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Abstract: With Level 3 and 4 automated driving activated, users will be allowed to engage in
a wide range of non-driving related activities (NDRAs). Although Level 2 automation can appear
very similar to L3 and L4, drivers are required to always monitor the system. However, past
research has found drivers neglect this obligation at least partly and instead engage in NDRAs.
Since this behavior can have negative impacts on traffic safety, the goal of this work was to develop
a human–machine interface (HMI) concept to motivate users to continue their supervision task. This
work’s concept used message framing in connection with affective elements. Every three minutes,
messages were displayed on the head-up display. To evaluate the affective message concept’s (AMC)
effectiveness, we conducted a between-subject driving simulator study (baseline vs. advanced HMI)
with 32 participants and 45 min of driving time with both L2 and L4 phases and a silent system
malfunction. Results show the road attention ratio decreases and the NDRA engagement ratio
increases over time only for baseline participants. Participants supported by the AMC did not show
a change over time in monitoring behavior and NDRA engagement. However, no effect on the
drivers’ reaction to the system failure became apparent. No effects on subjective workload and user
experience were found. Additional research is needed to further investigate the safety implications
and long-term effectiveness of the concept, as well as a driver-state-dependent design.

Keywords: Level 2 automated driving; monitoring behavior; system malfunction; HMI design

1. Introduction

With the ongoing development of automated driving functions, new human factor
issues arise. The possibility of legally engaging in many activities unrelated to the driving
task, so-called non-driving related activities (NDRAs), changes the use of travel time.
Level 3 automation, which takes over longitudinal and lateral control and does not need
supervision by the driver, is similar to L4, which is additionally capable of performing
minimal risk maneuvers [1]. Although a reliable Level 2 automation can appear very
similar to L3 and L4, drivers need to always supervise the system to be ready to take
over vehicle control immediately, e.g., in the event of a system malfunction or a request to
intervene (RtI). Thus, engaging in visually and manually distracting NDRAs will only be
allowed during L3 or higher. Previous research already found cases of misuse of reliable
but imperfect automation systems. The goal of this work was thus to develop a human–
machine interface (HMI) concept that motivates users to continue their supervision task
during L2 automated driving.

Research in aviation on human behavior in highly reliable automated systems found
time on task increases trust and worsens monitoring behavior [2]. For L2 driving systems,
which can already be found on the market (e.g., Tesla Autopilot, Cadillac Super Cruise),
a variety of driving simulator and on-road studies investigating drivers’ monitoring be-
havior and NDRA engagement have been conducted. Drivers were found to disengage
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from their monitoring task easily and rather engage in NDRAs [3–7]. These findings are
consistent with recent research on mode awareness (general knowledge of levels and cur-
rently engaged level [8]) in vehicles with both L2 and L3 automation: In studies by [9,10],
participants increased their NDRA engagement with exposure duration. In turn, visual
attention deteriorated during L2 driving with exposure duration and frequency. Low
visual attention to the road ahead during L2 automated driving can lead to an increased
crash probability since the likelihood of appropriate intervention in the event of a system
malfunction is significantly reduced [10–12]. No impact of drivers’ hand position (on vs. off
the steering wheel) was found on driver performance in critical scenarios [13,14]. Ref. [15]
predicts a high rate of unsafe outcomes in plausible automation failure scenarios, Ref. [16]
reports that more distractive NDRAs result in impaired take-over capabilities, and past
accidents with Tesla Autopilot [3] or the Uber car [17] are examples of these risks that have
the potential to counteract the expected positive effects of automation on traffic safety and
may thus negatively shape the image of this technology. Furthermore, the perception of
a lack of safety creates reluctance towards the use of automated driving functions and the
behavioral intention to use [18]. Ref. [10] assessed the reasons for drivers’ neglect of the
monitoring task and reported over-reliance, physical tiredness, and higher attractiveness of
NDRAs compared to the monitoring task. Lack of mode awareness, however, was not the
main cause of the violations.

