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Abstract: Small-amplitude fast vibrations and small surface micropatterns affect properties of various
systems involving wetting, such as superhydrophobic surfaces and membranes. We review a
mathematical method of averaging the effect of small spatial and temporal patterns. For small
fast vibrations, this method is known as the method of separation of motions. The vibrations are
substituted by effective force or energy terms, leading to vibration-induced phase control. A similar
averaging method can be applied to surface micropatterns leading surface texture-induced phase
control. We argue that the method provides a framework that allows studying such effects typical to
biomimetic surfaces, such as superhydrophobicity, membrane penetration and others. Patterns and
vibration can effectively jam holes and pores in vessels with liquid, separate multi-phase flow, change
membrane properties, result in propulsion, and lead to many other multiscale, non-linear effects.
Here, we discuss the potential application of these effects to novel superhydrophobic membranes.
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1. Introduction

Biomimetic functional surfaces find many applications, including various types of membranes for
water filtration. Recent advances in nano/microtechnology have made it possible to design biomimetic
functional surfaces with micro/nanotopography with various properties, such as non-adhesion, the
ability for liquid manipulation at the microscale, and other applications. In order to understand the
structure-property relationships in these novel materials and surfaces, it is important to study how
micro/nanotopography changes surface properties resulting in effective macroscale properties. While
micro/nanotopography usually constitutes a number of periodic spatial patterns, there is a similarity
between the effect of small-scale patterns and small-amplitude fast vibrations.

Using the mathematical method of separation of motions, small fast vibrations can be substituted
by an effective force perceived at the larger scale. The simplest mechanical example of this effect is
the vibration-induced stabilization of the inverted pendulum on a vibrating foundation often called
the Kapitza pendulum [1–3]. The upside down position of the pendulum is unstable (Figure 1a).
However, if the foundation vibrates with a small amplitude and high frequency—relative to the size
and natural frequency of the pendulum, respectively—, the inverted equilibrium position can become
stable (Figure 1b). This is perceived, at the macroscale, as an effective stabilizing “spring force” which
maintains the pendulum in equilibrium. In other words, small fast vibrations can be substituted
by an effective force, which stabilizes the inverted pendulum. This effect of the vibration-induced
stabilization can be extended to the case of a double and multiple pendulums [4] and even of “effective
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hardening” a flexible stiff rope (i.e., a flexible rope which still possesses some stiffness akin to a stiff
beam) [5].
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Figure 1. Separation of motions. (a) Unstable inverted pendulum; (b) Stabilized inverted pendulum on
a vibrating foundation; (c) Energy profile without external force; (d) Energy profile with external force.

The effect can be extended to a broad range of mechanical systems including those involving
the fluid flow and propulsion [6], as well as systems that are not purely mechanical. Thus, small fast
vibrations can cause shear thickening of non-Newtonian fluids, which is perceived as an effective force
acting upon the liquid leading, for example, to the rise of the figurines in the cornstarch—sometimes
called the “cornstarch monster” trick. Beyond that, liquid droplets can bounce indefinitely in a
non-coalescing state above a vibrating bath of bulk liquid, which is perceived as a “vibro-levitation”
effect [7]. Furthermore, small fast vibrations can lead to the vibration-induced effective phase
transitions, for example, when a granular material flows through a hole in a vessel like a liquid,
or when vibrations of a vessel with a liquid jams the hole and prevents liquid penetration.

Blekhman [8] suggested that the stability problem of an inverted pendulum on a vibrating
foundation has relevance to a diverse class of non-linear effects involving dynamic stabilization of
statically unstable systems ranging from the vibrational stabilization of beams, to the transport and
separation of granular material, soft matter, bubbles and droplets, as well as the synchronization of
rotating machinery. In these problems, the small fast vibrational motion can be excluded from the
consideration and substituted by effective slow forces acting on the system causing the stabilizing
effect. It has been suggested that the “effective hardening” of fibers in a composite material can lead
to a novel class of “dynamic materials” with effective properties controlled by an externally applied
electric field [9].

Surface micro/nanotopography can also change effective material or surface properties.
The micro/nanotopography can be thought of as a spatial pattern while small fast vibrations constitute
periodic temporal patterns. For example, properly controlled micro/nanotopography can affect the
wettability of surfaces as seen in the case of superhydrophobic [10] and non-adhesive surfaces [11],
icephobicity [12], liquid flow [6] and filtration [13]. The novel field of texture-induced phase transition
has recently emerged from the area of the superhydrophobicity [14].
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Both with the spatial and temporal modulations, a small-scale phenomenon, such as the
micro/nanotopography or vibrations, can be effectively substituted by an effect perceived at the
larger scale, such as the stabilizing or “vibro-levitation” force [15].

In our earlier publication, we discussed how small patterns can be used for liquid flow, including
the shark-skin effect and blood flow applications (“haemeophobic” or blot-clotting preventing
surfaces) [6]. In this review, we focus on how small fast vibrations and micro/nanotopography
can affect surface physicochemical properties, with emphasis on superhydrophobic and regular
membranes. We will introduce the mathematical method of separation of motions. The stabilization of
the inverted pendulum is the model example for the application of this method. We then discuss the
analogy between vibrations and spatial patterns. This will be followed by a discussion of the effect of
topography and vibrations on membrane permeability.

