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Abstract: To safely select the proper therapy for ventricular fibrillation (VF), it is essential to distin-
guish it correctly from ventricular tachycardia (VT) and other rhythms. Provided that the required
therapy is not the same, an erroneous detection might lead to serious injuries to the patient or
even cause ventricular fibrillation (VF). The primary innovation of this study lies in employing a
CNN to create new features. These features exhibit the capacity and precision to detect and classify
cardiac arrhythmias, including VF and VT. The electrocardiographic (ECG) signals utilized for
this assessment were sourced from the established MIT-BIH and AHA databases. The input data
to be classified are time–frequency (tf) representation images, specifically, Pseudo Wigner–Ville
(PWV). Previous to Pseudo Wigner–Ville (PWV) calculation, preprocessing for denoising, signal
alignment, and segmentation is necessary. In order to check the validity of the method independently
of the classifier, four different CNNs are used: InceptionV3, MobilNet, VGGNet and AlexNet. The
classification results reveal the following values: for VF detection, there is a sensitivity (Sens) of
98.16%, a specificity (Spe) of 99.07%, and an accuracy (Acc) of 98.91%; for ventricular tachycardia
(VT), the sensitivity is 90.45%, the specificity is 99.73%, and the accuracy is 99.09%; for normal
sinus rhythms, sensitivity stands at 99.34%, specificity is 98.35%, and accuracy is 98.89%; finally,
for other rhythms, the sensitivity is 96.98%, the specificity is 99.68%, and the accuracy is 99.11%.
Furthermore, distinguishing between shockable (VF/VT) and non-shockable rhythms yielded a
sensitivity of 99.23%, a specificity of 99.74%, and an accuracy of 99.61%. The results show that
using tf representations as a form of image, combined in this case with a CNN classifier, raises the
classification performance above the results in previous works. Considering that these results were
achieved without the preselection of ECG episodes, it can be concluded that these features may be
successfully introduced in Automated External Defibrillation (AED) and Implantable Cardioverter
Defibrillation (ICD) therapies, also opening the door to their use in other ECG rhythm detection
applications.

Keywords: Biomedical Systems; Electrocardiographic Signals; ventricular fibrillation; ventricular
tachycardia; time–frequency representation; non-stationary signals; image analysis; CNN

1. Introduction

Cardiac arrhythmia is prevalent in developed countries and represents a significant
cause of mortality. Ventricular fibrillation (VF), even in its milder episodes, can lead to
sudden cardiac death. As a result, the timely detection of ventricular arrhythmia is crucial
to initiate appropriate therapeutic interventions and safeguard the patient’s life. While
the causes of arrhythmia may vary, they all stem from disruptions in the heart’s cellular
electrophysiology. Autopsy studies have consistently revealed that arrhythmogenic cardiac
disorders are the primary underlying cause in cases of sudden cardiac death, with no
evidence of pathological abnormalities in the heart. This underscores the fact that VF can
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trigger a rapid and irreversible degenerative process in the heart’s electrical system, leading
to fatal consequences [1,2]. In order to restore normal cardiac rhythm during a ventricular
fibrillation (VF) episode, the standard procedure involves the application of electrical
defibrillation to the heart using an Automatic External Defibrillator (AED) [3]. AEDs are
now readily available in various public locations, including airports, shopping centers,
sports arenas, and more. This crucial process entails delivering a high-energy electrical
shock externally, through the patient’s chest wall, with the aim of reestablishing a regular
heart rhythm. Several studies [4–6] have demonstrated that the success of defibrillation is
inversely correlated with the time elapsed between the onset of a ventricular fibrillation
(VF) episode and the application of the electrical discharge. In other words, the longer the
interval between the start of VF and the administration of the electrical shock, the lower the
likelihood of a successful defibrillation. These findings underscore the critical importance
of early intervention and prompt defibrillation in improving the chances of restoring a
normal heart rhythm during VF episodes.