Potential countermeasures can be found in [19]: a positive mood or emotion can help
the driver regain the capability of effective self-regulation. Additionally, self-exhaustion
or excessive mental workload might be counteracted when drivers have a positive affec-
tive state [19]. Thus, enhancing the users’ ability to self-regulate can potentially improve
their ability to refrain from seemingly more attractive NDRAs. Different approaches to
regulating drivers’ emotions have already been developed, e.g., ambient light, empathic
speech, relaxation techniques, and biofeedback aimed at angry or fatigued drivers [20].
Furthermore, a common approach used to implement emotion regulation is to deliver
information via facial expressions, e.g., by using smiley faces on road speed signs. In a nat-
uralistic driving study, this concept has proven to be effective in reducing average speeds
and decreasing the number of speed violations [21]. Facial expressions have also been used
in embodied robots for in-vehicle infotainment systems such as the NIO NOMI [22] and the
Affective Intelligent Driving Agent (AIDA) [23]. The latter was previously found to induce
more enjoyment during driving as its empathetic communication style resembles social
dialogue and can significantly increase user satisfaction [23]. Another often-used approach
to address information about driving safety is message framing. Studies have shown
that different strategies of message formulation influence behavior adoption rates and
their efficiency [24]. This concerns multiple dimensions of a message, including gain and
loss framing. The protection motivation theory (PMT), a social cognitive model with the
main components threat appraisal (negative results of maladaptive behavior) and coping
appraisal (positive aspects of the alternative behavior), can be used to explain and predict
behavior: one’s intention to engage in an activity is influenced by the cognitive response
to maladaptation (e.g., speeding) and alternative behaviors (e.g., driving at reasonable
speeds) [25]. The results of a study by [26] indicate that anti-speeding messages based on
PMT have a higher effectiveness than previously used messages in France. In general, [27]
found different anti-speeding messages presented on signs along a highway in France to
reduce speeds. This was more effective when drivers encountered gain-framed rather than
loss-framed messages. In line with this, greater persuasiveness of negative appeals was
found only immediately after exposure; positive appeals resulted in greater improvements
over time [24].

Based on the issues of L2 automation described above (i.e., increasing tendency to
engage in NDRAs, decreasing quality of monitoring behavior with exposure duration,
and insufficient reaction in system malfunction scenario), the goal of this study was to
dissuade users from engaging in NDRAs while driving in L2, thereby improving moni-
toring behavior, and subsequently ensuring a reliable response to system malfunctions.
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Therefore, an appropriate HMI concept with both affective elements and message framing
was developed. The following research questions were pursued:

• Does a time-based affective message concept improve drivers’ monitoring behavior
(and NDRA engagement rate) compared to a baseline without affective messages?

• Does an affective message concept improve drivers’ reaction to a silent system mal-
function compared to a baseline without affective messages?

Due to the study results described above, we expect our HMI concept to stabilize the
road attention ratio over different L2 driving phases at a high level. In line with this, we
anticipate participants to refrain from NDRA engagement during L2 phases and to have
a better reaction to a silent system failure. Furthermore, we expect the concept to achieve
a higher hedonic quality in the user experience rating due to positive emotional aspects.
The subjective workload is expected to stay constant, as messages were designed to be very
short and easily understandable, or even drop compared to a baseline due to the positive
emotion induced.

This study’s results prove the potential of the developed affective message concept to
stabilize monitoring behavior over time. However, no positive effect on drivers’ reactions
in the researched system malfunction scenario were observed. Future studies need to look
into the long-term effectiveness of the concept, further assess the impact on driver reaction
in different take-over and malfunction scenarios, and design and research the potential of
a driver-state-based approach.

2. Materials and Methods
2.1. HMI Design

The goal of this study was to assess the impact of an affective message concept (AMC)
on driver behavior during L2 automation. Thus, this concept was developed based on the
literature and an expert study and compared to a baseline concept in an experimental drive
with both L2 and L4. Drivers were not required to have their hands on the steering wheel
during L2. Thus, the automation levels only differed in the respective HMI.

2.1.1. Baseline Concept

The baseline concept consisted of an adaptive instrument cluster (IC) based on [28],
an ambient light display (ALD), and a head-up display (HUD). The IC contained the
current speed, maneuvers, traffic and speed limit signs, navigation information, and system
status (see Figure 1). Inactive system status icons appeared transparent. The current level
was highlighted using cyan for L4 and blue for L2 [10]. The colors were replicated not
only in the edges of the IC (see Figure 1), but also in the HUD, and by using the ALD.
The latter was implemented by installing an LED stripe on the dashboard with good
peripheral visibility [29].
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Figure 1. (a) IC with current speed (1), speed limit (2), navigation (3), maneuver (4), automation 
scale (5), L2-specific driver task (6), and level of automation color in the frame (7); (b) HUD with Figure 1. (a) IC with current speed (1), speed limit (2), navigation (3), maneuver (4), automation

scale (5), L2-specific driver task (6), and level of automation color in the frame (7); (b) HUD with
current speed (1), speed limit (2), predictive element for current (3) and upcoming segment (4), and
availability pop-up message for City Pilot (5).
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The availability of an automated driving function was indicated by a white ALD,
an auditory notification, and pop-up messages in the IC and HUD. Successful activation of
the automation by pressing a green button on the steering wheel was reflected in the IC
and ALD. To upgrade the system from L2 to L4 (if available), subjects had to press a black
button on the steering wheel. While this toggle logic might not be the most convenient
solution, it was supposed to enhance the participants’ mode awareness. Direct activation
of L4 from manual driving was also possible but no direct transitions from L4 to L2. The
latter was again considered helpful for mode awareness [10]. Engaged automation could
be disengaged by pressing the green button, steering, braking, or accelerating. In the event
of a recognized system limit during L2, the driver was prompted to take over manual
control by a single beep and a text message in the IC, supported by a red ALD. Furthermore,
predictive elements for both current and upcoming sections were implemented in the HUD
alongside speed, speed limits, and system status (in accordance with their appearance
in the IC; see Figure 1). When a predictable system limit was reached with L4 engaged,
a visual and auditory take-over cascade was initiated. The first RtI was issued 28 s prior
to the predicted system limit via an auditory signal, a text message, and an icon in the IC.
Additionally, the ALD turned orange and the driver was informed about the type of system
limit (e.g., construction site, bottleneck situation, etc.). Further RtIs were issued fourteen
and seven seconds before reaching the limit. The ALD and the frames in the IC turned
from orange to red after the second, more salient beep tone, and started to flash red seven
seconds before the limit. In the event of non-interventions by the driver at the system limit,
the system decelerated to a standstill.