2. Effect of Small Fast Vibrations and Surface Patterns

In this section we introduce the method of separation of motions and apply this method to
determine the stability criteria for the inverted pendulum and numerous similar systems, both in
mechanics and physical chemistry. Then we discuss the mathematical analogies, which correlate with
vibrations and spatial patterns.

2.1. Separation of Motion and Effective Forces

The method of separation of motions was first suggested by the Russian physicist Kapitza in
1951 [3] to study the stability of a pendulum on a vibrating foundation. The method was generalized
for the case of an arbitrary motion in a rapidly oscillating field and it is discussed in the classical
textbook on theoretical physics by Landau and Lifshitz [16].

Consider a point mass m in an oscillatory potential field II(x), where x is spatial coordinate, with
the minimum of the potential energy corresponding to the stable equilibrium. The force acting on the
mass is given by´dΠ{dx, therefore, the equation of motion of the system is m

..
x “ ´dΠ{dx. In addition,

to the time-independent potential field Π pxq, a “fast” external periodic force f cosΩt acts upon the

mass with a small amplitude f and high frequency Ω ąą

b

`

d2Π{dx2
˘

{m, which is much higher than
natural frequency. The equation of motion then becomes

m
..
x “ ´pdΠ{dxq ` f cosΩt (1)

The motion of the mass can be represented as a sum of the “slow” oscillations X ptq due to the
“slow” force ´dΠ{dx and small “fast” oscillations ξptq due to the “fast” force f cosΩt,

x ptq “ X ptq ` ξptq (2)

The mean value ξ ptq of this fast oscillation over its period 2π{Ω is zero, whereas X ptq changes
only slightly during the same period.

ξ ptq “
Ω
2π

2π{Ω
ż

0

ξ ptq dt “ 0 (3)

X ptq « X ptq (4)

Therefore, the mean location of the mass can be written as:

x ptq “ X ptq ` ξ ptq « X ptq (5)



Biomimetics 2016, 1, 4 4 of 17

and the mean value of the second derivative:

..
x ptq «

..
X ptq (6)

In Equations (2)–(6) quantities with a bar are averaged quantities over the period of 2π{Ω.
Substituting Equation (2) into Equation (1) and using the Taylor series first-order terms in powers of ξ:

m
..
X`m

..
ξ “ ´

dΠ
dx
´ ξ

d2Π
dx2 ` f cosΩt` ξ

B p f cosΩtq
BX

(7)

The slow and fast terms in Equation (7) must separately be equal. The second derivative of small
fast oscillations

..
ξ is proportional to Ω2, which is a large term. On the other hand, the terms on the

right-hand side of Equation (7), containing the small ξ, can be neglected. The term ´dΠ{dx is a slow
restoring force. The remaining fast terms can be equated, m

..
ξ “ f cosΩt. Integrating this equation with

respect to time t,

ξ “ ´
f cosΩt
mΩ2 (8)

Averaging Equation (7) with respect to time, substituting the relation Ω
2π

2π{Ω
ş

0
f cosΩtdt “ 0 and

combining Equations (3)–(6), and Equation (8) gives:

m
..
X “ ´

dΠ
dX

` ξ
B p f cosΩtq

BX
“ ´

dΠ
dX

´
1

mΩ2 f cosΩt
B p f cosΩtq

BX
(9)

m
..
X “ ´

dΠ
dX

´
1

2mΩ2
B p f cosΩtq2

BX

This can be written as m
..
X “ ´

dΠe f f
dX where Πe f f is an effective potential energy given by:

Πe f f “ Π`
1

2mΩ2
Ω
2π

2π{Ω
ż

0

p f cosΩtq2 dt “ Π`
f 2

4mΩ2 “ Π`
m
2

.
ξ

2
(10)

Thus, the effect of fast vibrations ξ when averaged over the time period 2π/Ω is equivalent to the

additional term m
.
ξ

2
{2 on the right-hand side in Equation (10). This term is the mean kinetic energy

of the system under fast oscillations. Thus, small fast vibrations can be substituted by an additional
term in the potential energy resulting in the same effect oscillations have on the system. The most
interesting case is when this term affects the state of the equilibrium of a system. Let us say, in the
absence of vibrations a system has an effective potential energy Πe f f “ Π with a local maximum of
the potential energy (Figure 1c). Vibrations can bring this system to a stable equilibrium due to the
additional term discussed before, creating a local minimum of the potential energy (Figure 1d). In such
cases, the small fast vibrations have a stabilizing effect on the state of equilibrium.

Blekhman [8] has applied the method of separation of motions to many mechanical systems
and suggested what he called the “vibrational mechanics” as a tool to describe diverse effects in the
mechanics of solid and liquid media, from effective “liquefying” of the granular media, which can
flow through a hole like a liquid when on a vibrating foundation, to the opposite effect of “solidifying”
liquid by jamming a hole in a vessel on a vibrating foundation, as well as the vibro-synchronization of
the phase of two rotating shafts on a vibrating foundation.

