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Abstract: Using sensors to monitor signals produced by drivers is a way to help better understand
how emotions contribute to unsafe driving habits. The need for intuitive machines that can interpret
intentional and unintentional signals is imperative for our modern world. However, in complex
human–machine work environments, many sensors will not work due to compatibility issues, noise,
or practical constraints. This review focuses on practical sensors that have the potential to provide
reliable monitoring and meaningful feedback to vehicle operators—such as drivers, train operators,
pilots, astronauts—as well as being feasible for implementation and integration with existing work
infrastructure. Such an affect-sensitive intelligent vehicle might sound an alarm if signals indicate
the driver has become angry or stressed, take control of the vehicle if needed, and collaborate with
other vehicles to build a stress map that improves roadway safety. Toward such vehicles, this paper
provides a review of emerging sensor technologies for driver monitoring. In our research, we look
at sensors used in affect detection. This insight is especially helpful for anyone challenged with
accurately understanding affective information, like the autistic population. This paper also includes
material on sensors and feedback for drivers from populations that may have special needs.
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1. Introduction

Emotions and affective expressions play a critical role in decision-making, learning, and other
cognitive functions, but current technology is, for the most part, incapable of taking our emotions into
account. Affective computing, supported through practical sensors, provides a possible solution to
this problem. Taking driving as a context, by monitoring and reacting to the emotions or underlying
signals from drivers, affective computing enhances interactions between humans and technology, with
the ultimate goal to improve safety. The vehicle can be equipped with an intelligent support system
to monitor the driver, monitor the driver’s behaviors, provide feedback to the driver, and even take
control of the vehicle if necessary.

For long-term use and adoption, sensors should be practical: they should not require the user to
spend significant time activating the device, experience discomfort when using the device, or spend
significant time maintaining the device. These non-intrusive sensors can take the form and function of
skin-contact wearables that measure unintentional signals as well as surface-borne sensors that collect
intentional signals from the driver. An example of a practical sensor might be a group of pressure
sensors embedded into a vehicle’s surfaces, powered and monitored by the vehicle to detect a user’s
interactions with seats, safety accessories, armrests and the steering wheel. In-vehicle sensors already
face challenges because of acoustic noise, electromagnetic noise and compatibility issues related to
integrating with a central processor; for instance, a scalp-mounted electroencephalograph (EEG) sensor
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would be challenging to apply in vehicles because of noise sensitivity and data-processing requirements.
Beyond engineering considerations, it would be unrealistic to expect daily drivers to apply the EEG
sensor before each trip because it would be a new behavior and a time-consuming departure from
the driver’s routine in a world where it is already difficult to get people to wear seatbelts. Wearable
sensing devices such as watches and eyeglasses that fit into a driver’s established routine are more
practical. Video cameras, reviewed in 2016 by Fernández et al. [1], are practical in the sense that users
do not need to activate or touch them, but cameras and microphones also introduce privacy concerns
and produce high bandwidth data that requires processing. New soft and textile-embedded sensor
formats are promising because they can be fitted to vehicle interiors, and because they can detect
safety-relevant activity using body contact data that is not as personally identifiable as video and
audio streams.

Figure 1 illustrates a pressure sensor for tracking a driver’s grip pressure in (a) a body-worn
format, and (b) a vehicle surface format. Wearable sensors such as the glove in (a) are more practical
for daily use than, for example, blood sampling to measure glucose [2] or cortisol levels, or neural
implants to detect brain activity in animal studies. Such invasive sampling can validate conclusions
drawn from proxy signals available at the body surface, but a sensor glove is better for daily wear from
the user’s viewpoint. However, for this grip-tracking application, the driver would have to modify
their behavior to put gloves on, would need to keep the gloves charged, and would need to initiate
wireless communication between the gloves and the vehicle. For those reasons, the steering wheel
format in Figure 1b is more practical than gloves for grip tracking. Measurements of other signals
that vary with driver stress levels, such as pulse rate, skin surface temperature, and skin conductance,
often rely on skin-to-sensor contact that cannot be guaranteed on vehicle surfaces—even a steering
wheel, if the driver is wearing mittens. In this physiological-sensing realm, wearables are unparallelled.
Previous reviews have carefully considered wearable sensors for driving safety [3], wearable sensors
for emotion recognition [4,5], and combinations of wearable and in-car sensors for detecting driver
drowsiness [6,7] and distraction [7,8].
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The current review covers the recent (since 2000) state of the literature on sensors that monitor
driving behaviors, including emotions experienced while driving, and sensors designed for non-driving
contexts that can detect emotional and physiological states applicable to transportation safety.
We distinguish wearable sensors from vehicle surface-borne sensors, and consider where each of
these sensor types may find the most practical application for monitoring driver behavior, identifying
a general trend of wearable sensors for physiological measurements and surface-borne sensors for
driver–vehicle interactions. We also provide a summary of emerging sensor technologies to study
affective states, discuss concerns for their practicality in a driving situation, and their potential to
contribute to future research on driver safety.