2.1.2. Affective Message Concept (AMC)

To positively influence the drivers’ monitoring behavior, several messages were writ-
ten based on PMT and connected with suitable emoticons. Two ways of communicating
the affective messages were designed. Concept 1 used short pop-up messages along with
emoticons displayed in the IC and additionally communicated the messages via auditory
speech output. Concept 2 displayed the messages and emoticons in the HUD instead of the
IC and omitted the speech output. An expert interview was conducted to identify the most
suitable concept and evaluate the different messages and emoticons.

Four usability experts (three male, one female) with an average age of 27 years
(SD = 2.16) were interviewed online. Three experts preferred messages in the HUD, as
drivers do not need to divert their visual attention to perceive the messages. One expert
had concerns regarding the HUD being overloaded and thus favored speech output. Based
on the experts’ assessment, the final concept was designed to be displayed in the HUD.
Seven messages were chosen complemented by an emoticon (see Figure 2). The messages
appeared on the right side of the HUD and marked the only difference between the baseline
and AMC. The messages popped up for one minute every three minutes during L2 driving.
Their appearance was supported by a neutral notification sound.
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Messages and emoticons were designed to induce a positive mood and a coping
appraisal. The concept followed a simple time-based approach rather than a driver-state-
based one. With M1 appearing directly after the activation of L2, the cooperative aspect
of L2 automation was highlighted. M3 also emphasized the cooperativeness, but with
a negative spin. M2, M4, and M6 were worded according to perceived response efficacy and
emphasized the importance of safety in driving. While M2 puts focus on the driver, M4 and
M6 were formulated based on the aspect of the so-called third-person effect which suggests
that individuals tend to perceive a message as more relevant when formulated about others
rather than themselves [30]. In M5 and M7, the possibility of engaging in NDRAs after
the current L2 section was highlighted, conforming to the definition of perceived response
cost. Emoticons were selected based on sentence meanings. The order of appearance can
be found in Figure 3.
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Figure 3. Different segments of the experimental drive, including the order of affective messages and
levels of automation. Manual driving durations (grey) can be disregarded.

2.2. Method
2.2.1. Experimental Design

A 2 × 3 mixed factorial design was used with participants randomly assigned to
the between-subject factor HMI (Baseline vs. AMC). Both HMI concepts included the
same IC and ALD design. The only difference was the absence of the affective message
assistant in the HUD of the baseline group. The driving phase was specified as the within-
subject factor. Three 10-min phases of L2 driving were defined and used for the gaze data
analysis (see Figure 3). To ensure ecological validity, participants were allowed to use their
own items such as smartphones or a provided tablet with preinstalled games and videos.
Furthermore, we expected the possibility of engaging in NDRAs during the 10-min L4
segment to counteract fatigue [31].

2.2.2. Dependent Variables

Both subjective and objective data were gathered (see Table 1) to answer the research
questions. Gaze data were recorded using Dikablis glasses (head-mounted eye-tracking
system). To answer the question on driver monitoring behavior, attention ratios were
calculated for the area of interest (AOI) road ahead, defined as the central screen (see
Table 1). The attention ratio is the total duration of all gazes in a defined AOI divided
by the duration of the selected time interval. The AOI road ahead is known as the most
robust measure and was also used for the 100-car study [11]. It was decided not to include
gazes towards the IC in the road attention ratio as the authors of [11] suggest that checking
mirrors or other driving-related instruments only enhanced safety as long as the driver’s
glance returns to the road within two seconds. The criterion for valid eye-tracking data
was an availability of more than 70% [32].

The number of participants engaging in NDRAs (smartphone/tablet) per driving
interval was counted using GoPro videos of the experimental drive. In the second step,
the participants’ attentiveness during and prior to 11 critical driving scenarios (i.e., road
intersections) was classified based on a scheme by [33] (see Table 2). This was done because
an intersection imposes additional demands on the cognitive abilities of drivers, and drivers
had to assess numerous traffic participants and moving objects properly.
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Table 1. Dependent variables and description.