Detecting ventricular fibrillation (VF) automatically poses significant challenges due
to its intrinsic characteristics, such as a lack of organization and irregularity, especially
considering the existence of similar pathologies such as ventricular tachycardia (VT), where
the required therapy is not the same as in VF. Specifically, some types of VT can be recov-
ered by using drugs, and others require a low-energy synchronized electrical stimulation
cardioversion. To successfully revert VF, an electrical shock must be administered, and the
intensity of the shock (defibrillation level) depends on the stage of ventricular fibrillation.
The early detection of VF enables the use of lower shock levels, facilitating faster restoration
of the heart’s normal rhythms. However, it is of utmost importance to exercise caution, as
administering an electrical shock to a patient not experiencing VF can lead to severe harm or
even trigger VF. Ventricular tachycardia (VT) is one of the rhythms that can be particularly
challenging to discern, underscoring the significance of accurate differentiation for making
appropriate treatment decisions. Various detection algorithms have been developed uti-
lizing diverse signal-processing techniques, including the Hilbert transform [7], Fourier
transform [8], wavelet transform, and other signal processing methods [9,10], as well as
time–frequency representations [11]. These techniques share a common characteristic: they
integrate temporal and spectral information within the same representation. This fusion
of information is particularly crucial when dealing with non-stationary processes like the
electrocardiogram (ECG) signal, especially in the presence of irregular pathologies such as
ventricular fibrillation (VF). By combining temporal and spectral information, these algo-
rithms enable more effective detection and analysis of VF, enhancing our understanding
and ability to diagnose and treat these irregular cardiac conditions.

The detection of ventricular fibrillation (VF) or ventricular tachycardia (VT) using
electrocardiogram (ECG) data has been explored through numerous statistical methods.
However, these manual approaches often struggle to extract features that effectively capture
the intricate characteristics of ventricular arrhythmia. Consequently, machine learning
techniques have emerged as successful alternatives for cardiac arrhythmia recognition. For
instance, in [12], the wavelet method was implemented to identify ECG arrhythmias, specif-
ically discerning three types of episodes: Normal, VT, and VF. In [13], a Support Vector
Machine (SVM) with a Gaussian Kernel was employed to detect ventricular irregularities,
utilizing morphological features. Furthermore, in [14], for the detection and classification
of shockable arrhythmias (VF/VT) Random Forest (RF) decision trees were utilized in
combination with Variational Mode Decomposition. In [15], the real-time identification
of shockable episodes (VF/VT) was realized using fixed thresholds. Moreover, beyond
these strategies, alternative studies have embraced a range of machine learning techniques
for the identification and classification of ventricular arrhythmias. In [16], a C4.5 classifier
was implemented. [17] employed a k-Nearest Neighbor (kNN) classifier while [18] utilized
Bayesian decision methods. Additionally, [19] employed Decision Trees in conjunction
with independent component analysis (ICA). By harnessing the power of machine learning,
these approaches offer promising avenues to improve the accuracy and depth of ventricular
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arrhythmia detection. They enable the extraction of meaningful features and enhance
the understanding and recognition of complex cardiac conditions. As a result, these ad-
vancements contribute to more effective diagnosis and treatment strategies for ventricular
arrhythmia.

Applying traditional algorithms to leverage the information contained within the
architecture of electrocardiogram ECG data poses a significant challenge, primarily due
to the non-stationary nature of biomedical signals. Consequently, these conventional
algorithms often exhibit limited performance when it comes to representing the intricate
characteristics present in such complex data. In contrast, convolutional neural networks
(CNNs) have garnered substantial interest in the scientific communities focused on image
and speech classification. This heightened attention stems from the fact that the topology of
CNNs closely resembles that of biological systems. As a result, CNNs offer a more suitable
framework for capturing and analyzing the complex patterns inherent in ECG signals,
allowing for improved performance in detecting and classifying cardiac conditions.