Blekhman [8] has also suggested an elegant interpretation of the separation of motions. According
to his interpretation, there are two different observers who can look at the vibrating system. One is an
ordinary observer in an inertial frame of reference in which one can see both small, ζ, and large, X,
oscillations. The other one is a “special” observer in a vibrating frame of reference, which does not see
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the small-scale motion ξ, possibly, due to a stroboscopic effect or because one’s vision is not sensitive
enough to see the small-scale motion. As a result, what is seen for the ordinary observer as an effect of
the fast small vibrations is perceived by the special observer as an effect of some new effective force.
This fictitious force is similar to the inertia force, which is observed in non-inertial frames of reference.
Furthermore, when the stabilizing effect occurs, the special observer attributes the change in effective
potential energy to fictitious slow stabilizing forces or moments. The additional slow stabilizing force
for the system (or torque for rotational systems) V can be written as:

V “ ´
B

BX

¨

˚

˝

1
2mΩ2

Ω
2π

2π{Ω
ż

0

p f cosΩtq2 dt

˛

‹

‚

“ ´
B

BX

ˆ

f 2

4mΩ2

˙

(11)

For an inverted pendulum on a harmonically vibrating foundation pAcosΩtq, where A is the
amplitude and Ω is the frequency, the equation of motion can be written in terms of its angular
displacement ψ as:

L
..
ψ “ gsinψ´ AΩ2sinψcosΩt (12)

The inverted position can become stable if the condition A2Ω2 ą 2gL holds (Figure 1b). Using
Equations (11) and (12) the effective stabilizing torque can be obtained [7,15] as:

τ “ ´
mA2Ω2

4
sin2ψ (13)

which, in the small angle approximation sin2ψ « 2ψ is also equivalent to the inverted pendulum
being stabilized by a spring with the torsional spring constant k “ mA2Ω2

2 . Similarly, this method can
be used to derive the effective stabilizing torques on inverted multiple pendulums on a vibrating
foundation, and the increase in stiffness of a vibrating flexible rope to prevent buckling—the “Indian
rope trick” [15]. Thus, small fast vibrations can affect the equilibrium and manifest as an effective
stabilizing force.

The effective stabilizing force in Equation (11) was obtained as an average over time. In the
following sections, we use similar averaging over temporal or spatial variable to study the effect of
temporal or spatial patterns on physicochemical properties.

2.2. Kirchhoff’s Analogy between Spatial and Temporal Patterns

Similar to how small vibrations can be substituted by an effective force, small-amplitude patterns
in space can have the same effect. The so-called Kirchhoff’s dynamical analogy establishes similarity
between the static bending shape of a beam and the dynamics of motion of a rigid body [17,18]. Let us
consider a slender beam of area moment of inertia I, and modulus of elasticity E, whose end points are
loaded by an axial compressive force F as shown in Figure 2a. The slope at any point (x, y) is denoted
by the angle ψ. For any small element ds on the beam dy{ds “ sinψ. Bending moment at (x, y) is given
by EI dψ

ds “ ´Fy. By combining these equations, we get a differential equation, which describes the
spatial bending patterns on the beam [19].

d2ψ

ds2 `
F

EI
sinψ “ 0 (14)

This is similar to the differential equation of oscillation of a simple pendulum of length L,

d2ψ

dt2 `
g
L

sinψ “ 0 (15)



Biomimetics 2016, 1, 4 6 of 17

Biomimetics 2016, 1, 4  6 of 17 

 

2

2
sin 0

d F

EIds
 

ψ
ψ  (14) 

This is similar to the differential equation of oscillation of a simple pendulum of length L, 

2

2
sin 0

d g

Ldt
 

ψ
ψ  (15) 

 

 

Figure 2. Similarity of bending of a beam and vibration of a pendulum. The deflection of a beam due 

to (a) compressive load F (corresponding to the stable equilibrium of a regular pendulum) and (b) 

tensile load F (corresponding to the unstable equilibrium of an inverted pendulum); (c) The waviness 

of the beam would stabilize the equilibrium similarly to the vibrations stabilizing an inverted 

pendulum [6]. 

Equation (15) describes the deflection of the pendulum. Note how the spatial variable s in 

Equation (14) corresponds to time variable t in Equation (15). Static bending of a beam is a boundary 

value problem, while motion of a pendulum is an initial value problem. However, despite this 

difference, an analogy exists between the motion of a pendulum and the shape of a buckled elastic 

rod. Now, we will consider the analogy of a beam with an inverted pendulum. 

Consider bending of a beam under a tensile load F as shown in Figure 2b. The beam is bent 360° 

making an approximate circle. The inset in Figure 2b shows a free-body diagram of a small section of 

the beam near its end. The equilibrium of the beam corresponds to the value of the bending moment 

M = FΔy, which is proportional to the displacement Δy. The expression for the bending moment can 

be written as dEI F y
ds

 ψ . Here, we study whether the equilibrium of the beam is stable (straight 

beam) or unstable (bended beam). Differentiating the expression for the bending moment with 

respect to s and assuming 
0

lim
s

y

s 





ψ  we obtain: 

2

2
0

d F

EIds
 

ψ
ψ  (16) 

which is similar to the equation of motion of an inverted pendulum for small angular displacement, 
2

2
0

d g

Ldt
 

ψ
ψ . The equation for the inverted pendulum has a solution of the exponential form 

1 2

g Lt g Lt
c e c e


 ψ . The angular displacement grows exponentially with time t implying instability. 

Equation (16) for the beam has a trivial solution ψ = 0 , and a nontrivial solution 

1 2

F EIs F EI s
c e c e


 ψ . The nontrivial solution suggests that the slope of the beam grows 

exponentially from the point of application of the force. 