Dependent Variable Description

Driving Data
Take-Over Time [s] Time between start of malfunction and deactivation of ADS

Crash Rate [-] Proportion of crashes during the malfunction
Eye-Tracking/Video Data

Attention Ratio Road Ahead [%] Central TV screen, including HUD but without IC
Attentiveness [1–5] Coding scheme (see Table 2)

NDRA Engagement Ratio [%] Share of participants with NDRA
Subjective Data

Workload [-] NASA raw TLX questionnaire
User Experience [-] AttrakDiff questionnaire
Mode Awareness [-] Retrospective interview

Scenario Characteristics [-] Four single items on a 5-point Likert scale

Table 2. Coding scheme for participants’ attentiveness during critical driving and malfunction scenarios.

Code Title 3

1 Not distracted, driver does not perform an NDRA
2 Alternating NDRA and system monitoring
3 Short glances ahead, continuation of NDRA
4 No reaction, continuation of NDRA
5 Interruption of NDRA until situation is completed

Driving data from SILAB were used to quantify take-over times in the malfunction
scenario (see [34] for a similar approach). The NASA raw TLX (rTLX) questionnaire with
its six items each rated from 0 to 20 was administered to assess subjective workload (total
score ranging from 0 to 100) [35]. The AttrakDiff questionnaire with its 28 bipolar items on
7-point Likert scales resulting in four dimensions was used to assess user experience [36].
Further questions were asked to evaluate system understanding (retrospective interview
for mode awareness based on [10]) and the AMC. Participants were also asked to rate the
malfunction scenario regarding the time budget (1 = not sufficient at all to 5 = completely
sufficient), criticality (1 = very critical to 5 = very uncritical), complexity (1 = very complex
to 5 = very simple), and predictability (1 = very unpredictable to 5 = very predictable). This
was based on the factors classifying take-over scenarios [37]. The study was conducted
in English.

2.2.3. Apparatus

The experiment was conducted in a dynamic seat box located at the Chair of Er-
gonomics at the Technical University of Munich (see Figure 4). A motion platform from D-
Box was implemented to induce pitch and roll motions. The mock-up was further equipped
with pedals and a steering wheel from SensoDrive. Three 55” ultra-HD (4096 × 2160 px)
monitors created a 120◦ field of view. Furthermore, the mock-up featured two small dis-
plays for the side mirrors and a 13” monitor behind the wheel to display the instrument
cluster. A sound system emitted engine and environmental sounds. The driving simulator
software SILAB 6.0 from the Würzburg Institute of Traffic Sciences was used to create a re-
alistic urban driving environment. Furthermore, an ALD was installed using an LED stripe
with 144 RGB LEDs per meter (Adafruit NeoPixel). It was positioned on the dashboard and
connected to the driving simulator software using an Arduino Uno Rev3 microcontroller.
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the IC, and tablet.

In both L2 and L4, the implemented driving automation carried out longitudinal and
lateral control, was able to turn left or right at intersections, and was able to detect traffic
signals and signs. The system drove according to speed limits and respected the traffic
rules. No overtaking maneuvers were executed.

2.2.4. Experimental Track

A likely future scenario involves the availability of multiple levels of automation
(LoAs) on a given route [38], and thus the experimental drive included manual driving
as well as L2 and L4 automation (see Figure 3). Participants experienced infrastructure
elements of different urban areas like neighborhoods with small lanes and main roads
with four lanes. L2 automation became available shortly after the start. After 20 min of
driving, it could be upgraded to L4. Ten minutes of L4 were followed by a predictable RtI
due to a construction site and a short manual driving segment. Then, during the last ten
minutes of the experimental drive, L2 was available again. This was ended by a system
malfunction the participants were not prepared for. The predictive HMI bar indicated
a longer remaining time budget.

The system malfunction situation resembled the situation in [10] and was adapted to
a city scenario (see Figure 5): While driving at a speed of 50 km/h on a road with one lane
per direction, the ego vehicle started to deviate from the correct trajectory on a long bend.
The deviation was justified by a structural tar line on the road the system was following
instead of regular lane markings. About four seconds after the deviation began, the vehicle
hit a curb, causing the seat box’ moving system to react. Three seconds later, resulting
in a total time budget of about seven seconds, the vehicle crashed a parked car. If no
intervention took place until then, the vehicle crashed into a house approximately one
second later. About one second prior to the crash with the parked car, the automation
disengaged, causing the ALD to change to white. According to [37], the situation can
be characterized as having high urgency, low predictability, high criticality, and a high
complexity of driver response.
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2.2.5. Procedure and Instructions

After having read the safety instructions and having signed the consent form, partic-
ipants filled out a demographic questionnaire. Then, they were given basic information
on the study procedure. Next, sitting in the driving simulator, they received instructions
including information on L2 and L4 automation, the HMI concept, the need to supervise
during L2, and the possibility of engaging in NDRAs during L4. Both groups received
the same instructions. The AMC was not explained. For better mode awareness, the
L2 function was named City Assistant, while the L4 automation was named City Pilot.
Participants were informed in the written instructions that system malfunctions could
occur at any time when City Assistant was active. City Assistant and City Pilot should
be used as much as possible. During the subsequent familiarization drive, participants
experienced manual driving, L2 and L4 automation, and the respective activation and deac-
tivation processes. Furthermore, predictable system limits in both LoAs were experienced.
However, a system malfunction scenario was not included in the familiarization drive to
mitigate learning effects. Prior to the experimental drive, the Dikablis eye-tracking system
was calibrated. Participants were again instructed regarding the differences between the
LoAs, thus verbally repeating written guidance. After the drive, participants were asked to
complete a post-drive questionnaire followed by a semi-structured interview on the system
malfunction scenario, reasons to engage in NDRAs (if observed), and comments on the
concept in general.