1.1. Related Work

Convolutional neural networks (CNNs) have found extensive application in various
domains, including traffic sign detection [20], indoor object detection [21,22], and numerous
other fields [23,24]. Recognizing faces poses a significant challenge and has garnered
interest across different disciplines such as psychology, model identification, computer
vision, and computer graphics. Consequently, the literature on face recognition is vast
and diverse. In [25], the authors presented a long-distance face recognition method that
addresses the variation in recognition rates caused by distance variations. They employed
a CNN for face recognition and measured similarity using the Euclidean distance. This
approach achieved outstanding performance at various distances, surpassing traditional
face recognition methods. A hybrid system for face recognition was introduced by the
authors in [26], combining a Logistic Regression Classifier (LRC) with a CNN. The CNN
was trained to localize and identify faces in images, while the LRC classified the features
learned by the convolutional network. Experimental results on the Yale face dataset [27]
demonstrated improved classification accuracy and reduced processing time. In [28],
a CNN-based face identification system with nine layers was proposed. The network
consisted of three convolution layers, two pooling layers, two fully connected layers, and
one Softmax layer. The proposed CNN was evaluated on the ORL face [29] and AR face
datasets [30], achieving higher recognition rates compared to traditional machine learning
and handcrafted feature methods for face identification. The implementation of a deep
learning algorithm for face recognition was detailed in [31]. The algorithm was based
on the OpenFace project, utilizing the FaceNet neural network architecture [32]. The
results highlighted the effectiveness of the incremental learning algorithm in improving
performance. An Active Face Recognition system (AcFR) was proposed in [33], which
employed a CNN and mimicked human behavior in common face recognition scenarios.
A pre-trained VGG-Face CNN was utilized to extract facial image features, followed by
nearest-neighbor identity recognition for identification. Evaluation of the CMU PIE face
dataset [34] demonstrated that the recognition stage of the AcFR system outperformed
that of alternative systems. In [35], the authors introduced a novel face recognition system
using a deep C2D–CNN model at the decision level.

1.2. Proposed Work

In this work, we propose a ventricular arrhythmia detection method, distinguish-
ing VT and VF shockable rhythms, based on feeding a CNN with raw time–frequency
data. It follows from the idea that the feature extraction from the matrix resulting from
the time–frequency analysis using CNN allows better results to be obtained than those
detectors using feature-selection strategies and reducing to a minimum the necessary signal
preprocessing. In order to prove the validity of this method, a range of four CNN-based
classifiers of different natures are used to evidence its independence of the classifier.
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To achieve the objectives, this paper is structured as follows. Section 2 introduces
the CNN algorithm, Section 4 describes the materials used and provides details on the
processing applied to the ECG signal. Sections 5, 6 and 8 present the results, discussions,
and conclusions, respectively.

2. Deep Learning Algorithms

Deep learning models are neural networks that possess a deep structure inspired by
the intricate workings of the human brain. By mimicking its processes, deep learning aims
to address a wide range of learning problems. Particularly in the field of computer vision,
deep learning techniques have achieved remarkable success. Currently, the main types of
networks are multilayer perceptron, CNN, and recurrent neural network (RNN) [36]. As
for other DL networks, such as fully convolutional networks (FCNs) they are typically used
in tasks related to semantic segmentation [37].

2.1. Fundamental Concepts of Convolutional Neural Networks

In this section, we will introduce the widely recognized convolutional neural network
(CNN) architecture and discuss the specific model utilized in this study.
As discussed earlier, CNNs are popular due to their improved performance in image
recognition and classification. Architecture-wise, CNNs are simply feedforward Artificial
Neural Networks (ANNs) [38,39], as illustrated in Figure 1. CNNs are characterized by
their layered structure and employ filters, kernels, or neurons with learnable weights
and biases. Each filter receives input, performs convolution operations, and may apply
non-linear transformations [40]. A typical CNN architecture comprises the following
components:

• The convolutional layer (CONV), which processes the received input data;
• The pooling layer (POOL), which allows compressing the information by reducing

the size of the intermediate image (often by subsampling);
• The Fully Connected Layer (FCL) layer, which is a perceptron-type layer;
• The classification layer (Softmax), which predicts the class of the input image.

