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Abstract: Statistical data indicate that trucks are more prone to rear-end crashes, making this an area
of concern. The objective of this study is to create a model that analyzes the factors influencing the
frequency of rear-end crashes involving trucks (TIRC). To achieve this, researchers identified the
most appropriate model as Spatial Zero-Inflated Negative Binomial Regression (SZINB). This model
takes into account spatial correlation, which plays a significant role in the occurrences of TIRC on
different road segments supervised by each highway ward. The estimation of parameters in the
SZINB model has led to key findings that shed light on the factors contributing to a higher likelihood
of TIRC. These findings include the increased probability of TIRC on curved roads compared to
straight ones, roads that feature open middle islands, six lanes per direction, a slope, right-of-way
shoulder width, pavement type, lane width, and a post speed limit. Based on these key findings, this
study developed policy recommendations and sample measures aimed at reducing the frequency of
TIRC. Implementing measures such as improving the road design on curved sections, optimizing
middle islands, and enhancing traffic management on wider roads can help mitigate the risk of
crashes involving trucks.

Keywords: crash modification factor; Thailand; developing country; spatial correlation; curve; slope

1. Introduction
1.1. Research Background

Owing to the long-standing emphasis on the development of road networks within the
transportation infrastructure, truck transportation has assumed a pivotal and indispensable
role in Thailand. The nation’s logistics system predominantly relies on road transport,
contributing to the steady growth of trucking companies. As of 2021, the cost of freight
transport by road was projected to account for a substantial 68.88% [1]. While the Thai
government is making efforts to enhance railway infrastructure with the aim of reducing
logistics costs, the implementation of such improvements still requires considerable time.
As a result, trucks are poised to retain their significance and continue playing a crucial role
in the transportation sector for the foreseeable future.

Despite the numerous advantages of trucking, such as its speed and door-to-door
accessibility, it inevitably carries a significant disadvantage as follows: a high risk of crashes.
These crashes can be caused by various factors, including drivers falling asleep or navigat-
ing through challenging terrains, such as steep slopes [2,3]. Analyzing truck crash data from
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Thailand between 2018 and 2020, classified by collision type and severity levels (as shown
in Table 1), it becomes apparent that the most common type of collision is a single collision,
closely followed by rear-end collisions. However, when considering the severity of these
crashes, head-on collisions present the highest chance of fatalities, accounting for 46.83%,
followed by rear-end collisions with a fatal crash probability of 24.36%. Consequently, in
light of these findings, policy recommendations aimed at addressing road safety issues
should prioritize rear-end collisions due to their higher frequency and severity.

Table 1. Truck involvement collision type and crash severity.

Collision Type/Crash Severity Fatal Crash Severe Crash Minor Injury Crash PDO Total

Pedestrian collision 70 14.55% 33 6.86% 104 21.62% 274 56.96% 481
Rear-end collision 930 24.36% 517 13.54% 1139 29.84% 1231 32.25% 3817

Sideswipe collision 272 19.93% 125 9.16% 412 30.18% 556 40.73% 1365
Single collision 308 4.59% 309 4.60% 1697 25.26% 4403 65.55% 6717

Head on collision 236 46.83% 91 18.06% 118 23.41% 59 11.71% 504

Note: A “fatal crash” is characterized as an incident in which at least one individual succumbs to their injuries.
On the other hand, a “severe crash” refers to a crash in which at least one person sustains serious injuries but
there are no fatalities. A “minor injury crash” denotes a crash involving at least one minor injury without any
instances of serious injury or death. Lastly, “PDO” (Property Damage Only) signifies a crash with no reports of
minor injuries, serious injuries, or fatalities.

Crashes are always the outcome of a combination of variables regarding the following
three factors: driver(s), vehicle(s), and the road environment. Baikejuli, et al. [4]. empha-
sized that a significant portion of crashes can be attributed to human drivers. However,
it is essential to recognize the substantial impact of road conditions on driver behavior.
For instance, excessively long, straight roads can induce drowsiness in drivers, especially
those operating trucks for extended periods, as highlighted by Song, et al. [3]. Such fatigue-
related factors increase the risk of sleep-related crashes. In the absence of safety measures
like shoulder rubble strips, microsleep warning signs, and other road features, the likeli-
hood of crashes tends to rise significantly, as observed by Al-Bdairi and Hernandez [5].
Addressing road factors, specifically concerning rear-end collisions, it is revealed that areas
with steep inclines pose a similar risk of rear-end collisions as roadside locations. This
heightened risk is attributed to the extended steep slopes that may cause truck brakes
to malfunction due to excessive usage, leading to insufficient stopping power. Apronti,
et al. [6]. supports this notion, confirming the possibility of high rear-end collision rates.

