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Abstract: Intersection safety and drivers’ behavior are strongly interrelated, especially when the
latter are located in dilemma zone. This paper explores, among others, the main factors affecting
driver behavior, such as distance to stop line, approaching speed and acceleration/deceleration,
and two additional factors, namely, driver’s aggressiveness and driver’s relative position at the onset
of the yellow signal. Field data were collected using unmanned aerial vehicle (UAV) technology.
Two binary choice models were developed, the first relying on observed data and the latter enriched
by the latent factor drivers’ aggressiveness and the vehicles’ relative position. Drivers were classified
to aggressive and non-aggressive ones using a latent class model that combined approaching speed
and acceleration/deceleration data. Drivers were further grouped according to their expected
reaction/decision to stop or cross the intersection in relation to their relative position. Both models
equally explain drivers’ decisions adequately, but the second one offers additional explanatory
power attributed to aggressiveness. Being able to identify the level of aggressiveness among the
drivers enables the calculation of the probability that drivers will cross the intersection even if caught
in a dilemma zone or in a zone in which the obvious decision is to stop. Such findings can be
valuable when designing a signalized intersection and the traffic time settings, as well as the posted
speed limit.

Keywords: UAV video-observed vehicle trajectory data; driver behavior; signalized intersection;
dilemma zone; choice model; latent class model; acceleration/deceleration; drivers’ aggressiveness

1. Introduction

Given the variety of participants’ behaviors and interactions, road intersections are
broadly believed to be the highest risk areas of road networks [1]. Worldwide accident
statistics across the regions indicate that the majority of all traffic accidents occur at in-
tersections, some of which are signalized. According to accident data available for the
metropolitan area of Thessaloniki, Greece, for the time period 2013–2016, about 44% of all
road accidents occurred at intersections.

Among the most critical factors affecting the safety level of signalized intersections
are the phasing and timing of the traffic signal and certainly human behavior [2,3]. More
specifically, the yellow interval plays a key role in the operation and safety of signalized
intersections, since road traffic accidents in the yellow interval represent most accidents
occurring at signalized intersections [4]. At the same time, human behavior is the primary
cause of road traffic accidents. Consequently, research on driver behavior in the yellow
interval at signalized intersections may lead to useful insights for the desired safety level
improvement of such entities.
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When vehicles approach signalized intersections in the initiation of the yellow light,
drivers often have difficulty with their stop or go decision-making, which can lead to rear-
end collisions or right-angle crashes. Drivers’ decision to either proceed or stop when facing
a yellow signal is affected by a number of factors, including distance to stop line, vehicle
speed and acceleration/deceleration at the onset of the yellow signal, vehicle performance,
road condition, drivers’ perception/reaction time, etc. [2,4]. The “dilemma zone,” also
referred to as the “yellow phase dilemma zone,” is a critical area on a signalized intersection
approach, where drivers can neither comfortably stop at the stop line nor proceed through
the intersection during the yellow interval [5–7]. The presence of a dilemma zone, which is
strongly affected by drivers’ behavior in the yellow interval, has a great effect on the safety
level of a signalized intersection.

Driver behavior at signalized intersections in Greece has not been sufficiently re-
searched yet. Taking into account that Greece continues to be among the worst performing
countries in the EU with respect to road safety [8,9], studying driver behavior at signalized
intersections could provide knowledge for targeted interventions in favor of road safety.
It is pertinent to note that, the poor road safety performance in Greece is largely attributed
to the aggressiveness of Greek drivers [2,9].

This paper deals with drivers’ choices to either stop or proceed through a signalized
intersection when exposed to the yellow signal. The current research goes beyond the tradi-
tional data collection methods (observers, speed radars, scale drown on the road pavement,
conventional videotaping), utilizing the emerging advancements of UAV (Unmanned
Aerial Vehicles) technology, as well as the availability of video analysis and modeling soft-
ware packages. In this context, the data required for the examination of drivers’ behavior
were collected by videos captured from UAVs, which were then processed using a video
analysis and modeling tool. This way, high accuracy time-based vehicle trajectory data
were obtained and used for research purposes.

The main objective of the current research study is two-fold: Firstly, to model drivers’
stop/go behavior in the yellow interval at a signalized intersection, as a function of
the various observable factors (distance to stop line, approaching speed and accelera-
tion/deceleration at the onset of the yellow signal). In this respect, a binary choice model
was developed, relating the probability of stopping or crossing as a function of the afore-
mentioned factors. Emphasis was placed on the acceleration/deceleration factor. Secondly,
to investigate the potential effect of drivers’ level of aggressiveness and relative position
at the onset of the yellow signal on their stop/go behavior during the yellow phase. This
way, potential differences in the probabilities of stopping or crossing the intersection could
be identified, depending not only on the above-mentioned observable factors, but also
on drivers’ aggressiveness and relative position. To this end, a latent class model was
employed, which classified drivers into two groups (aggressive and non-aggressive), while
a new variable—relative position—was calculated, indicating either drivers’ expected
reaction/decision to stop or cross the intersection, or the existence of a dilemma or op-
tion zone. Finally, a new binary choice model was developed, which, in addition to the
above-mentioned observable factors, also incorporated drivers’ aggressiveness and relative
position as explanatory variables affecting their stop/go decision-making.

The rest of this paper is structured as follows: in Section 2, a brief description of the
concept of dilemma zone is provided. In Section 3, a literature review is conducted, mainly
focusing on studies that have dealt with acceleration/deceleration factor and drivers’
aggressiveness within the broader context of dilemma zone. Section 4 presents the research
methodology, in relation to the data collection and preparation process, as well as the
models’ development. Section 5 provides the results of the developed models, along
with general sample statistics. Finally, Section 6 discusses those results and provide some
conclusions in relation to the study.
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2. Defining Dilemma Zone

Type I dilemma zone, the definition of which relies on the physical parameters of the
situation (dilemma zone contributing factors form measurable physical characteristics),
is inextricably linked to two distance-related factors: the minimum safe stopping distance
(Xc) and the maximum yellow passing distance (X0). For the calculation of Xc and X0,
the following equations are used, while constant parameter values are usually applied for
perception/reaction times and acceleration/deceleration rates [2,5,10].

Xc = V0δstop +
V2

0
2 ∗ astop

, (1)

X0 = V0τ− (W + L) +
1
2

apass ∗
(
τ− δpass

)2 (2)

where,

V0 is the vehicle’s approaching speed
δstop is the perception/reaction time for safe stopping
αstop is the maximum deceleration rate for safe stopping
δpass is the perception/reaction time for safe passing
αpass is the maximum acceleration rate for passing
τ is the yellow time interval
W is the width of the crossing road
L is the typical vehicle length

When Xc > X0, the distance between Xc and X0 is defined as the type I dilemma zone.
When Xc < X0, the distance between Xc and X0 is defined as the option zone. While a driver
caught in the dilemma zone can neither comfortably stop before the stop line nor clear the
intersection successfully, the option zone is an area where either stopping or crossing can
be performed successfully [2,7].

The definition of the type II dilemma zone follows a purely probabilistic perspective:
since the contributing factors of the type I dilemma zone (see Equations (1) and (2)) are
difficult to be quantified and are usually assigned constant values (which can lead to
inaccurate calculation of dilemma zone boundaries), the boundaries of the type II dilemma
zone can be exclusively determined by drivers’ stopping probability [11]. More precisely,
type II dilemma zone is an area on a signalized intersection approach, where more than
10% and less than 90% of drivers would choose to stop, in response to the yellow light
indication [12–15]. In this context, distance or time to stop line are used as measures for
the determination of type II dilemma zone boundaries [7]. Figure 1 illustrates the type I
dilemma zone (a), option zone (b), as well as type II dilemma zone (c).
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Figure 1. Types of dilemma zone: (a) Type I dilemma zone, (b) Option zone, (c) Type II dilemma zone.