Figure 2. Similarity of bending of a beam and vibration of a pendulum. The deflection of a beam due to
(a) compressive load F (corresponding to the stable equilibrium of a regular pendulum) and (b) tensile
load F (corresponding to the unstable equilibrium of an inverted pendulum); (c) The waviness of the
beam would stabilize the equilibrium similarly to the vibrations stabilizing an inverted pendulum [6].

Equation (15) describes the deflection of the pendulum. Note how the spatial variable s in
Equation (14) corresponds to time variable t in Equation (15). Static bending of a beam is a boundary
value problem, while motion of a pendulum is an initial value problem. However, despite this
difference, an analogy exists between the motion of a pendulum and the shape of a buckled elastic rod.
Now, we will consider the analogy of a beam with an inverted pendulum.

Consider bending of a beam under a tensile load F as shown in Figure 2b. The beam is bent 360˝

making an approximate circle. The inset in Figure 2b shows a free-body diagram of a small section of
the beam near its end. The equilibrium of the beam corresponds to the value of the bending moment M
= F∆y, which is proportional to the displacement ∆y. The expression for the bending moment can be
written as EIdψ{ds “ F∆y. Here, we study whether the equilibrium of the beam is stable (straight beam)
or unstable (bended beam). Differentiating the expression for the bending moment with respect to s
and assuming lim

∆sÑ0

∆y
∆s “ ψ we obtain:

d2ψ

ds2 ´
F

EI
ψ “ 0 (16)

which is similar to the equation of motion of an inverted pendulum for small angular displacement,
d2ψ

dt2 ´
g
L ψ “ 0. The equation for the inverted pendulum has a solution of the exponential form

ψ “ c1e
?

g{Lt ` c2e´
?

g{Lt. The angular displacement grows exponentially with time t implying
instability. Equation (16) for the beam has a trivial solution ψ “ 0, and a nontrivial solution
ψ “ c1e

?
F{EIs ` c2e´

?
F{EIs. The nontrivial solution suggests that the slope of the beam grows

exponentially from the point of application of the force.
On the basis of Kirchhoff’s analogy, the beam under compressive loading corresponds to the

stable regular pendulum (Figure 2a), whereas the buckled beam under tensile loading corresponds to
the unstable inverted pendulum (Figure 2b). An inverted pendulum can be stabilized by harmonically
vibrating its foundation. Similarly, a buckled beam can be stabilized by a spatial periodicity in the
geometry of the beam (Figure 2c).

If the properties of the elastic rod are changed in a periodic manner with small amplitude h ăă 1
and frequency Ω about the stationary value EI0 such that:

EI “ EI0 p1` hΩcosΩsq «
EI0

p1´ hΩcosΩsq
(17)
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Equation (16) attains the form:

d2ψ

ds2 ´
F

EI0
p1´ hΩcosΩsqψ “ 0 (18)

which is similar to Equation (12) for an inverted pendulum on a harmonically vibrating foundation.
Equation (18) can be converted into the canonical form of the Mathieu equation:

d2z
dκ2 ´ pδ` εcos2κq z “ 0 (19)

where κ “ Ωs
2 , z pκq “ ψ psq , δ “ 4F

EI0Ω2 , ε “ ´ 4Fh
EI0Ω . The stability and instability of the Mathieu

equation can be studied by Lindstedt–Poincaré perturbation method [20,21]. The stability curves are
obtained as:

δ “ ´
1
8

ε2 ` . . . , δ “ 1´
1
2

ε´
1

32
ε2 ´ . . . (20)

and can be represented on the Ince–Strutt stability diagram (Figure 3). The solution of Equation (19) is
stable for values of (δ, ε) that lie in the shaded region between the stability curves shown in Figure 3.
The negative values of δ is of importance in this discussion because of the tensile nature of the force F.
For example, F = ´4200 N, flexural rigidity EI0 = 14 Nm2, h = 0.1 m, Ω = 245 m´1 yields the values
ε « 0.5, δ « ´0.02, which lie in shaded region. Thus, in this case the beam is stabilized by the spatial
periodicity in its geometry.
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Figure 3. Ince–Strutt stability diagram for a beam.

The spatial periodicity of the beam can be interpreted as distributed bending moments along the
beam, which can be replaced by an effective stabilizing shear force, V, as shown in Figure 2c. Therefore,
the periodicity in the geometry of the beam manifests as an effective shear force. This shear force can
stabilize the beam when the condition:

´
1
8

ε2 ă δ ă 1´
1
2

ε´
1

32
ε2 (21)

is satisfied. Otherwise, the beam is unstable with an exponentially increasing slope. We conclude that
a pattern on the surface profile of a rod affects destabilization of the rod just as small fast vibrations
affect the stability of an inverted pendulum.

3. Wetting and Membranes

In the preceding section, we studied how small fast vibrations or small-amplitude spatial
structures can be substituted by an effective energy term, which can lead either to an effective force
(such as the vibro-levitation force) or affect mechanical or phase equilibrium. In this section, we will
focus on the effect of small vibrations and structures on wetting, and, specifically, on the filtration.
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3.1. Superhydrophobicity: How Surface Patterns Change Wetting and Phase State

Non-wetting can be achieved using temporal patterns as seen in the case of vibro-levitating
droplets. Oil droplets were seen to levitate indefinitely over a vibrating oil surface in the frequency
range 35–350 Hz. The thin film of vapor between the droplet and the vibrating surface is stabilized by
vibrations [7]. Similarly, non-wetting can be achieved on superhydrophobic surfaces with the help of
micro/nano topography.