Figure 1. Artificial Neural Network (ANN).

2.1.1. Convolutional Layer

The convolutional layer is a fundamental component of a Convolutional Network and
plays a crucial role in the computational process. Its main function is to extract features
from input data, particularly images. By applying convolution, the spatial correlation
between pixels is preserved as the network learns image features using small squares of
the input image. A set of learnable neurons convolve the input image, resulting in a feature
map or activation map in the output image [36]. A kernel is placed in the top-left corner
of the image. The process is repeated until all possible locations in the image are filtered,
which is shown in Figure 2.
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Figure 2. The process of a convolution operation.

2.1.2. Nonlinear Activation Function

The results of a linear operation, such as convolution, undergo further processing
through a nonlinear activation function. While smooth nonlinear functions like sigmoid or
hyperbolic tangent (tanh) were previously utilized due to their resemblance to the behavior
of biological neurons, the rectified linear unit (ReLU) has become the most popular choice
for nonlinear activation functions. The ReLU function is defined as f (x) = max(0, x).
Please refer to Figure 3 for a visual representation.

Figure 3. Activation functions commonly applied to neural networks: (a) rectified linear unit (ReLu),
(b) Sigmoid, and (c) hyperbolic tangent (Tanh).

2.1.3. Pooling Layer

The pooling layer plays a crucial role in reducing the spatial size of the representa-
tion, thereby reducing the number of parameters and computational load in the network.
Additionally, it helps to control overfitting. It is important to note that the pooling layer
does not involve any learning process. Pooling units are generated using functions such
as max-pooling, average pooling, or L2-norm pooling [36]. The process of the pooling
operation is shown in Figure 4.

Figure 4. The process of pooling operation.
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2.1.4. Fully Connected Layer

The FCL serves as the final pooling layer, providing the extracted features to a classifier
that uses the Softmax activation function [36]. The Softmax function ensures that the
sum of the output probabilities from the Fully Connected Layer is 1. It achieves this by
transforming a vector of arbitrary real-valued scores into a vector of values between zero
and one that add up to one.

2.1.5. Loss Function

A loss function, also known as a cost function, quantifies the agreement between the
network’s output predictions obtained through forward propagation and the provided
ground truth labels [41]. In multiclass classification tasks, the cross-entropy loss function
is commonly used, while the mean squared error is typically employed for regression
tasks involving continuous values. The selection of an appropriate loss function is a
hyperparameter that depends on the specific task at hand and needs to be determined
accordingly

2.2. Optimization of Hyperparameters

Hyperparameters are parameters in a convolutional neural network (CNN) that are
not learned during the training process but need to be specified beforehand. These hy-
perparameters significantly influence the network’s performance and can be adjusted to
optimize the model’s accuracy and training efficiency. Some important hyperparameters in
CNNs include the following.

• Number of layers [42]: A conventional CNN typically consists of multiple layers,
including convolutional layers, activation layers (e.g. ReLU), pooling layers, and fully
connected layers.

• Filter size (Kernel Size) [43]: The size of the filters used in the convolutional layers is
an important parameter. Common filter sizes are 3 × 3, 5 × 5, and 7 × 7.

• Number of filters [44]: The number of filters in each convolutional layer determines
the depth of the feature maps generated. More filters lead to more expressive power
but also increase computation requirements.

• Stride [45]: The stride determines the step size at which the filter is moved across the
input image. Common values are 1 and 2, with larger strides reducing the size of the
output feature maps.

• Padding [45]: Padding can be used to preserve the spatial dimensions of the input
when convolving with filters. Common padding values are ’same’ and ’valid’.

• Activation function [46]: Common activation functions include ReLU (rectified linear
unit), leaky ReLU, and Sigmoid. ReLU is widely used due to its simplicity and
effectiveness.

• Pooling [47]: Pooling layers downsample the feature maps reduces the spatial dimen-
sions. Common pooling types are Max pooling and average pooling, typically with a
pool size of 2 × 2.