3. Literature Review

As it can be concluded from the previous sections, the existence of a dilemma zone,
which is heavily affected by drivers’ behavior in the yellow phase, has a great effect on the
safety level of signalized intersections. Such a critical area has attracted wide interest from
researchers engaged in traffic engineering and safety, hence the issue of dilemma zone
and drivers’ behavior in the yellow interval has been thoroughly examined over the last
few decades. In their review paper, Shirazi and Morris [1] identified that such issues have
attracted the greatest research attention among all objectives of intersection-related studies.

Most of the aforementioned studies explore the issue of dilemma zone from two
perspectives: the accurate calculation of dilemma zone boundaries and the drivers’ stop/go
behavior in the yellow interval, as a function of various factors.

The first group of studies sought to accurately determine dilemma zone boundaries,
either by exclusively using the probability of stopping (type II dilemma zone) or by elim-
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inating the static and the probabilistic definitions of type I and type II dilemma zone,
by exploring the dynamic nature of its contributing factors. Following the probabilistic
definition of type II dilemma zone, Zegeer and Deen [12] as well as Zegeer [13] defined
dilemma zone as an area with a probability of stopping between 10% and 90% and cal-
culated the distances corresponding to these probabilities for different vehicle speeds.
Based on the same approach, several studies used distance and/or time to stop line as
measures for the determination of type II dilemma zone boundaries [16–23]. On the other
hand, few studies attempted to investigate the dynamic features of the contributing factors
of the dilemma zone, namely, perception/reaction time and acceleration/deceleration
rate [10,11,24–26].

The second group of studies focused on exploring the effect of various factors on
drivers’ stop/go decision in the yellow interval. In this context, several types of models
have been employed (binary logistic regression models, binary probit models, ordered
probit models, agent-based behavioral models, fuzzy logic models, etc.) and various
explanatory variables proved to significantly affect drivers’ stop/go behavior, including
approaching speed, distance and time to stop line, yellow phase duration and signal cycle
length, vehicle type, lane position, dilemma or option zone existence, red light camera
presence, countdown timer existence, advance warning flashers existence, drivers’ age and
gender, cell phone usage, etc. [2,22,27–35].

One of the main objectives of the current study is to examine the effect of accel-
eration/deceleration on drivers’ stop/go behavior in the yellow interval. To this end,
the following literature is mainly focused on researches that dealt with the accelera-
tion/deceleration factor.

Falling into the above-mentioned second group, several studies examined, among
other variables, the effect of acceleration/deceleration on drivers’ stop/go decision making
during the yellow phase. Amer et al. [36] followed a behavioral modeling approach
to model drivers’ stop/go behavior in the yellow interval. The explanatory variables
involved in the behavioral model included maximum accepted acceleration, maximum
accepted speed, perception/reaction time, maximum accepted deceleration and error in the
perceived distance to stop line. Biswas and Ghosh [37] employed different types of models,
including a logistic regression model, an artificial neural network model, a fuzzy logic
model and a weighted average hybrid model, with the overall aim of modeling drivers’
decision-making during the yellow phase. Distance and time to stop line, approaching
speed and acceleration/deceleration rate were found to significantly affect drivers’ stop/go
decision-making, for both vehicle types examined (cars and two-wheeled vehicles).

Li et al. [38] developed a sequential binary logit model to predict both drivers’ stop/go
decision and red-light running violations during the yellow interval. Vehicle type, distance
to stop line and approaching speed were found to be statistically significant factors affecting
drivers’ stop/go behavior, while distance to stop line and acceleration appeared to be
the contributing factors for red-light running violations. Sharma et al. [39] developed
a dilemma zone hazard function to assess the probability of traffic conflict for a driver
facing a yellow indication, on a high-speed signalized intersection. Even though the
function developed was not binary, but rather a stochastic one, a binary probit model was
initially employed to investigate the contributing factors for drivers’ stop/go decision.
Having performed several iterations for the purpose of obtaining the best-fit probit model,
required acceleration was found to be the instrumental variable affecting drivers’ stop/go
decision process. Jahangiri et al. [40] used machine learning techniques, namely, Support
Vector Machine (SVM) and Random Forest (RF), to predict red-light running violations.
Research findings revealed that distance to stop line and required deceleration at the onset
of the yellow signal, as well as average speed, maximum speed and standard deviation
of acceleration for the monitoring period defined, were the factors that strongly affect
red-light running violations.

It is pertinent to note that in all the above-mentioned studies, the acceleration/deceleration
was not treated as a common factor employing the same methodology. More precisely, dif-



Safety 2021, 7, 11 6 of 27

ferent measures of acceleration/deceleration were used, including acceleration/deceleration
rate (estimated as the second derivative of the displacement-time relations), accelera-
tion/deceleration at the onset of the yellow signal (calculated based on the observed
instantaneous acceleration/deceleration at the initiation of the yellow signal), accelera-
tion/deceleration during the yellow interval (measured two seconds after the initiation of
the yellow light), required acceleration/deceleration (calculated as functions of distance to
stop line, approaching speed, perception–reaction time and yellow signal duration), aver-
age acceleration/deceleration (based on mean value), maximum acceleration/deceleration
(based on max value), etc.

Apart from the acceleration/deceleration factor, the current study also focuses on
investigating the potential effect of drivers’ level of aggressiveness regarding their stop/go
behavior during the yellow phase. As indicated by the relevant literature, such an issue
has not yet been thoroughly examined, with only few studies having already sought
to explore the relationship between drivers’ aggressiveness and stop/go decision in the
yellow interval.

Papaioannou [2] used binary logistic regression to model the probability of stopping
or crossing the intersection in the yellow interval, as a function of approaching speed,
distance to stop line, drivers’ gender and age group, as well as the existence of dilemma
zone. All the above-mentioned factors were proven to significantly affect drivers’ stop/go
decision, with the existence of dilemma zone being the only exception. The study also
proposed a two-step methodology for the classification of drivers based on their level of
aggressiveness. More precisely, drivers were grouped into three categories (conservative,
normal, aggressive), with the first criterion being their initial approaching speed and the
second criterion being their behavior when exposed to the yellow signal (the latter being
expressed by their stop/go decision related to the existence of a dilemma or option zone).

Elhenawy et al. [41] proposed a new predictor, namely, driver aggressiveness, to be
integrated into the process of modeling drivers’ stop/run behavior at the initiation of the
yellow signal. The calculation of the proposed parameter relies on historical data, with
respect to drivers’ historical response to yellow indications. More specifically, the aggres-
siveness parameter is based on the number of runs that a driver has made during the yellow
interval for a specific time period of monitoring, when the time to stop line was greater
than the yellow signal duration and his/her approaching speed was equal or higher than
the maximum posted speed limit. Using different machine learning techniques, namely,
Adaptive Boosting (adaboost), Artificial Neural Networks (ANN) and Support Vector
Machine (SVM), the study proved the ability of the -related to drivers’ aggressiveness-
proposed predictor to further enhance the modeling of drivers’ stop/go behavior in the
yellow interval.

Using machine learning techniques, namely, Support Vector Machines (SVM) and
hidden Markov models (HMM), Aoude et al. [42] developed algorithms to classify drivers
as compliant or violators, according to their behavior at signalized intersections. Various pa-
rameters were considered for the algorithm’s development, including approaching speed,
acceleration, required deceleration and distance to stop line. The algorithms were success-
fully validated using intersection data and found to outperform the traditional drivers’
classification algorithms (time to intersection-based, required deceleration parameter-based
and speed-distance regression-based).