Wettability of a surface is usually characterized by the contact angle (CA), θ, which a droplet of
liquid makes with a solid surface. On a hydrophobic surface a water droplet makes θ ą 90˝, while
on a hydrophilic surface a water droplet makes θ ă 90˝. For an ideally smooth homogenous surface,
the equilibrium CA pθ0q of a liquid droplet (say, of water) is given by the Young equation

cosθ0 “
γSA ´ γSW

γWA
(22)

where γSA, γSW , and γWA are the surface free energies of the solid-air, solid-water, and water-air
interfaces. However, on real surfaces with roughness [22,23] and chemical heterogeneity, the observed
CA can be different from θ0. In such cases, the CAs are estimated by Wenzel and Cassie–Baxter
models [24,25].

The Wenzel model (Figure 4a) gives the effective CA on a rough, chemically homogenous surface.

cosθW “ R f cosθ0 (23)

where roughness factor R f ě 1, is the ratio of the solid surface area to the projected area. We can see
from Equation (23) that roughening a hydrophobic surface makes it more hydrophobic (larger CA),
while roughening a hydrophilic surface makes it more hydrophilic (lower CA). On a superhydrophilic
surface, the water droplet spreads out into a thin film.

Liquid
Liquid

Rough solid Rough solid

Cassie– Baxter stateWenzel state

(a) (b)

Figure 4. Wetting states. (a) A liquid droplet in Wenzel state; (b) A liquid droplet in Cassie–Baxter state.

If a rough surface harbors pockets of air, thus creating chemical heterogeneities, then the CA is
given by the Cassie–Baxter model (Figure 4b).

cosθCB “ r f fSLcosθ0 ´ 1` fSL (24)

where rf is the roughness factor of the wet area, and 0 ď fSL ď 1 is the fractional solid-liquid interfacial
area. The air pockets can lead to the surface being superhydrophobic. On superhydrophobic surfaces,
water beads up into a near-spherical shape.
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In both above cases, we see that surface texture (roughness) is an essential parameter in
determining the wettability (or non-wettability) of a surface. On a superhydrophobic surface, a water
droplet effectively “freezes” into a spherical shape. The roughness features on the superhydrophobic
surface also harbor and stabilize pockets of air. On a superhydrophilic surface, a water droplet
effectively “melts” into a thin film, just like the coalescence of a droplet into a liquid bath.

In order to perform averaging of surface energy, we consider a 2D system—a solid rough surface
of length L along the x-axis with unit width. The roughness profile of which is given by F(x) whereas
the local surface free energy is γ(x). The roughness factor of the surface can be written in the integral
form as:

R f “
1
L

L
ż

0

d

1`
ˆ

dFpxq
dx

˙2
dx (25)

Similar to the averaging of small fast vibrations over time in Equation (11), the effect of surface
topography and chemical heterogeneity can be incorporated into the effective surface free energies of
the interface as an integral over the spatial coordinate x.

pγqe f f “
1
L

L
ż

0

γ pxq

d

1`
ˆ

dFpxq
dx

˙2
dx (26)

For a chemically homogenous rough surface, the surface energy is constant (γ(x) = constant)
and Equation (26) yields the Wenzel equation, in which the surface free energy is augmented by
the roughness factor Rf. For a chemically heterogeneous smooth surface, Equation (26) yields the
Cassie–Baxter equation. The modification of the surface free energies in Equation (26) using the
average of the product of the surface free energy and the surface profile over a length is similar to
the augmentation of the effective potential energy in Equation (10), with a term averaged over time.
The effective surface energy and, thus, the CA can be modified by controlling the surface texture
and chemistry.

Marmur suggested that appropriate texturing of a surface can lead to stable air films on
underwater surfaces resulting in underwater superhydrophobicity [26]. Later on, Patankar and
co-workers studied surface texture-induced phase transitions [14,27,28]. They investigated how surface
texture affects the Leidenfrost effect [29] manifested by water droplets levitating over a sufficiently
hot skillet due to the presence of an evaporating vapor film (Figure 5a). Such a film is formed only
when the hot surface is above a critical temperature, whereas at lower temperatures the vapor film
collapses. However, the critical temperature can be reduced, and the vapor film collapse can even be
completely suppressed [30] when micro-textured superhydrophobic surfaces are used [14]. Their result
demonstrated that the surface texturing can potentially be applied to control other phase transitions,
such as ice or frost formation, and to the design of low-drag surfaces in which the vapor phase is
stabilized in the grooves of textures without heating.
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The concept was further expanded by Jones et al. [27], who showed that surface texturing can
stabilize the vapor phase of water, even when liquid is the thermodynamically favorable phase.
Furthermore, the reverse phenomenon exists, when patterned hydrophilic surfaces keep a liquid water
layer at high temperatures when it would otherwise boil. Thus, nanoscale roughness can be applied to
manipulate the phase of water. The molecular dynamics simulations demonstrated that the vapor and
liquid phases of water adjacent to textured surfaces are stable. Patankar [28] has also identified the
critical value of roughness, below which the vapor phase is sustainable and/or trapped gases are kept
in roughness cavities or valleys, thus maintaining the immersed surface dry.