Safety 2019, 5, 72 3 of 18

1.1. Affective States and Affect Detection

We provide a brief description of the literature’s use of affective states and emotions in the
context of affect detection, as well as recommendations for further reading in related research areas.
The foundation of affective computing is informed by theory of emotion. This field of research seeks
to develop “computational systems that recognize and respond to the affective states (e.g., moods
and emotions) of the user” as described by Calvo and D’Mello in their 2010 article [9], which gives
a comprehensive review on the overlap of emotion research and affect detection. There is a rich
history on the definition of emotion, emotional expression, and emotional experience [10,11]. Picard’s
work [12] instituting affective computing steers clear of addressing a definition of emotion directly,
instead defining emotional experience and moving on to affect detection. Picard (1995) uses “sentic
state, emotional state, and affective state interchangeably. These refer to your dynamic state when
you experience an emotion. All you consciously perceive in such a state is referred to as your
emotional experience” [12]. Affect detection is possible by way of a person revealing their emotional
expression, through the motor system, or “sentic modulation” [12]. James individually [13], and later
with Lange [14], provides a theory of emotion that links physiological changes in the sympathetic
nervous system (SNS), a part of the autonomic nervous system (ANS), to emotional expressions [13–15].
Physiological-based affect detection leverages sensors to detect changes in a person’s SNS and ANS.
The James-Lange theory of emotion is used in several studies of affective states: Calvo and D’Mello [9];
Ekman, Levenson, and Friesen [16]; Critchley et al. [17]; AlZoubi, D’Mello, and Calvo [18]; and
Baker et al. [19]. For further reading, see also work by Smith and Lazarus [20], Darwin [21], and
Dalgleish [22].

For specific definitions of emotions, methods and assessment tools used in each study may vary.
When given, we will summarize the definition of an affective state, or methods, used in a specific
study. For Lazarus (1993), emotions include anger, anxiety, fright, sadness, and happiness, among
others; and this research also describes an overlap of stress and emotion [10]. Russell (2003) defines
core affect to include a pleasure scale (happy, sad) as well as an arousal scale (fatigue, drowsiness,
tense, alertness) [11]. The affective states of frustration, confusion, engaged concentration, delight,
surprise, boredom, and neutral were examined by Baker et al. [19], and defined as follows:

“Frustration was defined (for participants) as dissatisfaction or annoyance. Confusion was defined as
a noticeable lack of understanding, whereas engaged concentration was a state of interest that results
from involvement in an activity. Delight was defined as a high degree of satisfaction. Surprise was
defined as wonder or amazement, especially from the unexpected. Boredom was defined as being weary
or restless due to lack of interest. Participants were given the option of making a neutral judgment to
indicate a lack of distinguishable affect. Neutral was defined as no apparent emotion or feeling.”

In relation to driving, an exhaustive list of which emotions have the greatest influence is not
fully known, as discussed in Section 6. To frame that exploration, Figure 2 takes Russell’s Affective
Circumplex [23] and marks areas likely, but not yet fully studied, to represent concerns for driver
safety; we list some current studies linking affect and safe/unsafe driving behaviors in Table 1. Figure 2
should be considered a broad initial guideline for researchers considering the impact of emotions on
driver behavior, but it should be used very cautiously as a definitive conclusion on which emotions are
involved in driving and how they influence behavior. Therefore, the circumplex can be used to guide
which sensors are appropriate to consider when monitoring drivers, based on the sensor’s history of
studies relating it to certain affective information.

1.2. Methods

This review used Google Scholar to identify recent (since 2000) literature on driving-relevant
affect detection using sensors that are compatible with vehicle environments. Keywords searched
include driver behavior, driving safety, sensors, soft sensors, wearable sensors, and affect detection.
The authors excluded results based on relevance to this review’s focus and redundancy of a topic
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covered by cited works. During the editorial process, reviewers suggested additional references.
Ultimately, more than 110 references are cited for further reading.Safety 2019, 5, 72 4 of 18 
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2. Previous Work Relating Affect to Driver Behaviors/Physiological Signals

Endowing intelligent systems with an ability to understand implicit interaction cues, such as the
person’s intention, attitude, and their likes and dislikes creates more meaningful and natural interactions
between the human operator and the intelligent system [24]. However, current technology cannot
seamlessly interpret emotions and affective states that convey implicit communication. Responding
to emotions is integral to typical social interaction and increases ways humans and technology
communicate. Additionally, human–machine interaction (HMI) that relies solely on explicit commands
ignores the potential gain of implicit communication, which can be significant as evidenced from
experimental psychology [25]. Affective computing provides a possible solution to this problem.
To establish affect-sensitive HMI, the role and potential of implicit communication is important [26].
By monitoring and reacting to the emotions or underlying signals from users, affective computing
enhances interactions between humans and technology. Dr. Picard’s book [27] established a springboard
for affective computing. Recent advancements in this research area have moved toward wearables and
other practical sensors, leveraged machine-learning analysis techniques, and expanded the range of
application areas.