Based on the literature review presented above, the contribution of the current research
is the examination of acceleration/deceleration as well as drivers’ level of aggressiveness
within the broader context of dilemma zone and the inclusion of these factors as potential
predictors of drivers’ stop/go behavior at the yellow interval.

4. Materials and Methods

The purpose of this study is to examine driver’s behavior at a typical signalized
intersection. This section presents the exact location of the intersection and outlines the
general characteristics of the study area (intersection layout, traffic volumes, traffic signal
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time settings, etc.). The data collection process and analysis as well as the use of the
appropriate statistical processing tools and techniques for modeling driver’s behavior are
also presented in detail.

The entire methodological approach is briefly presented in the following Figure 2,
while all the stages of the methodology are analyzed in detail in the following subsections.

Figure 2. Methodological approach of the research.

4.1. Study Area

The research study was carried out at a signalized cross-shaped intersection located
in eastern Thessaloniki, Greece. Traffic data were collected only for one approach of the
intersection and more specifically the one that connects the city of Thessaloniki with the
“Makedonia” airport, one of the major trip generators in the wider area of Thessaloniki.
The chosen road section was functioning in good flow conditions, with a traffic flow of
1500 vehicles/hour and a capacity of 6000 vehicles/hour. This enabled the collection of
adequate data, while the absence of saturation conditions could not affect the phenomenon
under consideration. As the specific road section connects the city of Thessaloniki with an
area of a mainly residential and recreational nature, it was considered that most drivers
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crossing the intersection are not in a hurry and therefore their driving behavior can be
considered as representative for modeling driver’s behavior.

The study area was also selected in order to meet certain conditions. The specific
intersection was selected because it consists of a single level without concave and convex
slopes or without large vertical slopes in order to draw safe conclusions. In addition,
in terms of video capture, the study area provided the ability to take video from an elevated
location so that the recording angle is as sharp as possible to cover as large area as possible.
Finally, the area was protected for UAV safe landing and take-off.

The signalization of the intersection gives priority to the direction towards the airport
and has a significantly higher traffic load than the crossing road. The cycle length of the
intersection under consideration was 85 s. The green signal duration was 50 s, the red 31 s
and the yellow 4 s.

Figure 3 shows the study area, as captured by the UAV.

Figure 3. Photographic capture of the study area with the use of unmanned aerial vehicle (UAV).

4.2. Data Collection

In order to adequately record the driving behavior within the dilemma zone, the nec-
essary data were collected through video recordings captured by one UAV. The specific
UAV had a built-in high-resolution camera and GPS and telecommunication equipment to
transfer data to the ground station in real time.

Traditional methods of data collection have included measurements with observers
or measurements with sensors placed in specific sections of the road. However, with the
development of optical recording media, which is observed in recent years, the understand-
ing of traffic phenomena can in several cases be carried out using video recordings of traffic
characteristics and corresponding tracking procedures [11].

While UAVs were originally developed for military purposes and application, they
have long been studied for other applications in various research fields including aerial
photography, agriculture, product deliveries, policing and surveillance, etc. Cameras
are standard equipment and are used for identifying and inspecting items or specific
phenomena [43]. Numerous studies have been conducted to identify how UAVs can be
used for transportation purposes in order to increase efficiency and safety, reduce costs
and replace stationary systems [44].
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Applications of UAVs on traffic monitoring can include several activities, such as
identifying, tracking and monitoring specific vehicles, and several parameters can be
extracted, such as densities, travel times, turning counts, queue lengths, etc. [45–47]. Several
other studies focused on microscopic data and more specific phenomena, like detailed
trajectory extraction and microscopic traffic parameters calculation [48]. Determining level
of service (LOS), estimating average annual daily travel (AADT), measuring intersections
operating conditions and creating origin destination flows can also be evaluated with the
use of UAV [49–51]. Real-time visual data can be collected and used as input to improve
existing traffic simulation models [52,53]. The use of advanced modeling and machine
learning on videos captured by a UAV could provide useful traffic information, such as
vehicle detection, traffic flow computation or vehicle classification [54]. Other studies have
been focusing on the use of UAV for monitoring and analyzing traffic flow with respect to
traffic safety [55,56].

Based on the above, UAVs constitute a more suitable means of capturing traffic
measures than a fixed camera, as they provide the ability to film a larger area and deal
with limitations, such as moving to any area to select the optimal location and avoiding
points that prevent the complete recording of an object. Also, due to their relatively small
size, they offer the possibility of recording traffic without being noticed by drivers. This
is particularly important in the specific case where it concerns observations in the field of
driver behavior, since in any other case, the driver can change his/her behavior, if he/she
feels that it is being recorded or evaluated. In general, UAVs offer a more non-intrusive
way of recording traffic phenomena.

Furthermore, due to the large height from which recording is made, data collection
anonymity is secured, as no personal data such as vehicle registration plates or drivers’
personal data can be collected. This ensures the required data collection anonymity that
should reflect a scientific data collection research. In addition, prior to the measurements
carried out in the context of this work, flight plans were submitted to the legal control
body for UAVs in Greece, the Civil Aviation Authority, and the necessary approval was
given to carry out the relevant measurements. The official permission was required both
for security reasons, due to proximity to the airport, as well as for privacy issues mainly
related to sensitive personal data of people caught in video footage.

However, the UAVs have disadvantages in terms of battery life, resulting in limited
flight time, while their flight depends on the current weather conditions, as it is not possible
to use UAVs in case of rain and strong wind, for reasons of safety and protection of the
equipment. Additionally, in the context of the present study, the high altitude from which
the videos were recorded did not allow the collection of personal characteristics of users
such as gender and age.

4.3. Data Analysis

The actual number of vehicles that were observed to face the yellow signal is equal to
617. Data were gathered for 12 days during March and April 2018. The total duration time
of the collection period was 720 min.

For data analysis, a special kinematic analysis software was used in order to model
and analyze the motion of objects from the collected videos. More specifically, the “Tracker
Video Analysis and Modeling Tool” was used, an open-source software which provides
tools for performing kinematic analysis of experimental video recordings. Features include
position, speed, acceleration/deceleration tracking, multiple reference frames and model
analysis (https://physlets.org/tracker/).

The specific software defines the so-called xa(t) paths (trajectories) i.e., the positions
of each vehicle in time (t). If all vehicles in a road section are recorded in the same way,
then the so-called “trajectory data” arises. This means that the resulting orbits and sizes
are a function of only the coordinates (x, y) and the time variable t, of the object in question.
Given the nature of their recording, trajectory data are the most detailed traffic data that

https://physlets.org/tracker/
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can be collected and from which useful data can be obtained for the calculation of the
dilemma zone.