While several developed countries have made significant strides at reducing road
traffic fatalities in recent years, progress remains highly variable worldwide. The risk of
road traffic fatalities is considerably higher in low- and middle-income countries, with an
average rate of 27.5 per 100,000 population, compared to high-income countries, which
have an average rate of 8.3 per 100,000 population [7]. Thailand, classified as a middle-
income and developing nation, bears substantial economic and emotional burdens due
to road accidents, with a death rate of 32.8 per 100,000 population [7]. According to the
Department of Highways (DOH) report in 2004, the cumulative costs attributed to traffic
accidents in Thailand amounted to THB 153,755 million (equivalent to approximately USD
3460 million) [8]. Furthermore, considering the data from 2017, the total productivity loss
solely due to road traffic accidents reached approximately THB 121 billion. This figure
includes THB 45 billion from fatalities, THB 7 billion from disabilities, THB 67.5 billion from
serious injuries, and THB 1.5 billion from minor injuries. Remarkably, these losses account
for nearly 0.8% of the country’s gross domestic product [9]. These roadway accidents
are primarily attributed to widespread speeding practices that frequently exceed legal
speed limits [10]. Adding to this concern is the extensive presence of motorcycles on the
road, sharing the same space with larger and faster vehicles, such as cars and trucks [11].
Together, these factors contribute to an increased frequency of accidents. Given the nature
of the construction and road network development in Thailand, This country is divided
into 77 provinces, each overseen by 18 departments of highways (DOH). These DOH
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branches are responsible for managing road infrastructure and development within their
respective provinces. However, in some instances, larger provinces may have more than
one DOH branch (Figure 1a). While the DOH’s work adheres to the same standards, there
are variations in visual characteristics and policies across different districts, as well as
differences in land use. These variations can potentially impact road design and may
contribute to rear-end collision crashes involving trucks. Figure 1b illustrates that the
frequency of crashes differs across provinces and regions under DOH supervision, with
higher occurrences in the central and eastern regions, such as Bangkok, Pathum Thani, and
Chonburi. This can be attributed to the concentration of industrial activity in these areas,
leading to a significant volume of truck traffic. Numerous studies have conducted spatial
analyses using random effect models to examine various aspects of crashes. For example,
Lee, et al. [12] explored the proportion of crashes for each type of vehicle at the traffic
analysis zone level. Wen, et al. [13] focused on crash frequency and severity, analyzing the
expected crash frequency on freeway segments. Osama and Sayed [14] investigated spatial
correlations within traffic analysis zones in the City of Vancouver. The results of their
research indicate that spatial correlations are influenced by the inclusion of explanatory
variables in the model.

1.2. Research Gaps and Objectives

Most studies pertaining to truck crashes predominantly focus on the magnitude of
the injury scale. For instance, Xu, et al. [15] conducted research on road-related violence,
wherein they measured it as the ratio of fatal collisions and injured collisions combined,
divided by the total number of collisions in the specific road segment. Wen, et al. [2] delved
into examining the severity of injury levels, specifically analyzing the impact of curves and
slopes on multi-vehicle truck crashes. In another investigation, Wang, et al. [16] scrutinized
the severity of injury between crashes involving trucks and those not involving trucks.
The simulation aspect has been taken into account, along with spatiotemporal instability.
Duvvuri, et al. [17] studied the degree of injury severity as well as the introduction of novel
factors such as land use and demographic variables.

When investigating rear-end collisions, specifically concerning crash frequency, re-
searchers have conducted notable studies that shed light on this phenomenon. For instance,
Champahom, et al. [18] compared the occurrences of rear-end collisions by examining
spatial variations. Meanwhile, Lao, et al. [19] analyzed the risk of such collisions utilizing a
generalized nonlinear model (GNM). Notably, both of these studies employed road imagery
factors to establish correlations with the frequency of rear-end collisions.

Moreover, researchers have delved into the examination of rear-end collision fre-
quencies within specific regions. Ref. [20] focused on work zones, whereas [21] explored
signalized intersections. Additionally, for a more specialized perspective on the frequency
of truck-involved rear-end crashes (TIRC), Yuan, et al. [22] conducted a comprehensive
investigation. Notably, their study revealed that factors such as the rider’s age and the type
of vehicle in front significantly impact the severity of injuries in TIRC cases.

Despite not investigating new variables or introducing novel computational methods,
this study is groundbreaking in its own right. Prior to this research, no study examined the
frequency of TIRC. Therefore, the primary objective of this study is to fill this knowledge
gap and enhance an understanding of rear-end collision prevention. To achieve this
objective, researchers aimed to construct a model that could establish a connection between
highway geometric factors and the occurrence of TIRC. Significantly, this model also
accounts for variations across different Department of Highway branch (DOHB) control
areas. The study’s scope was confined to Thailand’s highways, which boast the highest
proportion of truck traffic due to their vital links between major cities in the country. To gain
deeper insights into the influence of highway geometric design factors on TIRC frequency,
researchers employed crash modification Factors, which capture the variations in variables
affecting crash frequency [23]. In order to specify the methodology for conducting this
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study, the research question we aim to address is as follows: how do highway geometric
design features impact the frequency of rear-end collisions involving trucks?
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northern region of the country, namely Mae Hong Son, Chiang Mai, Lamphun, and Lampang. 

  

Figure 1. (a) Control areas of Department of Highways Office (DOH) and (b) Truck-Involved Rear-end
Crash Points. The colors within the diagram denote the geographical jurisdictions of the Department
of Highway offices. To illustrate, the symbol ‘DOH1’ signifies Department of Highway Offices
Number 1, encompassing their operational purview over four provinces situated in the northern
region of the country, namely Mae Hong Son, Chiang Mai, Lamphun, and Lampang.

The substantial contribution of this study lies in the conversion of knowledge derived
from this model’s outcomes into policy recommendations. These recommendations inform
the development of physical features that effectively minimize the likelihood of rear-end
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collisions with trucks. By doing so, this research has the potential to significantly enhance
road safety and reduce crashes involving trucks.

2. Highway Geometric Design Features on the Frequency of Truck-Involved Crashes

Based on previous research, it has been established that numerous factors possess the
potential to influence the frequency of truck-involved crashes. Let us first delve into the
fundamental factors that several studies have identified as impacting crash frequency. The
foremost factor is the average annual daily traffic (AADT), which has been consistently
correlated with the frequency of crashes [24,25]. As traffic volume increases, the likelihood
of collisions on the road also rises. Champahom, et al. [11] elucidated that heightened car
volume leads to reduced headway between vehicles, resulting in shorter braking distances
and, consequently, an increased risk of rear-end collisions.