Aside from trait, personality, and other personal factors [28–31], traffic and environmental
situations that contain certain appraisal factors (e.g., whether another driver was accountable) can
lead to a driver’s development and experience of emotions [32]. Several representative examples,
although not exhaustive, are outlined in Table 1. Emotions and the accompanying attributions of
traffic situations create a motivational tendency to show certain behaviors [33,34]. Such behaviors,
if dangerous, may lead to negative consequences and compromise one’s own safety and the safety
of other road users [29,35,36]. For example, angry drivers tend to drive faster, commit more traffic
violations, display hostile gestures, honk more frequently, and underestimate risky situations, as
evidenced in questionnaire, simulator, and naturalistic driving studies [35,37–39]. These behaviors are
considered aggressive and unsafe to other vehicles. Furthermore, individuals who scored higher on
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the Driving Anger Expression Index are 2.5 times more likely to damage their vehicles in anger and
twice as likely to crash than individuals who scored lower on the Driving Anger Expression Index [40].
Other work [41] revealed that drowsiness had the largest impact on increased crash rates, more than
other inattention scenarios; while stress was linked to minor crashes [42].

In the following, a brief summary of the methods or definitions used to study the affective
states listed in Table 1 is given. Roidl et al. [32] used the Driving Anger Scale to measure anger, the
State Trait Anxiety Inventory to measure anxiety, and a modified Geneva Emotion Wheel to measure
contempt and fright. Westerman and Haigney [43] examined the Driver Behaviour Inventory and
the Driver Behaviour Questionnaire to study stress. Steinhauser [44] studied happiness, calmness,
and anger during driving through a combination of (1) asking participants to self-select and re-live a
previously-experienced life event related to each emotion and (2) by playing music related to each
emotion, as validated by Jefferies et al. [45]. No further definitions of the affective states were given to
participants. Philip et al. [46] used Grandjean’s definition of fatigue [47] as “a gradual and cumulative
process associated with a disinclination towards effort, eventually resulting in reduced performance
efficiency.” Lee et al. [48] collected physiological measures of drowsiness and measures on the Johns
Drowsiness Scale.

Table 1. Representative studies on the relationship between affect detection and driver behavior.

Affective State Reference(s) Effect on Driver Behavior

Anger and Anxiety (vs.
contempt and fright) Roidl et al. (2014) [32]

Higher driving speed, stronger
acceleration, speed limit violation for

a longer time

Stress Westerman and Haigney (2000) [43] Higher (self-reported) lapses, errors,
and violations

Happiness and Calmness
(vs. anger) Steinhauser et al. (2018) [44] Lower driving speed and speed

variability, longer distance to lead car

Fatigue Philip et al. (2005) [46] More inappropriate line crossings

Drowsiness Lee et al. (2016) [48] More near-crash events and lane
excursions

2.1. Measuring Affect Based on Physiological Signals

Previous research has shown that physiological signals could classify affective states induced
by on-road driving with 97% accuracy [49], with heart rate and skin conductivity having the highest
correlations with driver stress. Physiological signals are not appropriate indicators of emotion for
every application. Respiration has been linked to being indicative of emotional states [50]. It is a
slowly-changing signal that does not provide information in enough time to prevent a driving-related
accident [51], but it may provide insight into the relationship between driver emotional response and
behavior. Tracking multiple physiological signals was judged as a favorable approach in previous
research [52–54], and should be examined in work that seeks to predict and respond to physiology-based
changes in emotion.

2.2. Measuring Affect to Improve Driver–Vehicle Interactions

Aside from physiological signals, researchers have been examining the degree to which
affect-sensitive driver interfaces can be used to infer and support a driver’s affective state, safety, and
comfort [55]. The causal association between emotion and performance has long been documented.
Drivers who are stressed or angry are more likely to exhibit unsafe and dangerous behaviors and
violations [29,56–58]. Since the driving task heavily involves integrating visual information and
coordinating motor responses, researchers have been exploring the use of other senses for the
monitoring of driver’s affective state. For example, a speech-based emotion recognition system with an
adaptive noise cancellation technique that filters out ambient noise from driving has shown promise
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in classifying positive, neutral and negative emotions [59]. Nass and colleagues examined whether
characteristics of a vehicle voice can influence driver’s affective state and driving performance [60],
and the results showed that when the driver’s emotion matched vehicle voice emotion, drivers had
fewer accidents, attended more to the road, and spoke more to the vehicle. A recent article emphasized
the importance of using natural driver-car communication to understand a driver’s affective state and
needs as well as to provide a human-like assistance system [61]. This approach has the advantages
of being adaptive to various driving situations, drivers’ propensities and coping strategies, and the
uncertainty of traffic behaviors [62]. Recent findings suggest that, in addition to matching vehicle voice
to driver’s affect, vehicle voice showing empathy via a voice assistant led to the largest improvement
of negative emotions and was also positively perceived by angry and sad drivers [63].