The UAV video recording was set to 24 frames per second and the step size in the
software used was set to 4 frames per second, resulting to six recordings for each second.
This enabled the extraction of high-accuracy time-based data for each vehicle approaching
the intersection, including:

• Approaching speed (from the onset of the yellow signal until the moment the vehicle
stopped or passed the stop line)

• Distance to stop line (from the onset of the yellow signal until the moment the vehicle
stopped or passed the stop line)

• Acceleration/deceleration (from the onset of the yellow signal until the moment the
vehicle stopped or passed the stop line)

• Driver’s decision to stop or clear the intersection
• Type of vehicle
• The position of the vehicle in case a platoon is formed (Platoon leader, 1st or 2nd follower)

After the extraction of the above-mentioned information, a set of variables was calcu-
lated, including:

• Approaching speed (at the onset of the yellow signal)
• Average speed (between the initiation of the yellow signal and the moment the vehicle

stopped or passed the stop line)
• Distance to stop line (at the onset of the yellow signal)
• Acceleration/deceleration (at the onset of the yellow signal and more precisely 0.5 s

after the initiation of the yellow signal, for ensuring that perception/reaction time,
assumed 1.5 s, has not elapsed)

• Average acceleration/deceleration (between the initiation of the yellow signal and the
moment the vehicle stopped or passed the stop line)

• Existence of an approaching speed greater than the posted speed limit
• Categorization of drivers based on their behavior (if a driver stopped before or after

the stop line, or if he/she crossed the intersection with yellow or red signal)

For further analysis and processing of data, it was decided to limit the original sample
based on two specific conditions. Initially, it was decided to only analyze car drivers, since
the other two categories of vehicles (heavy vehicles and motorcycles) constituted a very
small percentage of the sample (5.3% and 3.2%, respectively). Only Platoon leaders were
examined while exceptions were made only in the cases when Platoon leaders crossed the
intersection and therefore the following drivers had a choice to cross or not. The third and
subsequent drivers have very little chance of crossing the intersection without violating
the red signal. In fact, only non-captive drivers were selected. The new sample included
525 vehicles.

The following variables were additionally calculated for the new sample:

• Calculation of safe stopping distance (SSD) and critical crossing distance (CCD) for
all vehicles (based on type I dilemma zone Equations (1) and (2), and assuming
constant values for perception/reaction time = 1.5 m/s2 and maximum acceleration
and deceleration rates = 3.5 m/s2)

• Calculation of vehicle’s relative position (based on the safe stopping distance (SSD),
critical crossing distance (CCD) and the actual distance to stop line)

Tables A1 and A2 in the Appendix A section, present the descriptive statistics for the
scale and nominal variables, respectively, used further in the data analysis.

4.4. Modeling Drivers’ Behavior

When examining drivers’ behavior at signalized intersections, a high number of factors
need to be examined. Moreover, as indicated by the pertinent literature, several modeling
approaches have already been employed. In this section, the factors examined for the
current research purposes, as well as the models’ preparation processes are presented.
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4.4.1. Formulation of Initial Binary Logistic Model

Drivers who face the yellow signal have two distinct choices, to stop or clear the
intersection. Thus, a binary logistic regression model could be used for explaining drivers’
behavior as a function of various observable factors. The variables tested for inclusion in
the model, are the following:

• Approaching speed (both at the onset of the yellow signal and average)
• Distance to stop line
• Acceleration/deceleration (both at the onset of the yellow signal and average)
• Other potential explanatory variables, including drivers’ position in the platoon

(platoon leader, 1st and 2nd follower), lane change, etc.

The description and coding of all variables tested in the model, are presented in
Tables A1 and A2 at the Appendix A. The dependent variable has been driver’s decision,
taking values 0 and 1. Zero (0) stands for stopping and one (1) for crossing the intersection.
Different combinations of explanatory variables were tested. The form of the model is
given by the following Equation [57]:

Pi(stop) =
1

1 + e−zi
(3)

where,

Pi is the probability of the ith case to stop
Zi is the result of a linear function of the various factors (explanatory variables)

The selection of the best-fit binary choice model requires an assessment of the good
adaptation of the model. The statistical tests carried out in order to evaluate the statistical
significance of the model, were the following:

• The Nagelkerke R Square index, which gives an indication of the size of the sample
variance that is ultimately interpreted by the regression. The closer to 1 is the value of
this indicator, the better the model adapts to the sample data.

• Hosmer and Lemeshow test has been also used to check the proper adaptation of the
sample data. Values of sig.> 0.05 at significance level a = 95% indicate that the model
is well adapted to the data.

• Another measure of the good adaptation of the model is the SPSS Classification Table,
which compares the observed probabilities with those provided for by the model.
The higher the percentage of cases of the dependent variable correctly predicted based
on the model, the better the model adjustment [57].

4.4.2. Formulation of Latent Class Model

Latent Class Analysis (LCA) is a technique for the analysis of clustering among
observations in multi-way cross-classification tables of categorical variables, being usually
employed to investigate sources of confounding between the observed variables, as well
as to identify and characterize clusters of similar behaviors [58,59]. The main objective of
LCA is to fit a latent class model in which any confounding between the observed—also
called manifest—variables can be explained by a single, unobserved—also called latent—
variable. For the study purposes, the aforementioned latent variable is assumed to be
drivers’ aggressiveness. Based on the values of the manifest variables, the latent class
model probabilistically groups each observation into a latent class and, thus, the initial
dataset is finally segmented into several exclusive subsets (latent classes). This grouping
produces expectations about the way that each observation will respond on each of the
observed manifest variables [59]. The basic latent class model is given by the following
equation [60], while a more detailed definition of LCA and its mathematical background
can be found in Linzer and Lewis [59] and Hagennars and McCutcheon [61].

P(yn|θ) =
s

∑
1
πjPj

(
yn|θj

)
(4)
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where,

yn is the nth observation of the manifest variables
S is the number of classes
πj is the prior probability of membership in class j
Pj is the class specific probability of yn given the class specific parameters θj

θj are the class specific parameters

The manifest variables which were taken into account for the development of the
latent class model, included approaching speed, acceleration/deceleration at the initiation
of yellow signal, drivers’ position in the platoon (three variables for platoon leaders, first
and second followers, where one (1) stands for belonging and two (2) for not belonging in
each position) and a variable indicating whether the approaching speed was greater than
the posted speed limit or not (where one (1) stands for speeds greater than speed limit and
two (2) for speeds lower than speed limit). The former two factors (approaching speed and
acceleration/deceleration) were the major variables of interest, while the latter were used
primarily for avoiding identifiability issues. Given the fact that approaching speed and
acceleration/deceleration were continuous variables in the initial dataset, a recoding was
performed to categorize all manifest variables entered the latent class model. In respect to
the acceleration/deceleration recoding, several studies have already proposed different
typical values for the determination of the normal/acceptable acceleration/deceleration
rates [62]. For the study purposes, the normal deceleration/acceleration values are assumed
to range between −0.9 m/s2 and +0.9 m/s2. The thresholds used for the approaching
speed and acceleration/deceleration recoding are presented in Table 1.

Table 1. Thresholds for approaching speed and acceleration/deceleration recoding.

Variable Initial
Coding

New Recoded
Variable Recoding Thresholds Recoding

Values Interpretation

Speed_Yellow Speed_Yellow_
Recoded

Speed_Yellow ≤ 60 km/h 1 Low Approaching
Speed

60 km/h < Speed_Yellow ≤ 70 km/h 2 Medium
Approaching Speed

70 km/h < Speed_Yellow ≤ 80 km/h 3 High Approaching
Speed

Speed_Yellow > 80 km/h 4 Very High
Approaching Speed

Acceleration_
Deceleration_

Yellow

Acceleration_
Deceleration_

Yellow_Recoded

Acceleration_Deceleration_Yellow <
−0.9 m/s2 1 High Deceleration

0.9 m/s2 ≥
Acceleration/Deceleration_Yellow ≥

−0.9 m/s2
2 Medium Decelera-

tion/Acceleration

Acceleration_Deceleration_Yellow >
0.9 m/s2 3 High Acceleration

After inserting all the above-mentioned manifest variables, several latent class models
with various numbers of classes were developed. As shown in Table 2, the changing values
of model fit statistics by varying number of classes, in terms of the Bayesian Information
Criterion (BIC), indicated that the 5-class model (bold text) was the best-fit one, having the
lowest BIC value.
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Table 2. Changing values of Bayesian Information Criterion (BIC) by varying number of classes.