Another crucial factor contributing to this phenomenon is the proportion of trucks on
the road. It is evident that a higher proportion of trucks leads to an increased likelihood
of rear-end collisions involving trucks as well [26]. Additionally, the length of each road
segment has been found to exert a positive effect on collision frequency [19].

For the group of variables concerning the physical characteristics of the road, one
significant factor is the number of traffic lanes. The frequency of rear-end collisions is
indirectly related to the number of traffic lanes. According to Wen, et al. [27], an increase
in traffic lanes aims to facilitate faster car flow or higher speeds (increased AADT) when
braking suddenly, which, in turn, raises the likelihood of collisions. This effect is particularly
pronounced for trucks with longer braking distances compared to light trucks, further
increasing the chances of rear-end collisions. Another influential factor is the posted
speed limit, which shows a clear correlation with speed-related collisions. Wen, et al. [27]
suggest that reducing the speed limit by law could potentially decrease the frequency of
collisions. The type of road surface, such as asphalt concrete and concrete, plays a role
in the frequency of rear-end collisions due to differences in friction. Concrete surfaces
generally offer more friction than asphalt concrete. However, there have been varying
findings from previous research. While Champahom, et al. [18], Feknssa, et al. [28] reported
insignificant differences between road surface types, a study by Iranitalab, et al. [29] found
that concrete surfaces are less likely to be involved in crashes. The width of the traffic
lane is another variable of interest. In Thailand, most roads adhere to standards with
lane widths ranging from 3.1 to 3.5 m, but some segments use wider lanes specifically
designed for trucks. Agbelie [30] observed that an increase in lane width leads to a positive
association with the frequency of collisions, meaning wider lanes are linked to higher
chances of crashes. The presence of footpaths also affects collision probability as it indicates
the presence of pedestrians or significant activities in that area, leading to increased traffic
lights and heavier traffic volume. Dong, et al. [31], Dong, et al. [32] demonstrated that more
traffic control devices contribute to a higher chance of rear-end collisions. Shoulder width,
on the other hand, appears to have little to no significant effect on the frequency of crashes,
as suggested by Dong, et al. [33]. Right-of-way is an essential factor in defining road
boundaries and reflects connections between major cities, emphasizing traffic flow mobility.
Roads with a high number of traffic lanes are often built in such areas [34]. Regarding
median width, Champahom, et al. [11] found a significant association between central
island width and the likelihood of crashes, with wider medians having a higher chance of
collisions. In terms of visual characteristics, straight roads are generally less prone to rear-
end collisions compared to curved roads. Islam, et al. [35] highlighted that curved roads
necessitate a reduction in speed, particularly in cases of high traffic volume, increasing
the risk of rear-end collisions. Slope variation is another factor influencing the frequency
of rear-end collisions, especially for trucks, due to brake-related issues when repeatedly
applying the brakes [36]. Finally, the presence of median openings also contributes to
the likelihood of rear-end collisions, as observed by Champahom, et al. [37]. Open center
islands require vehicles to reduce their speed, and if drivers are not careful or the vehicle
ahead does not provide a proper turn signal, rear-end collisions may occur.
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3. Methods Section
3.1. Data Collection

Data regarding crashes on Thailand’s highways are meticulously gathered and recorded
in the highway crash information management systems (HAIMS), which are maintained by
the Department of Highways. The acquisition of crash cases is carried out by designated
officials from various highway districts across different provinces, who conduct regular
visits to crash sites. During these visits, they collect a multitude of pertinent factors, such
as the physical characteristics of the crash site, precise location details (e.g., highway no.
2 km. 20 + 200), and the slope of the road, among others.

For this particular study, a specific type of crash, namely rear-end collisions involving
shared trucks, was chosen for analysis. The dataset utilized for this study encompasses
crashes that occurred between 2011 and 2018. Notably, data from the years 2019 to 2021
were not included in the analysis due to the disruptive impact of the COVID-19 outbreak.
This unprecedented situation led to abnormal behavior patterns and altered traffic volume,
especially with regard to the amount of cargo being transported, thereby directly affecting
the number of trucks involved in crashes [38].

Traffic volume and road geometry data are gathered within the traffic information
management system (TIMS) administrated by the Department of Highways. This compre-
hensive system provides intricate information about each road, including its road number,
initial and final kilometer points, road length, traffic surface type, lane width, and road
shoulder width, among other details.

Consequently, the average annual daily traffic (AADT) and the Percentage of Trucks
(truck percentage) were correlated with the highway number and control section. The
resulting traffic volume data were subsequently stored in the TIMS database. Similarly,
matching between crash points and road segments was achieved by aligning the road
number and column kilometer.

Data pertaining to truck-involved rear-end crashes (TIRC) are displayed in Table 2.
This table encompasses 16,936 segments, each with an average distance of 3.082 km (stan-
dard deviation = 5.023). The number of crashes in these segments was recorded as 0.291
(standard deviation = 2.071). The average daily traffic volume was found as 14,473.9 ve-
hicles, with trucks accounting for 16.328 vehicles per day. Regarding road geometry, the
majority of traffic lanes consist of 2 lanes and 4 lanes, constituting 57.32% and 32.23%,
respectively. It is important to note that the figures presented for curve, slope, and median
opening numbers are only applicable to segments where at least 1 crash occurred. Segments
without crashes but with curves were not included in this analysis. The cause of these
incidents was attributed to factors stemming from crash cases and road segment data. The
results indicate that curves accounted for 1.23% of the crashes, while clear slopes and center
open areas contributed to 1.19% and 1.06% of the crashes, respectively.

Table 2. Variable Description and Descriptive Statistics.