3. Soft and Wearable Sensor Technologies Applicable to Monitoring Driver Behavior

This section reviews wearable sensors and soft surface-borne sensors that can measure some
aspect of a driver’s affective state and provide data that could be used in the future to study possible
improvements in driver safety. As discussed in the introduction, embedded and wearable sensors
are practical formats for in-vehicle sensing. We divided the review into two branches: sensors that
monitor largely-involuntary physiological signals, and sensors that monitor driver–vehicle interaction.

3.1. Sensor Technologies for Affect Detection Based on Physiological Signals

Physiological signals generated from the human body include brain electrical activity
(electroencephalography, EEG), skin temperature, heart rate and other aspects of the heart’s electrical
activity (electrocardiogram, ECG/EKG), eye blink rate, blood flow and oxygenation (SpO2), muscle
current (electromyography, EMG), skin conductance changes due to sweating (galvanic skin response,
GSR, or electrodermal activity, EDA), and respiration rate and volume. Such signals are usually
involuntary, except in the sense that muscle signals and respiration events can sometimes originate
from intentional body motions or speech. Physiological signals have previously been investigated
for emotion recognition [4,64]. In the latter study [64], GSR, skin temperature, and heart rate were
collected with an armband wearable sensor that the authors suggested could work with drivers.

Driving-specific studies that use wearable physiological sensors to investigate a safety-relevant
emotional response include wired GSR and heart rate sensors measuring stress in a street driving
environment [65]. Even though vehicles introduce electronic and acoustic noise, a seated driver
produced fewer motion artifacts in the GSR and heart rate data than in related studies on
ambulatory subjects.

More recently, GSR, SpO2, respiration and ECG data were collected from drivers using wearable
sensors with the goal of recognizing task difficulty-induced stress [66]. EMG sensors applied to subjects’
facial muscles detected facial expressions originating from anger in simulated driving tests [67]. Heart
rate and skin conductance electrodes provided insight into stress in subjects taking a simulated
driving test in a later study, with visible feedback on drivers’ stress levels provided by real-time data
processing [68]. Like the Healey studies, these groups used stick-on ECG and EMG electrodes and
other physiological sensors that attached directly to the body; data collection was wireless in newer
reports. Such biomedical electrodes are useful for proof-of-concept studies and high-quality data
collection for a fundamental understanding of the relationship between physiological signals and
emotions experienced while driving.

However, armband [69,70] and eyeglass-based [71] sensors are more practical than ECG electrodes
for widespread use, because they are fast to apply and may already be part of a driver’s everyday
routine. Researchers recently studied driver drowsiness using the infrared proximity sensor built into
Google Glass eyeglasses to measure blink rate using a thresholding algorithm [72] and determined
that they were able to detect operator drowsiness.

Softer, stretchier electronic and optical materials have emerged over the past 10 years, making
it possible to collect physiological data from textile-like surfaces and even from skin-contacting
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conformal sensors. A recent overview of this fast-moving research area [73] described applications in
healthcare, consumer electronics, and robotics. Although no driving-specific sensors were mentioned,
physiological signals commonly used to detect stress (for example, pulse rate) are measurable with soft
materials, and new emotion-relevant applications like wearable sweat quantification and analysis [74]
are now possible thanks to skin-conforming materials.

These sensors are lighter, more breathable and more comfortable than ECG electrodes, but most
drivers are not yet accustomed to applying stickers or tape to their skin, plus powering the devices is
still an early-stage technology that uses radiofrequency (RF) power transmission or thin-film batteries.
Therefore, researchers are also moving physiological sensors to vehicle interior surfaces. In-vehicle
sensors have successfully monitored drivers’ heart rates for detecting drowsiness [75], using electrically
conductive fabric wrapped around the steering wheel. ECG electrodes on the steering wheel have also
been studied for driver identification from biometric signatures [76,77]. Heart rate and respiratory rate
sensors were embedded in vehicle seats based on piezoresistive textiles [78]. Soft, surface-embedded
sensors measured physiological data in a vehicle seat in road tests [79] where, beyond detecting
driver stress, the authors suggested the passive seat and steering wheel ECG could improve safety by
detecting underlying heart conditions. A problem they addressed that is not present in skin-adhesive
sensors was drivers’ failure to consistently grip the steering wheel; they proposed to fill data gaps with
lower-resolution heart-rate data measured from redundant sensors in the vehicle seat. The missing
hand itself could also indicate inattention, for example from texting or holding a cellphone. A recent
study investigated the use of non-contact, capacitive coupled ECG embedded in the back support
of a driver’s seat in a simulator to estimate driver’s fatigue [80]. Results indicated that there was
good correlation between conventional ECG and cECG signals and that cECG signals had higher
quality over time. Although this study only had male participants and used one type of clothing, it
demonstrated feasibility for monitoring dynamics of heart rate variability using non-contact, more
practical ECG methods. Table 2 compares the above-listed physiological studies.