Number of Latent Classes BIC

2 3714.978
3 3441.026
4 3332.407
5 3290.169
6 3312.328

In fact, the selection of the best-fit latent class model forms a complex issue, since there
is not a commonly accepted statistical indicator for choosing the appropriate number of
latent classes [63]. In this context, apart from the BIC criterion, a wide number of methods
have been proposed for the optimal class selection, including Akaike Information Criterion
(AIC), consistent Akaike Information Criterion (cAIC), adjusted Bayesian Information Cri-
terion (aBIC), Bootstrap likelihood ratio test (BLRT), entropy, high enough class population
shares and, finally and above all, conceptual and interpretable meaning [64]. Based on
the above, the 2-class model was proved to be the best-fit one and chosen for drivers’
classification according to their aggressiveness.

It should also be noted that the EM algorithm, which is commonly used by the LCA
software packages, depending on the initial parameter values chosen in the first iteration,
may only find a local rather than the global, maximum of the log-likelihood function [59].
This fact may lead to different classification results in each model run. To avoid local
maxima, the latent class model was specified, in terms of programming language, using the
appropriate argument. Consequently, the latent class model was automatically estimated
one hundred (100) times using different initial parameter values and the model with the
greatest value of the log-likelihood function was finally chosen. The local and global
maximum log-likelihoods in all the attempts at fitting the model, are shown in Figure 4.
For the 2-class model, the global maximum log-likelihood of −1797.987 was found in the
first attempt at fitting the model.

Figure 4. Avoiding local maxima: recognizing LCA model with greatest log-likelihood value.

4.4.3. Formulation of Final Binary Logistic Model

After the development of the latent class model, which classified drivers into groups
based on their aggressiveness, binary logistic regression models were recalculated. The main
difference between the new models and the initial ones is that additional variables related
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to the aforementioned drivers’ categorization (aggressive/non-aggressive) and variables
indicating drivers’ expected reaction/decision to stop or cross the intersection related to
the vehicles’ relative position (dilemma zone, option zone, obvious decision stop, obvious
decision pass) were used.

For the new “relative position” variable, three (3) dummy variables were constructed
(“obvious_decision_stop”, “option_zone”, “dilemma_zone”) and the reference category
was set as “obvious_decision_pass”. The relevant results of all the above statistical analysis
methods and tools, are presented in the following section.

5. Results
5.1. Sample Statistics

The actual number of vehicles that were observed to face the yellow signal was equal
to 617. The largest proportion of the sample consisted of cars (91.40%) while heavy vehicles
and motorcycles account for 5.30% and 3.20% of the sample, respectively. Platoon leaders
make up for 71.20% of the sample, 1st followers 22.70% of the sample and 2nd followers
6.20% of the sample. A total of 65.30% of the sample facing the yellow signal decided
to pass while, with regards the categorization of drivers on the basis of their decision,
it appears that more than 57% of the sample crossed the intersection during the yellow
indication whereas about 32% of the sample decided to stop. A small percentage of the
sample (2.60%) stopped shortly after the stop line while almost 8% of the sample crossed the
intersection with red signal, thus demonstrating a relatively dangerous driving behavior.
Another characteristic of potential dangerous driving behavior is the fact that more than
66% of the sample move at a higher speed than permitted as the average speed of drivers
at the time they faced the yellow signal was 20.60 m/s (S.D. = 4.21) or 74.16 km/h, slightly
higher than the posted speed limit (70 km/h). Almost 2% of the sample decided to change
lanes from the moment they faced the yellow signal until they approached the stop line.

The average distance from speed line was calculated to 67.09 m (S.D. = 34.86). The av-
erage acceleration when facing the yellow signal was 1.09 m/s2 (S.D. = 0.96) whereas the
average deceleration rate was 0.63 m/s2 (S.D. = 0.62). Table 3 presents the mean, standard
deviation, minimum and maximum values of distance to stop line, approaching speed
and acceleration/deceleration at the onset of the yellow signal, based on drivers’ behavior
approaching the intersection.

Table 3. Descriptive statistics of main variables based on drivers’ behavior.

Variable Description Behavior Mean Std.
Deviation Minimum Maximum

Distance (m)
Distance from stop line

at the onset of the
yellow signal

Stop 97.14 21.78 39.06 128.90
Go 48.39 23.89 6.55 104.10

Passed with red 95.80 16.81 61.15 127.90
Stop after stop line 86.54 18.69 61.32 125.70

Speed (m/s)
Approaching speed at
the onset of the yellow

signal

Stop 17.66 3.59 3.92 27.37
Go 22.65 3.40 11.81 32.95

Passed with red 20.59 3.07 12.81 26.34
Stop after stop line 18.91 3.26 13.35 25.10

Acceleration/
Deceleration (m/s2)

Acceleration/Deceleration
at the onset of the

yellow signal

Stop 0.27 0.87 −2.52 2.72
Go 1.13 1.13 −2.00 10.06

Passed with red 0.94 0.70 −0.18 2.92
Stop after stop line 0.14 1.24 −2.79 1.34

As previously mentioned, it was decided to limit the original sample to only car
users and non-captive users (Platoon leaders and 1st or 2nd followers only if the lead
driver crossed the intersection and therefore the following drivers had a choice to do
the same). For the new sample (525 vehicles recorded) additional variables were calcu-
lated such as safe stopping distance (SSD) and critical crossing distance (CCD) as well
as calculation of vehicle’s relative position based on distance from stop line, speed and
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acceleration/deceleration on the onset of the yellow signal. Based on these calculations,
almost 60% of the drivers were found to be in an obvious decision pass zone, more than
31% were found to be in an obvious decision stop zone while about 9% of the sample were
in a dilemma zone.

Classification of drivers into a specific position indicates the decision a driver should
make based on specific characteristics (distance, speed, acceleration/deceleration) at the
initiation of the yellow phase. For example, a driver who is classified in the obvious
decision to stop zone based on his/her behavior at the start of the yellow signal, should
stop. However, this is not always the case, as demonstrated in Table 4, which presents
the percentage of “expected action” of drivers based on the decision they should make in
relation to the relative position to which they belong.

Table 4. Driver’s decision based on their relative position.

Decision Dilemma Zone Obvious
Decision Pass

Obvious
Decision Stop Option Zone

Stop 36.73% 4.85% 86.59% 66.67%
Pass 63.27% 95.15% 13.41% 33.33%

The table above shows that about 5% of drivers decide to stop when they can cross
safely the intersection while about 13% of the sample decides to cross the intersection where,
based on their position, speed and acceleration/deceleration, they should have stopped.
As regards the dilemma zone and the option zone, there is no question of following the
expected action, as in these specific zones driver’s decision cannot be predetermined.

Independent-samples t-tests were conducted to compare speed, distance and accelera-
tion/deceleration of approaching vehicles on the onset of the yellow signal for drivers who
followed or not the predetermined decision (expected action).

For drivers belonging to the obvious decision pass zone, there was a significant
difference between the mean speed of vehicles the drivers of which acted as expected
(M = 22.81, SD = 3.36) and those who did not (M = 19.08, SD = 2.86); t (16) = −4.89,
p = 0.000. For drivers belonging to the obvious decision stop zone, there was a signif-
icant difference between the mean speed of vehicles the drivers of which acted as ex-
pected (M = 17.11, SD = 3.38) and those who did not (M = 18.91, SD = 2.82) conditions;
t (31) = −2.71, p = 0.01. For drivers belonging in the dilemma zone, as there is no standard
decision, there was a significant difference between the mean acceleration of vehicles who
passed the intersection (M = 1.01, SD = 0.81) and those who stopped (M = −0.27, SD = 0.93)
conditions; t (32) = −4.89, p = 0.00.