Variable Value Description Frequency Percentage

Rear-end crash with truck involvement (mean, S.D.) (0.291, 2.071)
Length (mean, S.D.) (3.082, 5.023)
AADT (mean, S.D.) (14,473.9, 24,292.1)
Percent Truck (mean, S.D.) (16.328, 11.771)

Number of lanes per direction

0 2 lanes road 9707 57.32%
1 4 lanes road 5459 32.23%
2 6 lanes road 1015 5.99%
3 6 lanes and more 755 4.46%

Speed Limit
0 80 Km/h and less 2497 14.74%
1 90 Km/h 4794 28.31%
2 >90 Km/h 9645 56.95%
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Table 2. Cont.

Variable Value Description Frequency Percentage

Pavement
0 Asphalt concrete 15,258 90.09%
1 Concrete 1678 9.91%

Lane width
0 ≤3 m 1025 6.05%
1 3.1–3.5 m 15,638 92.34%
2 >3.5 m 273 1.61%

Footpath 0 No 16,131 95.25%
1 Yes 805 4.75%

Shoulder width

0 ≤1 m 6364 37.58%
1 1.1–2 m 3533 20.86%
2 2.1–3 m 6604 38.99%
3 >3 m 435 2.57%

Right-of-Way

0 ≤40 m 11,131 65.72%
1 40.1–60 m 3412 20.15%
2 60.1–80 m 1803 10.65%
3 >80 m 590 3.48%

Median
0 Yes 5608 33.11%
1 No 11,328 66.89%

Median width

0 No median 11,328 66.89%
1 ≤2 m 987 5.83%
2 2.1–4 m 664 3.92%
3 4.1–6 m 2438 14.40%
4 >6 m 1519 8.97%

Curve a 0 Straight 16,728 98.77%
1 Curve (R > 100) 208 1.23%

Slope a 0 Normal 16,734 98.81%
1 Slope (>3% grade) 202 1.19%

Median opening a 0 Non median opening 16,757 98.94%
1 Median Opening with auxiliary lane 179 1.06%

Note: 0 value is the referent category for the statistical models. a counted only the road segment that had a crash
at least 1 time.

3.2. Model Development

The count model commences by examining the distribution of truck-involved rear-end
crashes (TIRC), wherein a significant portion of the count distribution follows a Poisson
distribution pattern. This approach was elaborated in the work of Wang, et al. [39]. The
probability of road segment i having a number of crashes occurring, denoted as yi, can be
computed using the following expression:

P(yi) =
exp(−λi)λ

yi
i

yi!
(1)

where P(yi) is the probability of the number of TIRC yi occurring on road segment i and λi
is the Poisson parameter; POI was obtained for each road segment. E[yi] is the expected
number of TIRCs that occur on each road, where E[yi] is the predicted number of events
that occur due to an explanatory variable, for example, traffic surface, curve, or straight
line, etc. The relationship between the explanatory variable and the Poisson parameter is in
the form of a logarithmic model,

λi = exp(βXi) (2)

where Xi the explanatory vector and β is the parameter interpolation vector. The number of
events or the number of TIRCs was predicted using E[yi] = λi = exp(βXi), and the model
was predicted via the maximum likelihood methods.

L(β) = ∏i
EXP[−EXP(βXi)][EXP(βXi)]

yi

yi!
(3)
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The Log of the likelihood function is easier to handle and more suitable for estimation
and can be calculated as follows:

L(β) =
n

∑
i=1

[−exp(βXi) + yiβXi − LN(yi!)] (4)

The negative Binomial Regression Model (NBR) is used when the results of Pois-
son’s deviations are not appropriate, i.e., the mean of the estimates is not equal to the
variance. If the expected value is greater than the variance, it is called under-dispersed
(E[yi] > VAR[y i]), or, most often, over-dispersed (E[yi] < VAR[y i]). The negative Bino-
mial Regression Model is modified from Equation (2) [40,41]

λi = EXP(βXi + εi) (5)

where EXP(εi) is Gamma-distribution with a mean of 1 and variance α, which is added so
that the variance can vary from the mean.

VAR[yi] = E[yi][1 + αE[yi]] = E[yi] + αE[yi]
2 (6)

The probability equations of the Poisson model were set to α = 0, which means that
the choice between two models (Poisson and negative binomial) depends on the value of α,
which is most often over-dispersed. The probability of TIRC occurring on a road segment
that is considered to have a negative binomial distribution is calculated as follows:

P(yi) =
Γ
((

1
α

)
+ yi

)
Γ
(

1
α

)
yi!

 1
α(

1
α

)
+ λi

 1
α
 λi(

1
α

)
+ λi

yi

(7)

where Γ(.) is the gamma function. For parameter estimation, we could obtain:

P(λi) = ∏i

Γ
((

1
α

)
+ yi

)
Γ
(

1
α

)
yi!

 1
α(

1
α

)
+ λi

 1
α
 λi(

1
α

)
+ λi

yi

(8)

When forecasting the number of crashes that occur on each road each year, there may
be some roads where, throughout the information, no crashes are recorded. This can be
separated into two different event characteristics. It contains normal numbers (normal
count), and the nature of the count is zero (zero count). The NBR model is not covered
for splitting the analysis into two parts. Therefore, a suitable model for dual-state is the
zero-inflated model. When built on top of the negative binomial model, it is called the
zero-inflated model (ZINB) [42]

The ZINB model is similar to the occurrence equation Y = (y1, y2 . . . , yn), which is
independent.

yi = 0 with probability pi + (1 + pi)

(
1
α

( 1
α )+λi

) 1
α

yi = y with probability (1 + pi)

(
Γ(( 1

α )+y)µ
1
α
i (1−µi)

y

Γ( 1
α )yi!

)
, y = 1, 2, 3, . . .