Table 2. Wearable/in-vehicle physiological sensors and the connection between the sensed signal and
affective state.

Physiological Sensor Reference Affective State(s)
Sensed

Scope and Context
(Driving Only)

Heart rate, galvanic skin
response (GSR) wearable

biomedical sensors

Healey and Picard
(2005) [49] Stress

Driving test on roads: 24
subjects on at least a

50 min route

GSR, SpO2, respiration, and
electrocardiogram (ECG)

wearable biomedical sensors

Ranjan Singh and
Banerjee (2010) [66] Fatigue, stress Driving test on roads: 14

subjects including taxi drivers

Heart rate and GSR wearable
biomedical sensors, plus

wearable biofeedback using a
visible indicator

MacLean et al. (2013)
[68]

Stress, emotional
regulation

Simulated driving test: 11
subjects with driving experience

and no history of epilepsy
or autism

Heart rate, GSR, and
temperature from armband;

Polar heart monitor chest strap

Nasoz et al. (2010)
[69]

Fear, frustration,
boredom

Simulated driving test:
41 subjects

Eye blink rate, from smart
glasses-correlated with braking

response time and
lane deviation

He et al. (2017) [72] Drowsiness Simulated driving test:
23 subjects.

Heart rate variability, from ECG
electrodes made from
conductive fabric on

steering wheel

Yu (2009) [75] Fatigue, drowsiness Simulated driving test:
2 subjects
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Table 2. Cont.

Physiological Sensor Reference Affective State(s)
Sensed

Scope and Context
(Driving Only)

Heart rate using ECG electrodes
on body, and eye movement

Oliveira et al. (2018)
[81] Drowsiness Driving test on roads:

20 subjects

GSR, SpO2, Respiration, and
ECG embedded in vehicle seat Baek et al. (2009) [79] Task-induced stress

Driving test on roads: 4 subjects
with at least 5 years
driving experience

Facial electromyography (EMG) Saikalis and Lee
(2019) [67] Anger Simulated driving test:

11 subjects

Electroencephalography (EEG)
and heart rate

Hassib, Braun,
Pfleging, and Alt,

(2019) [82]

Negative emotions
induced by music

Simulated driving test:
12 subjects

Capacitive coupled ECG
embedded in back support of

vehicle seat

Bhardwaj and
Balasubramanian

(2019) [80]
Fatigue Simulated driving test: 20 male

subjects

3.2. Measuring User Activity Based on Driver–Vehicle Interaction

Besides involuntary physiological signals like those reviewed in Section 3.1, drivers interact with
vehicle surfaces by gripping, tapping, leaning, and other hand or whole-body motions that give insight
into their attention level and affective state. These body motions may be intentional, as in steering
wheel motions made by a driver following a route, or unintentional, such as fidgeting. Safety is also
improved if body position information helps plan airbag deployment during a collision.

Intentional motions for steering, braking, and acceleration are already collected by vehicle
instrumentation, but body position is not. The following sensor technologies are able to capture
body position and other driver-vehicle interactions based on proximity, pressure, and acceleration.
Table 3 covers such emerging wearable and vehicle surface-borne sensor technologies for measuring
driver–vehicle interactions. Previous studies in this category often focus on activity recognition rather
than emotion recognition, and, likely because these wearable and soft sensor materials are an emerging
field, many of the papers summarized below and listed in Table 3 emphasize the new sensor technology
itself rather than applications such as monitoring transportation activities. However, some recent
papers do apply wearable and surface-borne user interaction sensors to driving. Researchers used
accelerometer-equipped smart watches to track hand motion [83], making the connection to driver
monitoring by correlating acceleration and gyroscope readings with non-steering secondary task
motions during road-driving tests. Another group developed soft piezoresistive fabric steering wheel
sensors, not for heart rate measurement as described above, but for detecting grip pressure, location,
and swiping gestures [84].