For drivers who decided to pass the intersection, there was a significant difference
between the mean speed of vehicles that belong to the obvious decision to stop zone
(M = 18.93, SD = 2.88) and those who belong to the obvious decision to pass zone (M = 22.81,
SD = 3.37) conditions; t (24) = −5.87, p = 0.000. There was also a significant difference
between the mean distance to stop line of vehicles that belong to the obvious decision to
stop zone (M = 96.84, SD = 21.68) and those who belong to the obvious decision to pass
zone (M = 46.57, SD = 22.78) conditions; t (23) = 10.23, p = 0.000.

5.2. Initial Binary Logistic Regression Model Results

This section presents the results of the binary logit choice model that has been de-
veloped within the framework of the study. Table 5 illustrates the parameter estimates of
the binary choice model, as well as the results of the relevant static tests to estimate the
model’s goodness to fit. The odds ratio (OR) were also calculated for the specific binary
choice model. An odds ratio is a relative measure of effect, which allows the comparison
of a change in one variable to the outcome of the model. It should also be noted that
for the formulation of the binary logistic regression model, non-captive users were used
(Platoon leaders and 1st or 2nd followers only if the lead driver crossed the intersection
and, therefore, the following drivers had a choice to do the same).
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Table 5. Parameter estimates of the initial binary choice model.

Variable Estimate Std. Error p-Value OR

Speed_Yellow 0.72 0.09 0.00 2.06
Distance_Yellow −0.11 0.01 0.00 0.89

Acceleration_Deceleration_Yellow 1.92 0.28 0.00 6.79
Constant −5.59 1.26 0.00 0.00

Goodness of Fit Metrics

Nagelkerke R Square 0.83
Hosmer and

Lemeshow Test 0.81

Classification
(overall percentage) 91.40%

As shown in the Table above, the most important parameters that affect drivers’
stop/go decision are the distance of the approaching vehicle to the stop line, the approach-
ing speed and the acceleration/deceleration at the onset of yellow signal, with the latter
having the greatest influence on the final decision. More specifically, the odds ratio for the
acceleration/deceleration at the onset of yellow signal is 6.79, indicating that those who
travel with higher acceleration rates are on average 6.79 times more likely to pass than
those who choose to travel with lower acceleration or deceleration rates.

According to Figure 5, for vehicles close to the stop line, up to 60 m, the decision to
pass is made regardless of the speed. The opposite applies for distances greater than 100 m,
as drivers mostly decided to stop. In the intermediate zone between 60 m and 100 m, speed
plays a vital role in driver’s decision. It seems that a speed of approximately 20 m/s is what
mainly influences whether the driver will decide to pass or not. Most drivers in vehicles
with higher speeds choose to cross the intersection. Distance from stop line also plays an
important role, as the greater the distance from the stop line, the less likely a vehicle is to
cross the intersection during the yellow light. Attention should also be paid to the fact that
the critical distance to the stop line, based on Figure 5, is between 80 m and 90 m.

Independent-samples t-tests were conducted to compare speed, distance and acceler-
ation/deceleration of approaching vehicles on the onset of the yellow signal for drivers
who chose to pass or stop at the stop line. Distance, speed and acceleration/deceleration of
approaching vehicles were found to be significantly different between the two groups of
drivers. More specifically, the speed of drivers who chose to pass was systematically faster
(M = 22.43, SD = 3.42) than the speed of drivers who stopped at the stop line (M = 17.73,
SD = 3.57) conditions; t (340) = −14.41, p = 0.00. For drivers who passed the intersection,
the mean acceleration was higher (M = 1.11, SD = 1.09) compared to those who stopped
(M = 0.26, SD = 0.89) conditions; t (421) = −9.56, p = 0.00. Distance from stop line was also
found to be significantly different between drivers who passed (M = 53.56, SD = 27.52) and
drivers who stopped (M = 96.48, SD = 21.70) conditions; t (434) = 19.51, p = 0.00.

Based on the above, it can be concluded that the probability to stop or clear the
intersection is mainly correlated to speed, distance and acceleration/deceleration of an
approaching vehicle on the onset of the yellow signal. While distance from stop line may be
considered as a random parameter, as no one can predict the distance between the vehicle
and the stop line at the onset of the yellow signal, the speed and acceleration/deceleration
can be considered as parameters that are mainly affected by driver’s behavior. As it can also
be seen in Figure 6, drivers who chose to pass are mainly correlated with higher speeds and
acceleration rates. On the contrary, drivers who chose to stop are mainly correlated with
lower speeds and lower acceleration and deceleration rates. These two parameters, speed
and acceleration/deceleration rate, that are strongly associated with driver’s decision are
used in the next step to classify drivers in terms of aggressiveness, based on their behavior.
For example, an aggressive driver can be found driving with higher speeds (maybe higher
than speed limits) and acceleration rates compared to a conservative driver who would
mainly choose to drive at lower speeds and exercise lower acceleration rates.
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Figure 5. Correlation of driver’s decision with speed and distance from stop line.

Figure 6. Correlation of driver’s decision with speed and acceleration/deceleration.

After the development of the initial binary choice model, further research was con-
ducted with the overall aim of identifying potential differences in the probabilities of
stopping or crossing the intersection, depending not only on the observable factors of
approaching speed, distance to stop line and acceleration/deceleration, but also on drivers’
level of aggressiveness and their relative position at the initiation of the yellow signal.
To this end, a latent class model was employed for drivers’ classification based on their
aggressiveness and a new variable—relative position—was calculated, indicating either
drivers’ expected response to the yellow signal or the existence of a dilemma or option zone.
Finally, the initial binary choice model was further enriched, incorporating—in addition
to the above-mentioned observable factors—drivers’ aggressiveness and relative position
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as potential contributing factors to their stop/go decision. The results of the latent class
model and the final binary choice model are presented in the following sections.

5.3. Latent Class Analysis Results: Driver Classification according to Aggressiveness

In this section, the results of the latent class model developed to classify drivers accord-
ing to their aggressiveness are presented. Table 6 shows the estimated class-conditional
response probabilities. These probabilities are reported for all manifest variables, with each
row corresponding to a latent class and each column corresponding to a category of each
manifest variable (see recoding values in Table 1 i.e., 1st column of speed_yellow_recoded:
low approaching speed, 2nd column of speed_yellow_recoded: medium approaching
speed, 3rd column of speed_yellow_recoded: high approaching speed, etc.).

Table 6. Conditional item response (column) probabilities by outcome variable for each class (row).

Speed_Yellow_Recoded

Pr(1) Pr(2) Pr(3) Pr(4)
Class_1 0.0000 0.0000 0.4454 0.5546
Class_2 0.4011 0.5989 0.0000 0.0000

Acceleration_Deceleration_Yellow_Recoded

Pr(1) Pr(2) Pr(3)
Class_1 0.0287 0.5057 0.4655
Class_2 0.0282 0.7119 0.2599

Platoon_Leader

Pr(1) Pr(2)

Class_1 0.7414 0.2586

Class_2 0.6610 0.3390

1st_Follower

Pr(1) Pr(2)

Class_1 0.2184 0.7816

Class_2 0.2542 0.7458

2nd_Follower

Pr(1) Pr(2)

Class_1 0.0374 0.9626

Class_2 0.0847 0.9153

Greater_than_Speed_Limit (Approaching Speed)

Pr(1) Pr(2)

Class_1 1 0

Class_2 0 1

Based on the latent class model results, the two (2) estimated latent classes have
conceptual and interpretable meaning, with class_1 representing the aggressive drivers and
class_2 representing the non-aggressive drivers. Since the manifest variables were entered
in the latent class model as integers, the columns of the above table show the probabilities
of observing a response of 1, 2, (3, 4) for each manifest variable, conditional on a driver
being assigned to latent classes 1 (“aggressive”) or 2 (“non-aggressive”). Thus, a driver
belonging to the first “aggressive” class, has a 45% and 55% chance of approaching the
intersection with high and very high speed, respectively, and a 0% chance of approaching
the intersection with medium or low speed. Along the same lines, a driver belonging to
the first “aggressive” class, has a 50% and 47% chance of approaching the intersection
with medium deceleration/acceleration rate and high acceleration rate, respectively, while
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a driver belonging to the second “non-aggressive” class, has a 71% and 26% chance
of approaching the intersection with medium deceleration/acceleration rate and high
acceleration rate, respectively. Lastly, a driver belonging to the first “aggressive” class, has a
100% chance of approaching the intersection with a speed greater than the posted speed
limit, while a non-aggressive driver has a 100% chance of approaching the intersection
with a speed lower than the speed limit. The variables regarding drivers’ position in
the platoon are not further discussed, since they have been used mostly for avoiding
identifiability problems.