2.2.6. Statistical Analysis

Statistical analysis was performed using IBM SPSS 24. To test the hypothesis on
monitoring behavior, an analysis of variance (ANOVA) was conducted. As the ANOVA
was found to be sufficiently robust to withstand any violation of normal distribution, it
was calculated even in the event of normality violation [39]. Levene’s test was used to
assess variance homogeneity. The results were interpreted despite the violation of error
variances, as the ANOVA was found reasonably robust to violations of this assumption
if the size of the groups is similar [40] (p. 249). Furthermore, t-tests for independent
samples or relevant non-parametric tests were calculated to test further hypotheses. Likert
scales that are used for calculating total scores were considered suitable for parametric
testing, whereas single-item responses were considered to be ordinal and thus required
non-parametric testing [41]. In the case of multiple comparisons for subjective ratings, the
alpha level was adjusted using the Bonferroni–Holm method [42]. The alpha level initially
tested was α = 0.05. Effect sizes were interpreted based on Cohen’s benchmark [43].
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2.2.7. Sample

A total of 34 participants took part in the study. They were recruited via postings at the
Technical University of Munich and were required to possess a valid driver’s license. Due
to technical problems with the simulator, two of them had to be excluded. The remaining
sample thus contained 32 valid data sets, 16 per HMI condition. Eighty-one percent of
the participants were students of various majors, the remaining six subjects had jobs in
different fields. The baseline group’s participants (8 male, 8 female) had an average age
of M = 26.44 years (SD = 2.61), and the mean age of the AMC group (6 male, 10 female)
was M = 25.94 (SD = 1.57). Furthermore, 13 participants (81.25%) of the AMC and 12
(75%) of the baseline group had taken part in driving simulator studies before. Reported
median knowledge of automated driving was Mdn = 3.5 for the baseline and Mdn = 4
for the advanced group, rated on a 5-point Likert scale from 1 = very low to 5 = very high.
Average driver’s license possession was M = 6.63 years (SD = 3.34). Eighteen participants
answered that they drove less than 5000 km/year, ten between 5000 and 9999 km/year,
three between 10,000 and 19,999 km/year, and one more than 20,000 km/year. Two reported
using a car daily, nine several times per week, eleven several times per month, eight less
than once per month, and two even less. Furthermore, driving-related-risk taking was
assessed using an unpublished questionnaire for driving-related risk-taking previously
also used in [10]. Both groups reported similar risk-taking values (BL: M = 29.63, SD = 2.73;
AMC: M = 30.69, SD = 2.36). In both groups, 13 subjects reported that they liked emoticons
and often use them, while three per group answered that they liked emoticons but only use
them occasionally. No participants reported disliking emoticons.

3. Results
3.1. Monitoring Behavior

The eye-tracking data of one subject (AMC group) were excluded due to a malfunction
of the eye-tracking system. All remaining 31 data sets showed a high availability (>70%)
with an overall mean data availability of 89.28%.

While in both groups the attention ratio for the road ahead was high during the first
ten minutes of L2 (BL: M = 83.61, SD = 13.82; AMC: M = 85.74, SD = 8.98), mean values
clearly decreased during L2_2 for baseline participants (M = 67.05, SD = 26.02), but not for
the AMC group (M = 83.96, SD = 12.05). Participants of both groups restricted their road
monitoring during the L4 phase (BL: M = 24.52, SD = 25.16; AMC: M = 28.27, SD = 19.82).
While the AMC group’s attention ratio went back to high rates (M = 85.72, SD = 6.85), it
dropped further for the AMC group (M = 62.14, SD = 32.34; see Figure 6).
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To assess the effects of both Level 2 driving duration and the HMI concept on partici-
pants’ monitoring behavior (road ahead AR), a 3 × 2 ANOVA was calculated. The analysis
did not include the L4 phase. Normality assumption was violated in all except the L2_3
AMC group, as assessed by the Shapiro–Wilk test. Levene’s test shows heterogenous error
variances for L2_2 and L2_3.

