | 15.1 | 17.390467 | 1.294047 | 4.795384 |

25 | 21.03663 | 17.3 | 8.8 | 12.828173 | 1.295601 | 4.659608 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ozalp, M.K.; Miller, L.A.; Dombrowski, T.; Braye, M.; Dix, T.; Pongracz, L.; Howell, R.; Klotsa, D.; Pasour, V.; Strickland, C.
Experiments and Agent Based Models of Zooplankton Movement within Complex Flow Environments. *Biomimetics* **2020**, *5*, 2.
https://doi.org/10.3390/biomimetics5010002

**AMA Style**

Ozalp MK, Miller LA, Dombrowski T, Braye M, Dix T, Pongracz L, Howell R, Klotsa D, Pasour V, Strickland C.
Experiments and Agent Based Models of Zooplankton Movement within Complex Flow Environments. *Biomimetics*. 2020; 5(1):2.
https://doi.org/10.3390/biomimetics5010002

**Chicago/Turabian Style**

Ozalp, Mustafa Kemal, Laura A. Miller, Thomas Dombrowski, Madeleine Braye, Thomas Dix, Liam Pongracz, Reagan Howell, Daphne Klotsa, Virginia Pasour, and Christopher Strickland.
2020. "Experiments and Agent Based Models of Zooplankton Movement within Complex Flow Environments" *Biomimetics* 5, no. 1: 2.
https://doi.org/10.3390/biomimetics5010002