In contrast to resistive pressure sensors which require direct contact, capacitive sensing can detect
changes to electric fields extending above and around electrode surfaces. This feature makes capacitive
sensing a good match for driver-vehicle interactions like head or torso position where the driver is not
contacting the surface at all times. Capacitive proximity sensing has been applied to vehicle seats for
detecting driver posture and possible sudden braking [85], and researchers investigated its feasibility
for measuring driver head position [86], which is an indicator of drowsiness and a critical input for
active restraint systems during a crash.

Emerging soft technologies are already monitoring subtle body motions in non-driving contexts
using skin-like wearable sensors. For example, a wearable capacitive sensor was demonstrated
to detect restless leg motion [87]. Soft, deformable optical materials made it possible to measure
shape changes in a leg-worn athletic tape caused by weight bearing [88], and hand motions in a
glove [89] equipped with all-polymer strain sensors. Body motions like fidgeting and slouching are
also visible in images; Fernández et al. [1] gives a comprehensive overview of camera-based sensors for
detecting motions relevant to driver fatigue and inattention. Soft optical sensors might complement or
replace some types of image sensing, while their optical readouts might simplify wiring in vehicle
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applications where signals must be transmitted across a gap between moving parts. A recent study
proposed methodology to standardize the processing of camera-based sensing data while taking into
account individual differences, randomness in driver behaviors, and driver head motion tracking [90].
Another recent wearable sensor used resistive textile sensors embedded in trousers to classify body
postures [91]; such sensors can capture shifts in weight that are difficult to pick up on camera, and can
collect information related to a wearer’s focus, participation and engagement without video recording.
Surface-borne sensors are contrasted with obtrusive video cameras for sensing human activity in
smart environments [92].In recent office- and home-environment studies, researchers integrated thin
resistive and capacitive sensors into soft surfaces for human activity recognition. An electronic textile
couch was equipped with capacitive presence sensors, with a focus on sleep apnea intervention [93].
In another smart furniture experiment, observers recorded engagement, laughter, speaking and
listening behaviors in seated subjects and correlated them with data from chairs fitted with resistive
pressure-sensing pads [94]. These sensor formats are compatible with upholstered interior vehicle
surfaces. The experiments generally determine pressure location by sampling a large array of sensor
electrodes. Electrical impedance tomography can collect touch-location information with only a few
(typically 8) electrodes using a scanning approach. Touchpads were created by painting surfaces with
conductive paint on which consecutive resistance measurements were collected at pairs of electrodes
along the edge of the conductive surface [95]. Electrical impedance tomography in a wrist-wearable
format has also been used to classify hand gestures [96].

Table 3. Emerging sensor technologies that can capture driving-relevant user interaction signals.

Interaction Sensor
Format Reference

Interaction Category
and Possible Affective

State(s)

Context of Study
(Driving/Other)

Wrist-worn
accelerometry on both

driving hands
Bi et al. (2017) [83]

Handling secondary
tasks (texting, eating),

distraction, drowsiness

Road driving tests with 6
subjects, 75 different trips

Capacitive proximity
sensors in vehicle seats

Durgam and Sundaram
(2019) [85]

Driver posture, sudden
braking, panic

Other: validating
occupant position in
video vs sensor data

Capacitive proximity
sensors in vehicle

headrests

Ziraknejad et al. (2015)
[86]

Head position,
drowsiness

Other: validating head
position detection in lab

tests

Wearable capacitive
pressure sensor

Pouryazdan et al. (2016)
[87] Fidgeting, inattention Other: detecting restless

leg motion

Stretchable optical strain
sensors in athletic tape Harnett et al. (2017) [88] Muscle tension, stress

Other: detecting weight
bearing activity in lab
tests, proof of concept

Stretchable optical strain
sensors in gloves Leber et al. (2018) [89] Hand motion, distraction

Other: detecting hand
configuration in lab tests,

proof of concept

Resistive textile pressure
sensors in trousers Skach et al. (2018) [91] Body posture, social

behavior, engagement

Other: Classification of
19 different postures and

gestures, 36 subjects

Resistive foam pressure
sensors in an office chair

back and seat
Skach et al. (2017) [94]

Seated body position,
social behavior,

engagement

Other: Correlation of
body position and

speaking role during
conversation, 27 subjects
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Table 3. Cont.

Interaction Sensor
Format Reference

Interaction Category
and Possible Affective

State(s)

Context of Study
(Driving/Other)

Electrical impedance
tomography touch

detection on 3D objects
Zhang et al. (2017) [95]

Hand motion/grip shape,
coordination level
related to alertness

Other: User interface for
computers, games, toys:

demonstration

Wrist-worn electrical
impedance tomography

sensor
Zhang et al. (2016) [96] Hand positions,

excitement/hostility
Other: classifying hand

gestures

The key advantage of vehicle surface-borne sensors is that they are transparent to the user.
In contrast to wearable textile sensors or wearable electronics where the user is acutely aware of the
sensors, surface-borne sensors may collect body position or hand grip data without disturbing the
user. Only recently it has become practical to measure body motions from these unobtrusive sensors
instead of video or human observation methods. The link between this kind of sensor data and
drivers’ affective states needs further clarification from the human-computer interaction community
and comparison with questionnaires and physiological data.