Linke et al. [31] demonstrated that surfaces with small asymmetric texture (saw-tooth profile)
can induce self-propulsion in Leidenfrost droplets, and in the process, the droplets climb over the
steep sides of the surface texture [32]. Leidenfrost droplets levitate on a thin film of vapor formed
when the droplet contacts a surface whose temperature is much greater than the boiling point of the
liquid. The vapor phase is expelled from under the droplet due to the pressure gradient in the film
between the peaks and the valleys of the surface profile. Due to the inherent asymmetry of the surface
texture, the vapor leaks out asymmetrically from under the droplet, causing a net directional flow
of vapor. The resultant viscous forces entrain the droplet in the same direction (Figure 5b) [33–35].
The self-propulsion effect has potential application, such as in a sublimation heat engine [36].

The viscous force generated per tooth of the saw-tooth profile is given [32] by using
momentum balance:

fi “ η
U
hF

rcλ (27)

where η is the viscosity of the vapor, U is the velocity of the vapor flow, hF is the average thickness
of the vapor film, rc is the contact radius of the droplet, and λ is the tooth length. If there are N teeth
below the droplet, then the net propulsion force can be obtained as:

F “
N
ÿ

i“1

η
U
hF

rcλ “ η
U
hF

rcNλ (28)

For the values η = 1.9 ˆ 10´5 Pa s, U = 0.2 m s´1, hF = 10 µm, rc = 2.5 mm, λ = 1 mm, and N = 5,
the force is F = 4.75 µN.

The summation of forces over an area due to surface patterns in Equation (28) is similar to the
integration of small fast vibrations in Equation (11). The vibrations can be substituted by an effective
stabilizing force. Similarly, the surface topography manifests as a propulsion force.

We saw how asymmetric surface patterns on a surface can be substituted by an effective force
that spontaneously propels a Leidenfrost droplet over steep inclines. In general, the phenomenon of
surface texture-based phase transition can be described as suppressing the boiling point and, thus,
is similar to superheating or subcooling of water. Similar to the vibration-induced phase transitions,
the effect of the small spatial pattern is in changing the phase state of the material.

3.2. Water Flow through a Vibrating Pipe with Hysteresis

In this section, we study the effects of small fast vibrations on the flow through a hole. First,
let us consider a macroscopic flow of a fluid through a pipe as shown in Figure 6a, with the mean flow
velocity v related to the pressure loss ∆P by the nonlinear relation:

∆P “ av2 (29)

where a is a constant. Note that for laminar flow, the dependency between the pressure and flow
velocity is linear. However, in a non-ideal situations non-linearity can emerge, represented by the
quadratic dependency in Equation (29), which may be a consequence of various factors, such as the
turbulence, non-linear viscosity, or asymmetric variations in the pipe profile. The non-linearity is
essential since it results in hysteresis [8].
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Figure 6. Fluid flow through a pipe. (a) The pressure difference ∆P0 is a nonlinear function of the flow
velocity v0; (b) Longitudinal external vibrations hcosΩt results in an additional pressure difference
∆Pv; (c) Pressure difference as a function of the velocity hΩ. The hysteresis (∆P2 ´ ∆P1) due to a small
change in velocity ˘δv can significantly alter the flow characteristics [6]; (d) Pressure difference as a
function of hΩ for three different fluids with a = 700, 1000, and 1200 kg m´3.

To apply the averaging method, let us assume a slow velocity v0 which changes negligibly over
a time period 2π{Ω. If the pipe is subjected to a fast external vibration (Figure 6b) in the form of
x “ hcosΩt, where h is a small constant amplitude, then the additional fast component of velocity
is

.
x “ ´hΩsinΩt. The standard assumption of the method of separation of motions is that the flow

velocity is small in comparison with the amplitude of the velocity of vibrations, hΩ. The flow velocity
can be written as the sum of the slow and fast components.

v “ v0 ´ hΩsinΩt (30)

Substituting Equation (30) into Equation (29):

∆P “ a pv0 ´ hΩsinΩtq2 (31)

∆P “ av0
2 ` a phΩsinΩtq2 ´ 2av0hΩsinΩt

∆P “ ∆P0 ` a phΩsinΩtq2 ´ 2av0hΩsinΩt (32)

where ∆P0 is the pressure loss due to v0, which changes negligibly over 2π{Ω. Averaging Equation (32)
over the period 2π{Ω, similar to the temporal averaging in Equation (11) gives:

∆P “ ∆P0 `
Ω
2π

2π{Ω
ż

0

a phΩsinΩtq2 dt (33)

∆P “ ∆P0 `
a
2
phΩq2 (34)

In Equation (34), the effect of the fast vibrations is perceived as the additional pressure difference
∆Pv “ a phΩq2{2, which can intensify or weaken the fluid flow thought the pipe. Equation (34) is similar
to Equation (10) in that vibrations augment the potential energy of the system, and at certain values
of hΩ the vibrations can effectively stop the fluid flow. The dependency of the pressure difference
in the value hΩ is shown in Figure 6c based on Equation (34). Since the dependency is non-linear,
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for any small change in velocity ˘δv due to the external vibrations, the corresponding total change
in ∆P is non-zero, as shown. The pressure difference ∆P2 for a small increase in velocity is greater
than the pressure difference ∆P1 for a small decrease in velocity. This hysteresis can affect the flow in
the pipe and under certain conditions even stop the flow. Using values of ∆P0 = 1 kPa, and a = 700,
1000, and 1200 kg m´3 (similar to the densities of gasoline, water and glycerin, respectively), a plot of
Equation (34) is shown in Figure 6d. If the hydrostatic pressure driving the flow is ∆Pin, the fluid in
the vibrating pipe ceases to flow when:

a
2
phΩq2 ą ∆Pin (35)

Instead of a vibrating pipe, if we consider a vibrating fluid container with a hole at the bottom,
the velocity of the fluid drainage is related to the static pressure head (H) of the fluid in the container
as v9

a

2gH. Therefore, the nonlinearity in Equations (29) and (35), still holds. Thus, the drainage of
fluid through the hole can be stopped by controlling the amplitude and frequency of the vibrations.