(9)

where µi =
(

1
α

)[
1
α + λi

]
is the maximum likelihood method used to re-estimate the

parameters in the ZINB model. For parameter estimation using the maximum likelihood
method, confidence was determined via the likelihood ratio test.

In some cases, it may be reasonable to assume that there is a correlation between road
physical characteristics and land use. This relationship occurs due to spatial considerations,
such as crashes that occur in the same area. It should be set to have an unobservable
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influence. In this study, the division of roads into the Department of Highway branch
(DOHB)-supervised areas is proposed. In such a relationship, model applications can gen-
erate random effects when an unobservable influence is considered an indicator variable.

The equation for the random influence of counts, improved from Equation (5), resulted
in the following:

LN(λi) = βXi + εi + ηi or, λi = EXP(βXi + εi)EXP(ηi) (10)

where λi is the expected number of events that occur for road segment i, which falls into
group j (the DOHB regulatory region expected to exert unobserved heterogeneity). Xi is a
vector of explanatory variables, β is the parameter prediction vector and ηi is the random
influence for dataset j. Spatial correlation was calculated for the spatial variation proportion
out of the total variation [13] as follows:

Spatial correlation =
σ2

η

σ2
η + σ2

e
(11)

where σ2
η is the predicted variance ηj or the intra-space variance of the same DOHB. σ2

e is
the variance obtained from the fixed effect parameter estimates or the variance that occurs
between DOHB areas of responsibility. A general model can be obtained assuming that ηj
is randomly distributed through each group, i.e., EXP

(
ηj
)

is gamma-distributed with an
average of one and has a variance of α.

Crash modification factors (CMF) were considered the same as the odds ratio (OR),
which was calculated to evaluate a change in the relative risk of TIRC due to a change in
an unmatched explanatory variable, which, in this study, was a difference in the visual
characteristics of the road, calculated from a dummy variable [43].

OR(xi) = EXP(βi) (12)

The data analysis of this study was performed using the R programming language
along with the core software package ‘stats’ version 3.6.2. In addition to this, specific
packages such as ‘readr’ and ‘dplyr’ were employed for data analysis and preparation.
Moreover, the ‘pscl::zeroinfl’ package was utilized to analyze the ZINB model [44], which
stands for zero-inflated negative binomial regression. Furthermore, the SZINB model
was analyzed using ‘glmmTMB’ (Generalized Linear Mixed Models with Template Model
Builder) [45].

4. Results
4.1. Model Statistics

The statistical results of the model are presented in Table 3 and initially developed
from the Poison Regression Model (POI). The McFadden ρ2 value stands notably high at
0.04010. However, the predicted dispersion ratio was 4.676, indicating the importance of
having a p-value < 0.000. As a result, it became crucial to develop the Negative Binomial
Regression Model (NBR), and the mean zero probability forecast was 0.910. Many road
segments exhibited zero crashes, necessitating the development of a zero-inflated Negative
Binomial Regression (ZINB) Model. To determine the most suitable model, the Akaike
Information Criterion (AIC) was considered, which revealed that the AIC of NBR (12,946.76)
was higher than that of ZINB (12,416.14). This suggests that the model with zero state
separation is more appropriate. Additionally, the dispersion ratio serves as an indicator
of the suitability of the negative binomial model. Discrepancies between the Department
of Highways Branch (DOHB)-controlled areas were acknowledged, and a spatial correla-
tion analysis indicated an intra-area variance of 0.396 (39.6%) [46]. Consequently, it was
deemed appropriate to incorporate the random effect into the ZINB model, leading to
the development of the Spatial Zero-Inflated Negative Binomial Regression (SZINB). The
AIC value for SZINB was calculated to be 12,198.59, which is lower than that of ZINB,
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suggesting that SZINB is more suitable. Thus, parameter interpretations should be derived
from the SZINB model based on the research by Raihan, et al. [23], considering its superior
suitability compared to ZINB.

Table 3. Models’ Statistics.

Model Statistics POI NBR ZINB SZINB

Log−likelihood intercept-only model −17,834.9 −7348.39 −7348.39 −6984.54
Log−likelihood convergence model −10,682.3 −6448.38 −6159.07 −6049.3

McFadden ρ2 0.4010 0.1225 0.1618 0.1339
The Akaike Information Criterion (AIC) 21,412.55 12,946.76 12,416.14 12,198.59

Mean zero probability 0.910
Dispersion ratio 4.676 ***
Over-dispersion 0.841

Spatial correlation 0.396

Note: *** p-value < 0.000. POI denotes Poisson Regression. NB denotes Negative Binomial Regression. ZINB de-
notes Zero-inflated Negative Binomial Regression. SZINB denotes Spatial Zero-Inflated Negative Binomial Regres-
sion. The Akaike Information Criterion (AIC) is calculated as follows: AIC = −2 × log-likelihood + 2 × K, where
k is the number of estimated parameters in the model. McFadden ρ2 is calculated as: ρ2 = 1 − LL(m1)/LL(m0).

4.2. Correlations and Parameter Estimations

Figure 2 illustrates the correlation among all variables pertaining to rear-end crashes
involving trucks. Notably, the TIRC exhibited a remarkable influence. The variables that
showed a positive impact on these crashes included colliding with curved roads, areas with
slope road alignment, and the number of traffic lanes. Moreover, certain road environmental
characteristics, such as the length of the road section and traffic volume, also contributed
significantly to the occurrence of these crashes. Within this array of variables, the presence
of a center island and, notably, the width of the center island emerged as possessing the
most substantial correlations with rear-end crashes. Consequently, in the course of our
research model development, we exclusively prioritized the consideration of the variable
linked to the width of the center island, owing to its pronounced and statistically significant
association with the incidence of rear-end collisions involving trucks.