Table 7 provides the estimated mixing proportions corresponding to the share of
observations belonging to each latent class (estimated class population shares). An al-
ternative method for the determination of the size of the latent classes is to assign each
observation to a latent class on an individual basis, according to its modal posterior class
membership probability. These values are also provided in the following table (predicted
class membership by modal posterior probability). Both the estimated class population
shares and the estimated class-conditional response probabilities that have already been
shown in Table 6, are presented in Figure 7.

Table 7. Estimated class population shares and predicted class memberships (by modal poste-
rior prob.).

Estimated Class Population Shares

Class_1 Class_2
0.6629 0.3371

Predicted Class Memberships (by Modal Posterior Prob.)

Class_1 Class_2
0.6629 0.3371

As shown in Table 7, there is a perfect congruence between the two above-mentioned
sets of population shares, indicating a good fit of the latent class model to the observed
data. Moreover, it is pertinent to note that the latent class model classified drivers into
aggressive (66%) and non-aggressive (34%), indicating that most drivers approaching
the intersection exercised an aggressive behavior. This fact is in line with the findings of
Papaioannou [2], who modeled driver stop/go decision at the yellow interval in another
signalized intersection in Thessaloniki, Greece.

Finally, Table 8 presents some more information regarding the latent class model
developed, as well as a number of goodness-of-fit statistics.

5.4. Final Binary Logistic Regression Model Results

Based on the results of the latent class analysis, drivers were classified into two
groups: aggressive and non-aggressive. Subsequently, the proposed classification of
drivers was used in order to formulate a new binary logistic regression model, which
contained not only physical variables, such as approaching speed, distance to stop line and
acceleration/deceleration, but also variables related to drivers’ aggressiveness, as well as
vehicles’ relative position at the onset of the yellow signal (dilemma zone, option zone,
obvious decision to pass, obvious decision to stop).

Table 9 illustrates the parameter estimates of the final binary choice model, as well as
the results of the relevant statistical tests to estimate the model’s goodness to fit. The vari-
able related to vehicles’ relative position (“rel_position”) was recoded in three dummy
variables, namely, “Obvious_Decision_Stop”, “Option_Zone” and “Dilemma_Zone”, while
the reference category was “Obvious_Decision_Pass”.
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Figure 7. Estimated class population shares and estimated class-conditional response probabilities.

Table 8. Latent class model goodness-of-fit statistics.

Fit for 2 Latent Classes:

number of observations: 525
number of estimated parameters: 19

residual degrees of freedom: 172
maximum log-likelihood: −1797.987

AIC(2): 3633.973
BIC(2): 3714.978

Gˆ2(2): 669.3934 (Likelihood ratio/deviance statistic)
Xˆ2(2): 725.9775 (Chi-square goodness of fit)

Based on the results presented in Table 9, the probabilistic power of the model is
considered quite good. Nagelkerke R Square is 0.81 indicating that the model adapts well
to the sample data. The overall classification that compares the observed data with the
predicted probabilities provided by the model, indicates that the specific model correctly
predicts 91% of the cases which correspond to a good adaption of the model to the sample
data. The most important parameters, based on the odds ratio of the variables (OR column),
that influence the driver’s decision as to whether to pass or stop, are the distance of the ap-
proaching vehicle from the stop line and acceleration/deceleration at the time of the yellow
signal. These parameters were also used in the initial binary logistic regression model.

The main difference between the final and the initial model is that the new model
includes variables related to the driver’s behavior as well as the existence or not of a
dilemma zone. In the new model, as shown by the comparison of odds ratio, the greatest
influence on the final decision has the categorization of drivers based on their behavior.
Aggressive drivers are almost seven times more likely to cross the intersection than more
conservative drivers irrespective of their relative position. Acceleration continues to have
a major impact on the final decision as well as on the original model. Also, those drivers
who are in a dilemma zone are less likely to cross the intersection. It should be noted
here that the variable acceleration/deceleration at the onset of the yellow signal was also
used as input variable for the LCA classification of drivers. With the use of Spearman’s
correlation test, it was found that there was no statistically significant correlation between
acceleration/deceleration and the observed LCA classification (rs = 0.230).
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Table 9. Parameter estimates of the final binary choice model.

Variable Estimate Std. Error p-Value OR

Acceleration_Deceleration_Yellow 1.72 0.25 0.00 5.56
Distance_Yellow −0.05 0.01 0.00 0.95

Obvious_Decision_Stop −3.09 0.60 0.00 0.05
Option_Zone −3.46 1.38 0.01 0.03

Dilemma_Zone −1.10 0.56 0.05 0.33
Observed_LCA_Classification 1.92 0.46 0.00 6.80

Constant 3.68 0.70 0.00 39.70

Goodness of Fit Metrics

Nagelkerke R Square 0.81
Hosmer and Lemeshow

Test 0.34

Classification
(overall percentage) 91.00%

Furthermore, probability charts for the final binary choice model, were also con-
structed. These charts show that the choice of drivers is influenced by the magnitude
of the acceleration/deceleration rate and by the relative position of the vehicles when
facing the yellow signal. Aggressive drivers caught in dilemma zone and having accel-
eration/deceleration rates above −0.50 m/s2 are almost 60% more likely to cross the
intersection. The corresponding acceleration/deceleration value for conservative drivers is
over 0.50 m/s2. For all relevant positions that drivers can be found when they face the yel-
low signal, the acceleration/deceleration value that increases the chance of drivers crossing
the intersection is relatively lower for aggressive drivers than for conservative ones. This
practically means that aggressive drivers are more willing to cross the intersection even if
they are decelerating on the start of the yellow phase, in contrast to the more conservative
drivers for whom the probability of passing is associated with higher acceleration values.

In the following Figures 8 and 9, the “No category” curve represents the probability
chart for the initial binary regression model. Comparing one probability curve with the
four new curves affected by the relative position of vehicles, it can be observed that the final
model can better capture the influence of acceleration/deceleration on drivers’ stop/go
decision, not only based on their distance to the stop line but also on their relative position.
It is possible to model to a greater extent the influence of acceleration/deceleration on
drivers caught in a dilemma zone, whose behavior is a research field of great interest for
this and other similar studies.

The calculation of the odds ratio for aggressive to non-aggressive drivers for each
relative position is presented in the Table 10. Based on the odds ratio, aggressive drivers
compared to non-aggressive drivers are almost 37 times more likely to pass the intersection
when they face the yellow signal on the obvious decision pass zone, 1.68 times more likely
for the obvious decision stop zone, 1.6 times more likely for the option zone and 12.29 times
more likely for the dilemma zone.
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Figure 8. Distribution of decision probability depending on changes in acceleration and the relative position of vehicles
(aggressive drivers).

Figure 9. Distribution of decision probability depending on changes in acceleration and the relative position of vehicles
(non-aggressive drivers).