The calculated ANOVA reveals a statistically significant interaction between time and
the HMI group (F(2, 58) = 5.153, p = 0.009, partial η2 = 0.151). Therefore, the simple main
effects for the between-subject factor were calculated, showing that, starting from L2_2,
attention ratios differed significantly. Analyzing the simple main effect of the within-subject
factor L2 exposure duration shows a statistically significant and large effect of time on AR
values for the baseline group (F(2, 30) = 6.282, p = 0.005, partial η2 = 0.295) and no such
effect for the AMC group (Greenhouse-Geisser F(1.119, 15.671) = 0.531, p = 0.497).

Overall, more males in both groups violated the monitoring obligation (BL: 6 male,
4 female; AMC: 2 male, 0 female).

3.2. NDRA Engagement

In the L2_1 phase, two participants per group engaged in NDRAs. This increased
to seven baseline participants in L2_2 and decreased to only one advanced group subject.
During Level 4 driving, all participants engaged in NDRAs. While this number went down
to zero during the L2_3 phase in the advanced group, half of the baseline group’s subjects
(8) chose to seek NDRA engagement (see Figure 7).
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According to the subjects, the main reason for doing so was over-reliance, followed by
boredom, and fatigue (see Table 3). One baseline participant explained that he identified no
differences between L2 and L4 in the automation’s driving behavior and thus decided to
engage in NDRAs; he was consequently rated as mode confused. One participant from the
advanced group reported curiosity as the reason for the NDRA engagement: he wanted to
see what would happen.

Table 3. Reasons for drivers’ engagement in the given visual-manual NDRAs when driving with L2
automation engaged divided by HMI condition.

Reason Advanced Baseline Total

Over-reliance 1 8 9
Boredom - 3 3
Fatigue - 2 2

Mode Confusion - 1 1
Curiosity 1 - 1

3.3. System Malfunction Scenario

The coding of participants’ attentiveness in the malfunction scenario revealed a sim-
ilar pattern as in intersections: In the AMC group, no participant engaged in NDRAs,
while two in the baseline group were rated alternating NDRA and looking ahead and
three participants showed no reaction and continued their NDRA.

In total, 14 participants per group did not manage to avoid crashing into the parked
cars. Thus, only 12.5% of the participants managed to regain control safely (i.e., without
crashing). One participant only reacted after he was told to take over by the experi-
menter (after having hit the row of houses) and was thus excluded from the analysis
of take-over time. Average take-over times show similar values for both groups with
slightly shorter values for the AMC group (see Figure 9). Both groups were normally
distributed as assessed by the Shapiro Wilk test; the Levene test shows homogeneity of
error variances (p = 0.687). Mean take-over times appear similar (BL: M = 7.01 s, SD = 0.63 s;
AMC: M = 6.88 s, SD = 0.54 s). Consequently, the calculated t-test for independent samples
shows no significant differences (t(29) = 0.647, p = 0.523).
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3.4. Subjective Data

Descriptively, the AMC scores better in all categories of the AttrakDiff (see Table 4),
especially in both hedonic quality aspects (identity and attractiveness). Shapiro–Wilk tests
show significant results in HQ-I for the baseline group (W = 0.792, p = 0.002) and ATT
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for the advanced group (W = 0.870, p = 0.027). Thus, Mann–Whitney U Tests were used
alternatively as non-parametric methods for HQ-I and ATT. For PQ and HQ-S, independent
sample t-tests were calculated. Results show no significant differences for all measures.

Table 4. Mean (and SD) values and statistics comparing subcategories of the AttrakDiff questionnaire.

Measure Baseline
M (SD)

AMC
M (SD) Statistics p-Value αHolm

PQ: Pragmatic Quality 1.21 (0.75) 1.43 (0.68) t(30) = 0.842 p = 0.407 αHolm = 0.050
HQ-I: Hedonic Quality—identity 0.86 (0.68) 1.26 (0.54) Z = −2.282 p = 0.022 αHolm = 0.013

HQ-S: Hedonic Quality—stimulation 0.33 (0.80) 0.85 (0.57) t(30) = 2.108 p = 0.044 αHolm = 0.017
ATT: Attractiveness 1.36 (0.72) 1.73 (0.55) Z = −1.967 p = 0.049 αHolm = 0.025

The subjective workload, measured using the NASA rTLX questionnaire, shows
a slightly higher workload for the advanced group (M = 42.03, SD = 13.59) than for the
baseline (M = 39.53, SD = 14.26). The conducted Shapiro–Wilk test was not significant, thus
both groups were normally distributed. There was no significant difference between the
workload scores of the two groups (t(30) = 0.508, p = 0.615).

On four 5-point Likert scales, participants rated the time budget in the system malfunc-
tion scenario as rather insufficient (1 = not sufficient at all, 5 = fully sufficient), and as medium
complex (1 = very complex, 5 = very easy). In line with the driving data, it was assessed
as critical (1 = very critical, 5 = not critical at all), and unpredictable (1 = very unpredictable,
5 = predictable). No differences between the HMI conditions became apparent (see Table 5).

Table 5. Median values and statistics comparing subjects’ ratings of the malfunction scenario.