Table 4 presents a conditional model of the SIZNB (Spatial Interdependency Zero-
Inflated Negative Binomial) model, illustrating the correlation between road geometry
design and the frequency of TIRC with one or more occurrences. The analysis revealed
that several factors exerted an impact on the frequency of crashes. Firstly, the number
of lanes played a crucial role, with 6-lane roads exhibiting a higher probability of TIRC
(odds ratio or crash modification factor; CMF = 1.5914) when compared to roads with
1 lane per direction used as a reference. Conversely, roads with 4 lanes and 2 lanes did not
show significant effects. Moreover, it was observed that higher speeds (>90 Km/h) led
to an increased likelihood of TIRC (CMF = 1.7229) compared to speeds below 90 Km/h.
Additionally, concrete road surfaces demonstrated lower TIRC rates than asphalt concrete
road surfaces (CMF = 0.6658). Various other variables were found to contribute to elevated
TIRC levels. These included the presence of footpaths on roads (CMF = 1.4393) compared
to roads without footpaths, increased shoulder width compared to roads without shoulders
(CMF = 1.4393–1.6240), and wider right-of-way widths (CMF = 1.3967–1.6158). Further-
more, when considering variables associated with the crash’s physical characteristics and
their match with the road’s attributes, it was evident that certain conditions significantly
elevated the probability of TIRC occurrence. Such conditions encompassed curved road
sections (CMF = 5.0369), sloped road sections (CMF = 2.1089), and central island open
areas (CMF = 4.9738). These factors were identified as having a substantial impact on the
frequency of TIRC in this study.
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Table 4. SZINB results.

Estimate S.D. t-Stat p-Value Sig. CMF

Random Effect (intercept) 5.970 2.443 2.443 0.0201 **
Conditional model:

(Intercept) −1.363 0.313 −4.361 <0.000 ***
2 lanes road 0.114 0.132 0.865 0.387
4 lanes road 0.240 0.183 1.313 0.189
6 lanes road 0.465 0.178 2.611 0.009 ** 1.5914

90 Km/h −0.074 0.214 −0.345 0.730
>90 Km/h 0.544 0.134 4.049 <0.000 *** 1.7229

Concrete Pavement −0.407 0.119 −3.423 0.001 ** 0.6658
Lane width [3.1–3.5 m] −0.219 0.271 −0.808 0.419

Lane width [>3.5 m] −0.578 0.385 −1.499 0.134
Footpath 0.364 0.164 2.226 0.026 ** 1.4393

Shoulder width [1.1–2 m] 0.359 0.154 2.324 0.020 ** 1.4318
Shoulder width [2.1–3 m] 0.485 0.152 3.180 0.001 ** 1.6240

Shoulder width [>3 m] 0.134 0.234 0.574 0.566
Right-of-way [40.1–60 m] 0.447 0.111 4.017 <0.000 *** 1.5643
Right-of-way [60.1–80 m] 0.334 0.133 2.518 0.012 ** 1.3967
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Table 4. Cont.

Estimate S.D. t-Stat p-Value Sig. CMF

Right-of-way [>80 m] 0.480 0.207 2.319 0.020 ** 1.6158
Median width [≤2 m] 0.119 1.509 0.079 0.937

Median width [2.1–4 m] 0.278 1.507 0.185 0.853
Median width [4.1–6 m] 0.412 1.490 0.276 0.782

Median width [>6 m] 0.564 1.495 0.377 0.706
Curve 1.617 0.120 13.502 <0.000 *** 5.0369
Slope 0.746 0.192 3.881 <0.000 *** 2.1089

Median opening 1.604 0.161 9.948 <0.000 *** 4.9738

Note: Sig. denotes significant level. *** p-value < 0.001, ** p-value < 0.05. CMF denotes crash modification factor
(odd ratio).

5. Discussion

For the random effect of the intercept, the estimated value was found to be 5.970 with
a standard deviation (S.D.) of 2.443 (p-value < 0.05), signifying a statistically significant
difference in truck-involved rear-end crashes (TIRC) occurrences in the control area of
the Department of Highways branches. This disparity is likely attributable to variations
in land use across different provinces. For instance, certain provinces may prioritize the
development of industrial estates or establish connections with ports, leading to a higher
volume of truck traffic and subsequently increasing the likelihood of TIRC incidents. On
the other hand, provinces focusing on tourism or agriculture can experience fewer TIRC
cases due to reduced truck activity in such regions. The following discussion is considered
from the context of highways in Thailand, which may have different characteristics from
other countries.

An assessment of the intercept parameter yielded a value of −1.363 (<0.000), indicating
that the TIRC for most road segments was 0, corresponding to a mean probability of 0.
Regarding the variables related to the number of lanes, the reference variable was set as
one lane per direction. The parameter prediction results revealed that there were only
six traffic lanes per direction, which could result in a higher likelihood of TIRC occurrences.
This is because roads with 2 and 4 lanes per direction showed no significant impact
on TIRC, possibly due to the minimal difference in the number of TIRCs. The reason
behind the higher TIRC likelihood for roads with six lanes per direction is that these roads
are designed to facilitate maximum vehicular movement, especially in Thailand, where
they are frequently constructed to accommodate large vehicles. As the number of cars
increases on such roads, the probability of collisions with the rear of trucks is elevated. This
observation aligns with the findings of Lao, et al. [19], who also reported that an increase in
the annual average daily traffic (AADT) or traffic volume leads to a higher frequency of
rear-end collisions.