We showed how small fast vibrations can affect fluid flow through a hole, and, under certain
conditions, effectively act as a valve. Next, we extend this principle to the case of vibrating membranes
on the micro/nanoscale.

3.3. Liquid Penetration through Pores in Vibrating or Patterned Membranes

Semipermeable membranes (e.g., biological cell membranes) allow only certain molecules or ions
to pass through. Osmosis is the transport of solvent molecules, such as water, through a semipermeable
membrane from a region of higher to lower solvent chemical potential until the chemical potentials
equilibrate. Osmosis is driven by the concentration gradient of the solute across the membrane,
or, in other words, the chemical potential difference of the solvent across the membrane. The excess
external pressure that must be applied to prevent the osmotic flow is called the osmotic pressure π.
The osmotic pressure is given by the van’t Hoff equation:

π “ csoluteRT (36)

where csolute is the molar concentration of the solute in the solution, R is the gas constant, and T is the
absolute temperature. When an external pressure greater than the osmotic pressure π is applied to
reverse the flux of solvent molecules then the process is called reverse osmosis (RO).

A novel principle of phase separation (e.g., water and oil from their mixture) has already been
suggested using the membranes, which are hydrophilic but oleophobic, or hydrophobic but oleophilic.
Note that oil, and other organic non-polar liquids, typically has a surface energy much lower than that
of polar water. Because of this, hydrophilic materials are usually also oleophilic. However, dealing
with the underwater oleophobicity, one can find materials which are hydrophilic but still repel oil
when immersed in water.

In the previous section, we saw how vibrations could manifest as a pressure affecting the fluid
flow. For a vibrating membrane (Figure 7) consisting of several holes, the vibrations manifest as
an effective pressure a phΩq2{2, as seen in Equation (34). The vibrations can change the effective
membrane permeability if:

a
2
phΩq2 ą π (37)

The RO process is used commonly to desalinate water. RO membranes are porous structures used
in the RO process. Solvents usually take a tortuous path through the RO membranes. Note that RO is
used for separation of a solvent from a solution. However, a completely different principle can be used
to separate liquid mixtures using patterned superhydrophobic surfaces.
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One of the recent applications of surfaces with tailored wettability is in separation of oil-water
mixtures [37]. Porous media/meshes, which are selectively wetted by either water or organic solvents,
can be used in this process. These porous material are analogous to the RO membranes used in
desalination. The common terminology associated with wetting of a surface by oil are defined as
follows. Oleophilic surfaces display oil CA less than 90˝. Oleophobic (oil CA greater than 90˝) surfaces
used for oil-water separation need to operate in the three phase solid-oil-water system instead of the
usual solid-water-air system. This calls for underwater oleophobic surfaces [38] which exhibit oil CA
greater than 90˝ in the solid-oil-water system. Surfaces that are superhydrophobic and oleophilic,
or hydrophilic and underwater oleophobic can be used to separate out oil from water.

Natural and artificial materials have been used for oil-water separation. Kapok plant fiber which
is naturally hydrophobic and oleophilic was seen to separate diesel oil from water. Kapok, which is
wetted by diesel due to capillary rise, can be dried and reused [39]. Artificial membranes are made by
using porous/meshed structures with specific pore sizes, which may be roughened and coated with a
surface agent to tailor their wetting properties. The wetting properties depend on the pore size, surface
roughness and surface agent used. Stainless steel and copper meshes, and filter paper [40], were
commonly used to separate mixtures in which oil is layered over water. If one of the phases in oil-water
mixture is dispersed in the other as small droplets (smaller than the pore size) the meshes become
ineffective. Hydrophobic porous media has been developed for separation of oil-water emulsions with
and without surfactants [41–44]. Table 1 summarizes the literature which discusses various types of
oil-water filtering membranes.

The rough surface of the mesh for oil-water separation having pores of radius w is wetted partially
by oil, water and air. The effective surface free energy of a rough chemically heterogeneous surface is
given by Equation (26). The solid-liquid interface area in any single pore is augmented by the factor
fSL

´

r f

¯

L
. The capillary pressure Pcap across the interface of the liquid L is given by the force balance

Pcapw2 “ 2w fSL

´

r f

¯

L
γLVcosθ0, which simplifies as:

`

Pcap
˘

L “
2 fSL

´

r f

¯

L
γLVcosθ0

w
(38)

where γLV is the surface free energy of the liquid-vapor interface. Note that the effect of the surface
micro/nanotopography is incorporated into Equation (38) via the roughness factor. The roughness
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factor is the surface profile averaged over an area. This is similar to the effect of vibrations averaged
using the temporal integral in Equation (11). The capillary pressure at a solid-oil interface is

`

Pcap
˘

oil “
2 foil

´

r f

¯

oil
γoilcosθoil

w
(39)

whereas the capillary pressure at a solid-water interface is

`

Pcap
˘

water “
2 fwater

´

r f

¯

water
γwatercosθwater

w
(40)

where γoil , γwater, θoil , θwater are the surface free energy of the oil-vapor interface, the surface free energy
of the water-vapor interface, the equilibrium CA of oil and the equilibrium CA of water, respectively.