4. Relationship between Driver Behavior and Roadway Safety

Making practical use of affect-sensitive sensor data to improve safety is a layered problem
with solutions at the technology layer, the behavior modification layer, and the policy layer. In a
study that merged physiological data (ECG heart monitoring) and vehicle data (speed, acceleration,
fuel consumption, and pedal position), researchers went beyond characterizing individual driver
behavior, suggesting that locations where multiple drivers experienced stress could help “map
potentially dangerous road segments and intersections” [97]. Such information on human factors can
complement and help interpret speed and braking patterns already captured by road sensors and
external surveillance cameras [98], and geometric road characteristics like curvature and elevation
collected by mobile phone sensor data analysis with an eye toward adjusting speed limits on rural roads
with horizontal curves [99]. These examples suggest that real-time crash prevention is not the only goal
for in-vehicle and wearable driving sensors. For instance, patterns of human stress reactions to specific
traffic conditions could effectively distill years of human driving experience into safer algorithms for
self-driving cars. The benefits of these advanced sensors can also extend to pedestrians and passengers
of vehicles without sensors in the form of road repairs, warning signs, and traffic re-routing.

A well-integrated monitoring and assistance system is likely to maximize the intended safety
benefits while minimizing barriers to adoption. From a user’s perspective, having an intelligent system
is only part of the solution, the other requirement is user’s acceptance, adoption, and cooperation.
In their conceptual framework, Lee and See described the processes from receiving information on a
display to calibrate trust in automation and to develop reliance on automation, and how this process is
influenced by individual, organizational, cultural, and environmental contexts [100]. For affect-sensitive
driver interfaces to efficiently monitor and support drivers, the sensors, technologies, interfaces, users,
and the operating environment (vehicle itself and supportive infrastructure) should be designed jointly
and as one whole system [101].

5. At-Risk Example Population: Drivers with Autism Spectrum Disorders

The literature shows that sensors used for affect detection do provide information relevant
to monitoring driver behavior. However, most studies do not include drivers with autism. This
population is covered as an at-risk example of drivers with special needs to consider. Specifically,
individuals with autism have deficits in accurately expressing explicit cues of affect, making forms
of affect detection that rely on generalized facial expressions or neurotypical vocal tones less reliable.
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Individuals with autism spectrum disorders (ASD), are not devoid of affective expressions [102–104],
but their own understanding of them and interpretation by others is limited [105,106]. For example, a
person with ASD might smile when actually in pain. Furthermore, facial feature interpretation can be
challenging because of their difficulties in displaying the expected range of facial expressions [107,108]
or mismatch with their vocal tone. Therefore, monitoring another communication signal can be very
informative for detecting changes in emotions for this population. An affect-sensitive system that can
interpret the changing emotions of a driver and react with useful and appropriate feedback could be
transformative. This at-risk population may require more training hours than neurotypical individuals,
before driving skills are acquired at a safe level. As a focus discussed in future directions, driving
simulators will be targeted to develop the intervention infrastructure.

Autism rates are growing, and the challenges autism presents to daily life abound. Research
suggests prevalence rates of autism have increased in the last four decades from 1 in 10,000 to an
estimated 1 in 68 children and 1 in 42 boys, based on the latest CDC report [109]. Individuals with
autism are characterized by having difficulties with social interaction and communication, and a
tendency to fixate on limited interests and repetitive behaviors [110]. The symptoms can range in degree
from mild to severe, which is why autism is a spectrum disorder and generally described as autism
spectrum disorders, or ASD. Even though there is increasing research in technology-assisted autism
intervention, there is a paucity of published studies that specifically address how to automatically
detect and respond to affective states of individuals with ASD. Such ability could be critical given
the importance of human affective information in human–technology interaction [27,111] and the
significant impacts of the affective factors of children with ASD on the intervention practice [112–114].

People with autism do have changing physiological signals that indicate reactions to their
experiences [102–104]. Detecting subtle markers of changes in emotions is important in autistic therapies.
Trained therapists make their best interpretations but could be further assisted by advancements
in affective computing. Previous work demonstrated that affect-sensitive closed-loop human–robot
interaction improved performance and enhanced enjoyment for a small group of children with
ASD [115]. Advancements in sensors and interpretation of signals between drivers with ASD and
technology are needed. An intelligent driving simulator that can detect the affective states of a person
with ASD and interact with him/her based on such perception could have a wide range of potential
impacts. A clinician could use the history of the person’s affective information to analyze the effects of
the intervention approach. With the record of the activities and the consequent emotional changes
in the person with ASD, a driver training system could learn individual preferences and affective
characteristics over time and thus could alter the manner in which it responds to the needs of different
drivers with ASD.