For speed variables, the reference value used was <90 km/h, which roughly corre-
sponds to a range of approximately 60–80 km/h. The parameter evaluation revealed that
a speed of 90 km/h. was not statistically significant, while speeds exceeding 90 km/h.
showed a significant positive correlation with an increased likelihood of TIRC occurring
and a potential frequency surge of about 72.3%. This finding is highly plausible and
aligns with numerous previous studies, including those conducted by Peng, et al. [47],
Wang, et al. [48]. The rationale behind this outcome is rooted in the fact that rear-end
collisions tend to happen more frequently in areas characterized by high-speed roads,
such as highways connecting cities or expressways designed for swift travel. These roads
are particularly susceptible to higher rates of rear-end collisions due to the challenges of
braking in time for vehicles moving at such speeds.

Concrete road surfaces exhibit a lower susceptibility to Tire-Induced Roadway Crack-
ing (TIRC) compared to asphalt concrete road surfaces. This disparity can be attributed, in
all likelihood, to the higher frictional properties inherent in concrete road surfaces. This
phenomenon aligns with the findings of Iranitalab, et al. [29], who demonstrated that cargo
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tank truck crashes leading to rollovers and the release of hazardous materials are less
probable on concrete roads in comparison to asphalt concrete roads.

The lane width variable was assigned a value of less than 3.1 m as a reference in this
study. However, the results obtained from this value were deemed insignificant in the
model. This finding contrasts with prior research conducted by Saeed, et al. [41], Moomen,
et al. [49], which indicated that increasing the width of traffic lanes can lead to a reduction
in the frequency of collisions.

Despite this inconsistency, the reason behind the insignificant results could be ade-
quately explained, regardless of whether the traffic lane is wider or narrower. The key
factor appears to be the driving behavior of most trucks, as they predominantly operate on
highway roads with larger lane widths. Consequently, these roads encompass both high-
collision areas and regions with lower collision rates. This blend of road types dilutes the
impact of lane width on collision frequency, rendering it an insignificant factor in the model.
A similar investigation by Moomen, et al. [50] produced similar findings, where lane width
was not significantly associated with the frequency of truck crashes on downgraded roads.

In the context of the variable concerning the presence of a footpath, it was deemed to
be significant, leading to an approximately 43.9% higher incidence of TIRC. This finding
contrasts with a study conducted by Champahom, et al. [18], where they observed that the
presence of a footpath did not show significance in relation to the frequency of rear-end
collisions for all types of vehicles. However, the underlying cause of this discrepancy is
likely attributable to roads with footpaths situated in urban areas. In such areas, traffic tends
to maintain a relatively low headway, and trucks with inadequate front spacing exhibit
specific behavioral patterns. Consequently, the likelihood of rear-end collisions increases
considerably. This aligns with the conclusions of Lao, et al. [19], who similarly reported a
higher probability of rear-end collisions in urban areas, specifically on rural roads.

The lane width factor exhibits multiple values, with the reference value corresponding
to a shoulder width of ≤1 m, which is deemed excessively narrow. These findings indicate
that the critical variables are a shoulder width of 1.1–2 m and 2.1–3 m, which consequently
raise the likelihood of TIRC occurrence. Interestingly, these results contradict the study
conducted by Lao, et al. [19], which suggested that an increased road shoulder width is
inversely associated with rear-end crash risk. Nevertheless, plausible explanations can be
provided. A significant portion of roads with broad shoulders falls within the category of
intercity roads, which facilitates high-speed travel and often accommodates parked trucks
on the roadside. Consequently, these areas are more susceptible to TIRC incidents. This
assertion is supported by a study conducted by Champahom, et al. [18], which revealed
that collisions predominantly transpire on highways or roads that prioritize mobility. The
variables of shoulder width and right-of-way (ROW) share a high correlation, as depicted
in Figure 2, which also enhances the likelihood of TIRC occurring. The underlying reason
remains consistent for roads with numerous boundaries, frequently serving as conduits
between major cities, which tend to have a higher volume of traffic channels and are
commonly used at high speeds, thereby elevating the possibility of TIRC frequencies. This
correlation is further substantiated by the evidence presented in Figure 2.

In this model, the variable pertaining to the width of the central island was deemed
insignificant. Conversely, the number of traffic lanes, the ROW, and relatively high shoulder
width were identified as variables with positive implications for TIRC. However, despite
their positive impact, these variables were also found to be statistically insignificant in the
model. To elaborate, the width of the middle island does not directly influence parking
on the shoulder or the flow of traffic speed. Consequently, it does not exert a significant
effect on TIRC. This observation aligns with the findings of Champahom, et al. [18], who
similarly concluded that the width of the central island does not play a significant role in
the frequency of rear-end collisions.

The curved road area, in comparison to the reference variable representing the straight
road area, is characterized by a distinct feature. This distinctiveness is evident in its high
parameter value, which indicates a significant likelihood of encountering a TIRC. This
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finding is consistent with various previous studies, including the research conducted by
Wang, et al. [25], who elaborated on the reason behind this correlation, explaining that the
curved road area often serves as a location where trucks slow down or come to a halt before
entering the curve. Consequently, if the vehicle following behind fails to exercise caution or
is unable to brake promptly, there is an increased risk of a rear-end collision. Furthermore,
Ding, et al. [51] emphasized the importance of rear-end crashes on curved roads, with a
particular focus on factors such as visual perception and traffic flow uncertainty. Their
study further corroborated the association between curved road areas and heightened
crash probabilities. Notably, some curved road areas may be inadequately equipped
with warning signs, as they may not meet the standard requirements. For instance, the
positioning of warning signs before the curve might be inappropriate, or the clarity of
the signs themselves may be lacking. Such deficiencies could potentially contribute to an
increased risk of crashes in these areas.