Table 1. Summary of recent literature on oil-water separation using selectively wettable membranes.

Porous Material Surface Texturing
and Treatment Wetting Property Separates

Kapok plant fiber [39] None Hydrophobic, oleophilic Diesel from water

Stainless steel mesh [45] Polyacrylamide hydrogel
polymerization

Superhydrophilic,
underwater

superoleophobic

Vegetable oil, gasoline,
diesel, crude oil,

n-hexane, and petroleum
ether from water with

99% efficiency

Stainless steel mesh [46]
Vertically-aligned

multi-walled carbon
nanotubes

Superhydrophobic,
superoleophilic Diesel from water

Copper mesh [47]
Etching followed by

immersion in
1-hexadecanethiol

Superhydrophobic,
superoleophilic Diesel from water

Filter paper [40] Hydrophobic silica
+ polystyrene

Superhydrophobic,
oleophilic

Diesel from water with
96% efficiency

Stainless steel mesh [13]

Spray coating an emulsion of
PTFE, polyvinyl acetate,

polyvinyl alcohol and sodium
dodecylbenzenesulfonate

in water

Superhydrophobic,
superoleophilic Diesel from water

Copper mesh [48]
Copper hydroxide needles

grown electrochemically and
coated with silane

Superhydrophobic,
superoleophilic n-hexane

Stainless steel mesh [49]
Zinc oxide nano rod coating
followed by immersion in

stearic acid

Superhydrophobic,
superoleophilic Toluene from water

Stainless steel mesh [50] Hexagonal ZnO nanorods Superhydrophobic,
superoleophilic Paraffin oil from water

PTFE: Polytetrafluoroethylene.

The capillary pressure, given by Equation (38), determines if the liquid spontaneously flows
through the mesh. For a hydrophobic, oleophilic mesh

`

Pcap
˘

water is negative, whereas
`

Pcap
˘

oil is
positive and as a result, oil selectively permeates though the pores; water permeates only if an external
pressure is applied to negate

`

Pcap
˘

water. For example, for a mesh of pore size w = 10 µm with the
values rf = 2.0, γwater = 72 mNm´1, θwater = 107˝, fwater = 0.19, γdiesel = 23 mNm´1, θdiesel = 60˝, fdiesel = 1.0,
we obtain

`

Pcap
˘

water =´1.6 kPa and
`

Pcap
˘

diesel = 4.6 kPa. The mesh will stop the water, while allowing
diesel through the pores. In the case of a mesh used for oil-water separation, micro/nanotopography
augments the capillary pressure and is therefore a critical factor.
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Equation (35) is the critical condition for flow through a vibrating pipe or out of a vessel, while
Equation (37) is the critical condition for the permeability of a vibrating membrane. The vibrations
were averaged over time. In Equation (38) the surface micro/nanotopography was averaged over the
area. In essence micro/nanotopography can affect the mesoscale transport through porous media
while small fast vibrations can affect the molecular transport through porous media.

Note the similarity between Equation (36) for osmotic pressure and Equation (38) for the capillary
pressure. Additionally, note that the osmotic pressure is independent of the membrane properties,
whereas the capillary pressure for wetting is dependent on the surface characteristics. The effect
discussed in this section is different from that of classical osmosis. Osmosis is a molecular scale
effect and the expression for the osmotic pressure in Equation (36) is derived from thermodynamics.
The pattern-induced liquid separation, which we suggest to be referred to as “pseudo-osmosis”, is a
mesoscale effect with a characteristic length scale (i.e., the superhydro/oleophobic/philic surface
pattern of nanometers).

4. Conclusions

We discussed how small fast vibrations (temporal patterns) and micro/nanotopography (spatial
patterns) can affect physicochemical properties. We used Kirchhoff’s dynamical analogy, which draw
parallels between spatial patterns and vibrations. We also applied Kapitza’s method of separation of
motions as a tool to find an effective force that can be substituted for small fast vibrations. We applied
this tool to several examples, including the flow of liquid though vibrating pipes and membranes.
In all these cases, we derived an expression for an effective force that can be substituted for vibrations
or patterns.

Novel biomimetic membranes which are hydrophilic but oleophobic or hydrophobic but oleophilic
can be developed using this principle. The separation of oil-water mixture using selectively wettable
membranes/meshes is similar to the molecular osmotic transport across a semipermeable membrane;
however, the principle is different since the phenomenon is not at the molecular scale.

It is important to note that, in all the cases discussed in this paper, vibrations or surface patterns
lead to some nonlinearity or hysteresis, which results in a peculiar behavior such as stabilization and
propulsion. Thus, spatial and temporal patterns can affect material and surface properties. Potential
applications include smart materials with tunable properties. The approach developed in our paper
allows estimating system design and performance by knowing the properties of small scale vibrations
and patterns. More importantly, we suggest a general method to study how small patterns affect
macroscale wetting properties with superhydrophobicity and oil-water separating membranes being
examples of where the method can be applied.
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