6. Conclusions and Future Directions

For a full understanding of driver behavior and its relationship to safety, sensors must capture
both unintentional physiological signals correlated with fatigue/stress/affective states, and voluntary
interaction signals (for example, steering, braking, gripping) coming from the driver’s response to
those states. The general pattern that emerged from our literature review in Section 3 is that: wearable,
skin-contacting sensors are a practical means for successfully capturing unintentional physiological
signals. Surface-borne sensors are more practical than wearables, as discussed in the glove-vs.-wheel
example of Figure 1, but are more difficult to use for physiological sensing than for user activity
recognition because unreliable skin contact adds noise to most physiological signals. Perhaps for this
reason, wearables dominated the physiological sensors reviewed in Table 2, which was limited to
driving applications only. Meanwhile, driver–vehicle interaction sensing can be successful with either a
wearable or surface-borne approach. Table 3, our review of sensors that capture user-interaction signals,
had a relatively even split between wearable and surface-borne sensors for detecting driver–vehicle
interaction. Since these studies were so recent, we did not narrow the applications to a driving context.
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As these emerging user interaction sensor technologies mature, the practical advantages of in-vehicle
surface sensors may give them an edge over wearables.

Figure 3 puts our review of affect detection (Table 1), physiological sensors (Table 2), and
user-interaction sensors (Table 3) in context with the larger picture of driver behavior. A third category
of sensors, vehicle data sensors, refers to braking, steering, acceleration and other mechanical signals
available from vehicle computers. This sensor layer in the second row of the diagram is the link
between driver behavior and possible safety interventions.
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This review suggests utilizing implicit communication by analyzing affective information gathered
from physiological data of a person during affect-sensitive interactions with an intelligent system.
The intelligent system, such as an advanced driver training system, will take in processed physiological
signals and apply an affective model which maps the signals to an affective state. Then that system
will make decisions about altering the interaction to respond appropriately to the affective state.
The intelligent system is trying to emulate the human ability to detect, interpret, and influence affective
states. Although such systems will not be able to precisely define a user’s internal motivations, the
information can be used as feedback to improve HMI and skill learning. Closed-loop interaction is
achievable, after open-loop analysis to process the signals into samples of features and build affective
models to relate feature samples to an affective state. The current climate of high acceptance of
wearable electronics in daily life, data-driven solutions, and demand for more communication between
humans and machines is ripe for advancements in affective computing. Teenagers may be willing
adopters of such technology and could be the first generation to witness the future fruits of affective
computing experiments, implemented on common computing devices during closed-loop interactions
in everyday life.

Conducting a comprehensive study of physiological signal analysis during driving situations,
with an open-ended broad list of emotions would be a useful next step. Such a study could be
modeled after AlZoubi, D’Mello, and Calvo’s work on the exploration of computer-based learning
situations [18]. This previous work collected data on which emotions are likely to occur in a learning
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activity. Participants were 27 adults that completed a learning module on a computer. Participants then
watched their 45-min session again and gave labels to every 20 s of the experience. The affective states
they could choose from included: boredom, confusion, curiosity, delight, flow/engagement, frustration,
surprise, neutral (no affect), and an “other” category. This research provided important information on
which emotions are more likely to be experienced in a learning situation. A similar study centered on a
driving task would be of great benefit to quantify which emotions are more prevalent while driving.
These insights can then guide the deployment of sensors and the integration of unintentional and
intentional signals that will support driver monitoring, assistance, and intervention.

Additionally, future research should systematically compare the feasibility and efficacy of
emerging surface-borne and other practical sensors in a driving context and investigate the potential
for monitoring a driver’s affective state and implications for training and interventions. This work
needs to be conducted in simulators as well as naturalistically with a focus on improving safety and
well-being of the drivers. Practical applications should be envisioned beyond real-time intervention in
individual vehicles. Large-scale statistics on drivers’ affective states in response to common driving
situations could offer valuable training insights for driverless vehicle algorithms. Mapping stress
and distraction could suggest better design rules for future roadways. Affective mapping might
also pinpoint where to spend transportation funds on roadway modifications that improve safety
not only for individual sensor-equipped vehicles, but also for cyclists, pedestrians, and drivers with
autism who do not outwardly express affective states in the same manner as the majority of drivers.
As we pointed out earlier, clinically-disadvantaged populations, such as individuals with autism
spectrum disorders [52,104,108], can especially benefit from tailored in-vehicle intelligent systems
that monitor vehicle control behaviors and the underlying physiological states. Practical wearable
and surface-borne sensors coupled with already available vehicle data sensors provide the means to
connect affect detection to driver, vehicle, and transportation system interventions.
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