Measure Baseline
Median

AMC
Median Statistics p-Value αHolm

Time Budget 2.0 1.5 Z = −0.529 p = 0.597 αHolm = 0.013
Criticality 2.0 2.0 Z = −0.377 p = 0.706 αHolm = 0.025

Complexity 3.5 3.0 Z = −0.332 p = 0.740 αHolm = 0.050
Predictability 1.0 1.5 Z = −0.420 p = 0.674 αHolm = 0.017

Participants’ mode awareness was assessed with two different measures. First, com-
pleting the sentence “The automation level which I was driving at was . . . ” on a 5-point Likert
Scale from 1 = totally clear to 5 = not clear at all). In total, 93.75% rated “totally clear” or “clear”.
Second, there were three control questions:

• I have to monitor the system continuously while driving with City Assistant. (correct
answers: 30)

• When City Assistant is activated, the system is responsible for ensuring driving safety.
(correct answers: 28)

• I may perform non-driving related activities while driving with City Assistant. (correct
answers: 30)

In total, 90.63% answered all control questions correctly. Two participants answered
all control questions wrong, which may suggest a confused scale interpretation.

Furthermore, participants of the advanced group (n = 16) were asked to rate the
effectiveness of the message concept (see Table 6). Therefore, six statements were pre-
sented and rated on a 5-point Likert scale from 1 = strongly disagree to 5 = strongly agree.
Participants rated the messages as helpful for concentration on the system monitoring task
and to disengage from NDRAs (only two participants engaged). Moreover, boredom can
be lowered. Most participants did not feel distracted by the messages. On a scale from
−2 = very low/short to +2 = very high/long, the frequency of the messages was rated well
(Mdn = 0), as was the length (Mdn = 0) and the duration for which the messages were
displayed (Mdn = 0). The message sound was rated with a median of 3.5 on a scale from
1 = very unpleasant to 5 = very pleasant. Moreover, participants were asked to choose the
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most effective message. Four participants (24%) preferred the NDRA-related messages
(M4/M7), three subjects preferred the cooperation aspect (M3), and another three chose the
straightforward message M1. The remaining participants highlighted messages containing
safety (M2, M4, M6) or motivational aspects (M7). Three baseline participants proposed
reminders for them to monitor the system in the semi-structured interview. Additionally, in
the interview, the message “You’d better not let me driver alone now” was found confusing
by four participants, as they perceived the system already drove alone and did not connect
the monitoring to being part of the driving task.

Table 6. Median and mean values of the AMC evaluation.

Statement Median Mean (SD)

I have adapted my system monitoring behavior when driving with the City Assistant
because of the pop-up messages with emoticons. 4 3.75 (0.93)

I think the messages are effective to help me to concentrate on system monitoring when
driving with City Assistant. 4 3.69 (1.30)

I think the messages are helpful for me to disengage from non-driving-related tasks
when driving with City Assistant. 4 3.69 (1.08)

I felt less bored when I saw the pop-up messages when driving with City Assistant. 4 3.31 (1.30)
I felt less bored when I saw the emoticons when driving with City Assistant. 4 3.44 (1.03)
I was distracted because of the messages when driving with City Assistant. 2 2.56 (1.03)

All subjects rated the time budget elements from 1 = not helpful at all to 5 = very helpful.
Both current and upcoming predictive elements were rated as helpful (Mdn = 4) across the
groups. Eighty-one percent rated the current section as “helpful” or “very helpful” while
63% said so for the upcoming section.

4. Discussion and Conclusions

The longer users drive with reliable L2 automation, the more they tend to neglect
their obligation to monitor the system [7,10,14]. Thus, this work investigated a concept
to encourage drivers to continue the supervision task during L2 automated driving. Con-
sequently, improved performance in a system malfunction scenario was expected. The
concept was based on short framing messages in combination with suitable emoticons as
part of the HUD. Unlike error-prone driver-state-based approaches, it represents an easy-
to-implement time-based concept. The concept was then evaluated in a driving simulator
study with 34 participants and two L2 (30 min total) and one L4 driving (10 min) segments.

We found the developed concept to have a significantly positive effect on the subjects’
monitoring behavior. When supported by the AMC, the attention ratio for the road ahead
remained stable during all L2 automated driving phases and did not deteriorate as it did in
the baseline group. This negative effect of exposure duration on the baseline participants’
monitoring behavior confirms previous results of reliable L2 systems with no attention
or hands-on warning [6,7,10,14]. In this study, it can be explained by the engagement in
NDRAs: during all L2 phases, only three engagements were counted in the AMC concept,
but 17 were counted in the baseline group. Moreover, baseline participants even engaged
during critical parts of the drive (i.e., intersections). In line with previous research [10],
participants mostly explained their engagement with over-reliance, boredom, and fatigue.
Mode confusion, however, was only a minor source of the rule breaches observed. Some
participants originated their engagement in L2_2 with the flawless first ten minutes and
the upcoming upgrade to L4 from which they derived a low risk of failure. Overall, more
males in both groups violated the monitoring obligation, although no difference in the
risk-taking rating was found. This gender effect was also identified by [24,26].