Table 10. Odds ratio for aggressive and non-aggressive drivers based on the relative position of vehicles.

Obvious Decision Pass Obvious Decision Stop Option Zone Dilemma Zone

Odds Ratio 36.93 1.68 1.16 12.29

6. Discussion–Conclusions

In this research effort, two binary logit expressions were built, modeling the drivers’
decision to stop or cross a signalized intersection when facing the yellow indication.
The first one is a typical choice model using as explanatory factors only observable and



Safety 2021, 7, 11 23 of 27

measured data, namely, approaching speed, acceleration/deceleration rate and distance to
stop line at the onset of yellow indication.

The second expression attempts to model drivers’ decision by not only using the
previous factors but also the aggressiveness level that is associated with each driver.
Furthermore, a second additional factor used is the classification of a driver/vehicle in
one of four distinct groups according to the so-called relative position of each vehicle in
conjunction with the approaching speed.

The first factor of driver aggressiveness can be obtained using the collected data and
more specifically the acceleration/deceleration values of observed drivers/vehicles when
approaching signalized intersections and facing a traffic light yellow signal in conjunction
with initial approaching speed. To do so, the Latent Class Analysis approach was used.
Acceleration/deceleration rate values and approaching speed values are grouped in four
and three classes, respectively. The LCA analysis performed returned a 45% and 55%
probability for aggressive drivers to approach the intersection with high and very high
speed, respectively, while a 40% and 60% probability for non-aggressive drivers to approach
the intersection with low and medium speed, respectively. Along the same lines, a 50% and
47% chance of approaching the intersection with medium deceleration/acceleration and
high acceleration rate, respectively, was returned for the aggressive drivers, while a 71%
and 26% chance of approaching the intersection with medium deceleration/acceleration
and high acceleration rate, respectively, was returned for the non-aggressive drivers.

The second factor related to the relative position is the group in which a driver/vehicle
belongs is achieved by comparing the SSD and CCD with the actual distance of the vehicle
from stop line. Depending on the outcome of this comparison, a driver/vehicle may fall
in one of four cases as follows: (a) obvious decision to pass, (b) obvious decision to stop,
(c) being in option zone, (d) being in dilemma zone.

To include aggressiveness as an additional factor in a binary choice model for stop
or go at a signalized intersection would provide a more comprehensive understanding of
the driving behavior in such circumstances. The probabilistic power of the first model is
considered quite good (91.40%, Nagelkerke R Square 0.83), but driver’s aggressiveness is
hidden within the other variables used. Identifying the factor of aggressiveness and sepa-
rating it from the other factors will help better understand the decision-making mechanism
of a driver facing the yellow indication.

The performance of the second model is not better than the first one, but it can
provide better explanatory power with respect to driver aggressiveness. Figures 8 and 9 are
indicative of the driving behavior differences among aggressive and non-aggressive drivers.
The respective figures that represent the distribution of driver’s decision probability are
also indicative of the different driver behaviors. Though these specific figures reflect the
population of the area under study, the approach adopted can be followed in other areas or
countries for both explanatory and confirmatory purposes.

Being able to identify percentages of aggressive drivers enables the calculation of the
probability that drivers will cross the intersection even if caught in a dilemma zone or
in a zone in which the obvious decision is to stop. Such findings can be valuable when
designing a signalized intersection and the signal timing settings, as well as the posted
speed limit.

A point worth mentioning is that the approach employed was possible to follow
because of the accurate and precise data collected using the UAV technology and the
“Tracker Video Analysis and Modeling Tool.” What really matters is the accuracy with
which time synchronization of vehicle movement, driver reaction and relative position of
the vehicle can be achieved.

Further improvements of the explanatory power of the binary choice models would
be possible in the case additional data for other crucial factors become available. Such
factors include driver’s gender and age class, which have been found to be closely related
to driver aggressiveness. Other factors of importance related to aggressiveness seem to
be whether somebody drives alone or not, information that can be obtained by personal



Safety 2021, 7, 11 24 of 27

observation. Finally, factors such as familiarity with the intersection and the signal timing
settings and driving experience may have a strong relation to the driver’s reaction when
facing the yellow indication. The latter requires interview surveys to be carried out, which
poses a severe obstacle in collecting such information.

Exploring the role of these factors in the overall dilemma zone issue at signalized
intersections can be fields of further research. Such research requires additional equipment
and resources, which, as in most field studies, are important determinants for both the data
collection approach to be selected and their adequacy and precision for the analysis purposes.
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Appendix A

Table A1. Descriptive statistics of main scale variables.

Variable Variable Coding Description Min Max Mean Std.
Deviation

Acceleration
Deceleration

Yellow (m/s2)
Acceleratio_Deceleration_Yellow

Measure of
acceleration or

deceleration on the
yellow signal

−2.79 10.06 0.82 1.10

Average Speed
(m/s) Average_Speed

Average speed
between yellow signal

and stop line
2.81 34.73 19.23 7.07

Speed Yellow
(m/s) Speed_Yellow Measure of speed on

the yellow signal 3.92 32.95 20.60 4.21

Distance Yellow
(m) Distance_Yellow Distance from stop line

on the yellow signal 0.85 129.90 67.09 34.86

Average
Acceleration
Deceleration
Rate (m/s2)

Average_Acceleration_
Deceleration_Rate

Average acceleration or
deceleration rate

between yellow signal
and stop line

−5.09 5.49 0.16 1.73

SSD (m) SSD Safe Stopping Distance 8.06 204.53 95.76 30.39

CCD (m) CCD Critical Crossing
Distance 13.30 129.44 81.01 16.49
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Table A2. Descriptive statistics of main nominal variables.

Variable Variable Coding Description Range Frequency

Category Category Classification of drivers based on
their behavior

A: Stop A: 32.10%
B: Pass after stop

line B: 2.60%

C: Pass with
yellow C: 57.70%

D: Pass with red D: 7.60%

Platoon Leader Platoon_Leader
The first car in case of platoon on the onset

of yellow
0: No 0: 28.80%
1: Yes 1: 71.20%

1st Follower 1_Follower
The second car in case of platoon on the onset

of yellow
0: No 0: 77.30%
1: Yes 1: 22.70%

2nd Follower 2_Follower
The third car in case of platoon on the onset

of yellow
0: No 0: 93.80%
1: Yes 1: 6.20%

Decision Decision Decision to stop or pass the stop line 0: Stop 0: 34.70%
1: Pass 1: 65.30%

Decision Previous Decision_Previous
Decision to stop or pass the stop line of

previous car (for 1st and 2nd followers only)
0: Stop 0: 12.40%
1: Pass 1: 87.60%

Change Lane Change_Lane Change lane between the onset of the yellow
signal and the stop line

0: No 0: 98.10%
1: Yes 1: 1.90%

Greater than
Speed Limit

Greater_than_
Speed Limit

The speed on yellow signal is above 70 km/h 0: No 0: 33.70%
1: Yes 1: 66.30%

Acceleration Acceleration
Acceleration or deceleration after the onset of

the yellow signal
0: No 0: 35.40%
1: Yes 1: 64.60%

Relative Position Rel_Position
Vehicle’s relative position, speed and

acceleration on the onset of the yellow signal

1: Obvious
Decision Stop 1: 31.20%

2: Option Zone 2: 0.60%
3: Dilemma Zone 3: 9.30%

4: Obvious
Decision Pass 4: 58.90%

Type of vehicle Type_of_vehicle Type of vehicle
1: Car 1: 91.40%

2: Truck 2: 5.30%
3: Moto 3: 3.20%

For the binary variables entered in the latent class model, “1” and “2” values were used for “Yes” and “No”.
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