For roads exhibiting slope characteristics, a noteworthy increase in the likelihood of
TIRCs was observed, aligning with the findings of Wen, et al. [2]. Their research emphasized
that steep slopes significantly elevate the risk of multi-vehicle collisions involving trucks.
This heightened risk can be attributed to the additional weight burden on trucks when
navigating such inclines, necessitating the extensive use of heavy brakes, especially during
descents, where repeated braking may result in rear-end collisions between trucks and other
vehicles ahead, as the latter attempt to maintain their speed. This scenario is particularly
relevant in the context of Thailand, where vital routes frequently witness heavy truck traffic.
These routes serve as crucial links between the eastern industrial zone and the densely
populated northern region, rendering them high-traffic areas for trucks and other vehicles.

The initial entry point to the central island is regarded as one of the slower sections or
frequently necessitates abrupt braking. As a consequence, there is a significantly elevated
likelihood of rear-end collisions, as evidenced by the CMF values indicating a substantially
higher probability of these occurrences compared to areas without a central island. This
phenomenon is corroborated by a study conducted by Champahom, et al. [37], which
identified the central island launch area as a hotspot for rear-end crashes. In such incidents,
it is common for the truck to collide with the vehicle in front.

6. Conclusions and Implementations

This study aimed to conduct an analysis of the factors pertaining to road characteristics
that significantly influence the frequency of rear-end collisions involving trucks. The dataset
utilized for this investigation comprises crash data recorded on highways during the period
from 2011 to 2018.

In terms of methodological contribution, after careful consideration of the Akaike
Information Criterion, we determined that the most efficient simulation method to employ
is the Spatial Zero-Inflated Negative Binomial Regression (SZINB). This method is partic-
ularly valuable due to its incorporation of spatial correlation, which is a crucial aspect of
our analysis. Overlooking this factor could result in biased parameter estimation, thereby
impacting the accuracy of our statistical analysis in crash frequency studies.

The findings of this study suggest that there are discernible disparities in truck-
involved rear-end crashes (TIRC) when occurring on highway roads. The estimation of
parameters within the SZINB model identified several key factors contributing to a higher
probability of TIRC frequencies. These factors include road curvature compared to straight
stretches, road areas that serve as the opening points of central islands, road segments with
wide middle grips and ample right-of-way, roads featuring six traffic lanes per direction
(compared to roads with just one lane per direction), roads equipped with footpaths, and
roads with a speed limit exceeding 90 km/h.

This study’s contribution lies in the form of policy or measure recommendations. These
recommendations are aimed at addressing the issue of TIRC reduction by considering the
visual design of the road. The suggestions presented in this study were developed based on
key findings, particularly focusing on the high value of the crash modification factor (CMF).
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To begin with, this study suggests implementing measures to enhance the awareness
of drivers as they approach proper curves. This can be achieved by inspecting and installing
signs in these areas. Furthermore, conducting a road safety audit on curves with a history
of frequent crashes is proposed as an initial step. Regarding the central island opening area,
this study recommends making drivers aware of the opening point in the middle of the
island. This can be achieved by considering the appropriate position to install warning
signs. To address TIRC on steep slopes, this study proposes requiring trucks to use lower
gears. This could reduce the need for excessive braking. Additionally, installing signs or
checkpoints before descending hills can remind drivers to use lower gears. The study also
identified areas where speed exceeds 90 km/h. Although trucks typically do not travel
at such high speeds, there is a risk of other vehicles colliding with the rear of the truck.
Therefore, this study suggests considering road sections with high-speed usage and a high
frequency of crashes. In such areas, the installation of traffic equipment, such as two dots
to indicate proper spacing or rear-end collision warning signs, is recommended to prevent
rear-end collisions.

In summary, this study recommends various measures to address TIRC reduction,
including enhancing driver awareness on curves, installing warning signs at critical points,
promoting the use of lower gears on steep slopes, and implementing traffic equipment in
areas with high-speed usage and crash rates. These policy and measure recommendations
aim to improve overall road safety and reduce traffic-related incidents and crashes.

In addition to its relevance in the context of Thailand, the findings of this study hold
promise for countries within the same region that share similarities in culture, economic
conditions, and road infrastructure challenges. Several nations in Southeast Asia, for
instance, exhibit comparable characteristics in terms of road systems and traffic dynamics.
These countries may draw valuable insights from this study’s recommendations to address
TIRCs and enhance overall road safety. Countries facing challenges in relation to road
curvature and the presence of central islands as access points could consider implementing
awareness campaigns and strategic signage placements similar to the suggestions put
forth in this study. Additionally, the promotion of lower gear usage on steep slopes
is a universally applicable safety measure that can benefit regions with hilly terrains.
Furthermore, nations grappling with high-speed usage on certain road sections and an
increased frequency of rear-end collisions can explore the installation of traffic equipment,
such as indicators for safe following distances or rear-end collision warning signs. These
measures align with the broader goal of minimizing TIRCs and improving road safety,
making them pertinent for countries in the region facing similar challenges. By sharing and
adapting the insights and recommendations gleaned from this study, neighboring countries
can collectively work toward reducing traffic-related incidents and enhancing road safety,
ultimately fostering safer and more efficient transportation networks across the region.

This investigation’s findings have unveiled regional variations in rear-end truck col-
lisions. However, it is essential to acknowledge the extensive geographical scope of this
study. Consequently, future research should prioritize specific locations, such as Bangkok,
Pathum Thani, and Chonburi, where urgent corrective measures are needed. To enhance the
precision of recommendations, supplementing this study with on-site surveys is advisable.
Additionally, in the academic context, opportunities exist to deepen our understanding by
investigating significant factors. For instance, further research could delve into the impact
of curves on the heightened occurrence of TIRC. Investigating these curves in the context of
Naturalistic Driving among truck drivers, considering various radii and contextual settings,
could provide valuable insights into driver responses.
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