Despite the positive impact on the subjects’ monitoring behavior, no significant effects
of the AMC were found for the malfunction scenario in terms of crash rate and take-over
time. Although AMC group participants were rated less distracted prior to the malfunction,
only 12.5% of both HMI conditions managed to avoid a crash. A similar crash rate can
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be found in a comparable urban lateral malfunction scenario (83.3%) [34] and with 81.8%
crashers in a lateral construction site scenario in [44] (p 238). Additionally, in [10], high rates
of unsafe actions in a highway malfunction scenario were observed. These high crash rates
in driving simulator studies are contrasted with lower (but still high) rates of 20% to 33% in
a test track study by [14]. The reasons for the high crash rate in the present study could be
the low predictability of the malfunction scenario; short response times were indicated by
participants. Furthermore, over-reliance was mentioned by participants and was already
highlighted as a possible reason in [14]). Other explanation approaches are the general
automation behavior which some participants blamed for making it difficult to recognize
the malfunction, change blindness (operators miss salient events, due to blinks, saccades,
or other interruptions in vision), and mind wandering (classified attentive but failed to
cognitively assess the situation—indicated by two participants in the post-drive interview).

In line with the presented study, [14] found driver-state-dependent attention and
hands-on reminders in the instrument cluster effectively helped keep drivers’ eyes on
the road and hands on the wheel when driving with a highly reliable but supervised
automation. However, 28% of the participants crashed with their eyes on the conflict
objects. All crashers reported high trust in the vehicle. Thus, a possible countermeasure
might be an appropriate trust calibration, e.g., via instructions or specific messages, or
—if feasible—an online trust assessment with direct countermeasures. Another potential
countermeasure to high crash rates could be an AR HUD featuring a boomerang chain
to visualize the planned trajectory. In a driving simulator study, the authors of [34] were
able to show a reduced crash rate (37.5% vs. 83.8%) when participants were supported by
the concept. Thus, future studies should include trajectory information in the AR HUD,
feature several system malfunction scenarios (over a long course to simulate highly reliable
L2 and to further investigate the first-failure effect), and customize the AMC according
to the current driver state. Additionally, a combination with speech output could be
a feasible approach.

Overall, the AMC was well-rated by the subjects. According to their comments, it
not only served as a regular reminder to stay alert but also facilitated empathy through
its personal speech and facial expressions. NDRA-related messages were preferred by
the participants, as they curbed their tendency to violate the safety instructions. In some
cases, however, they had the opposite effect: the message initiated the wish to engage. For
future studies, shorter sentence length might further improve the effect [26]. An improved
message design also based on other social cognitive models may help by targeting different
groups of users (based on personality and personal preferences). Further improvement,
especially with regard to the long-term effectiveness of the messages, might be generated
using nudging (see [45] for an overview). Furthermore, a learning system in combination
with an eye-tracking-based driver monitoring system has the potential to assess the effec-
tiveness of messages and adjust them accordingly. Moreover, no significant increase in
workload was observed (despite the cognitive effort to process the messages). This can
probably be explained by the positive emotional impact (as highlighted in the post-drive
interview) and relieved fatigue. Regarding user experience, we expected the concept to
improve the hedonic quality due to the positive emotion induced. However, no significant
impact was found, although a non-significant tendency towards improved hedonic quality
could be observed.

For the interpretation of this study, one must keep the relatively small and young
sample with a high technology affinity and expertise in automated driving in mind as
a limitation. Thus, future studies should investigate the issue of driver monitoring during
L2 automated driving with a larger and more representative sample to generate more
generalizable insights. Furthermore, the use of a driving simulator with no risks associated
might have impaired the generalizability of the results. However, a study by [12] showed
high NDRA engagement rates even in on-road settings. Another limitation might be the
single malfunction scenario. However, [14] did not find a “first failure” effect: Two critical
events with 15 min of reliable L2 automation in-between yielded comparable crash rates.
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For future studies, the emotional impact of the concept could be assessed better by using
affective self-report tools [46] or physiological measurement methods (galvanic skin re-
sponse, EEF, etc.). As visual attention alone was shown to be insufficient for safe reactions
to system malfunctions, a mind wandering questionnaire could allow further insights into
the reasons for crashes [47]. In general, future studies need to investigate the long-term
effectiveness of the concept, which was also highlighted by two participants of the present
study, for example by driving for a longer amount of time or by implementing repeated
drives over the course of several days or weeks. Thereby, the long-term impact of the
concept on monitoring behavior, trust, and perceived safety can be examined, potentially
with participants with different L2 experience and intention to use.

While the impact of the developed AMC was positive for monitoring behavior, no
positive effect was found for the reaction to a silent system malfunction, thus—and in
line with previous studies—highlighting the importance of avoiding critical malfunction
scenarios by design.
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