• Fully connected layers [48]: The number of neurons in the fully connected layers
can vary based on the complexity of the task. The output layer size depends on the
number of classes in the classification task.

• Dropout [49]: Dropout is a regularization technique that randomly sets a fraction of
neurons to zero during training, preventing overfitting. Common dropout rates are
between 0.2 and 0.5.

• Batch size [50]: The number of samples used in each iteration during training. Smaller
batch sizes are computationally more expensive but can lead to better convergence.

• Number of epochs [51]: This is the number of times the entire training dataset is
passed through the network during training.

• Learning rate [52]: The learning rate controls the step size during optimization. A
small learning rate leads to slow convergence, while a large learning rate can cause
instability.
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• Optimizer: Common optimizers used in CNNs include Stochastic Gradient Descent
(SGD) [53], Adam, and RMSprop.

The choice of these parameters depends on the specific problem, dataset, and available
computing resources. Often, hyperparameter tuning and experimentation are required to
find the best parameter settings for a given CNN architecture and task.

2.3. CNN Architectures

In this study, four different CNN architectures were employed: AlexNet, VGGNet,
InceptionV3, and MobileNet.

2.3.1. AlexNet

AlexNet is a deep CNN architecture capable of classifying over 1000 different classes.
It consists of five convolutional layers (CLs) with three pooling layers, two fully connected
layers (FLCs), and a Softmax layer. AlexNet utilizes a total of 650 k neurons and 60 million
parameters. The input image for AlexNet needs to have dimensions of 227 × 227 × 3. The
first CL takes the input image and applies 96 kernels of size 11 × 11 × 3 with a stride of
four pixels, producing the output for the second layer [54].

2.3.2. VGGNet

VGGNet, short for the visual geometry group network, is a deep neural network
known for its multilayered architecture. It is based on the CNN model and has been widely
applied to the ImageNet dataset. VGG-19, in particular, is known for its simplicity and
utilization of 3 × 3 convolutional layers, which contribute to its increased depth. Max
pooling layers are used to reduce the volume size in VGG-19, and it includes two fully
connected (FC) layers with 4096 neurons [55].

2.3.3. Inception V3

The Inception V3 is a deep learning model based on convolutional neural networks,
which is used in image analysis and object detection. Inception V3 is a superior version of
the basic model Inception V1, which was introduced by Szegedy and others in 2014 [56].

2.3.4. MobileNet

The MobileNet model is specifically designed for efficiency and optimized for running
on embedded or mobile devices. Its key layer is the depthwise separable convolution, which
helps reduce the number of features. MobileNet v2, released in April 2017, introduced
bottleneck layers and shortcut connections as updates from the previous version [57].

3. Time–Frequency Representation

The Wigner–Ville Distribution (WV) is one of the most commonly used representations
for time–frequency analysis. It is applied to the ECG time window without applying the
Hilbert transform before performing the time–frequency decomposition. Figure 5 shows
the symmetry of the diagram due to the presence of both positive and negative frequencies.
In the second case, the analytic signal is first calculated using the Hilbert transform, and
then each matrix is processed using the WV based on the obtained analytic signal.

Compared to the PWV, the artifacts and interferences introduced by the WV have
been reduced, allowing for clearer spectral visualization [58], so the Pseudo Wigner–Ville
(PWV) variant was finally used. This variant reduces these terms using a smoothing kernel
h(t). The mathematical description of PWV is defined as shown in the equation below.

PWVx =
∫ +∞

−∞
h(τ)S(t +

τ

2
)S∗(t +

τ

2
)e−j2νπτdτ (1)

where S(t) is the analyzed signal, τ is the time lag, t is the time instant, and h is the frequency
smoothing window. In order to reduce interference, PWV uses the analytic signal to replace
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the original signal filtering out and thus the negative frequency. The analytic signal S(t)
corresponding to the original x(t) signal is given by Equation (2).

S[x(t)] = x(t) + jH[x(t)] (2)

where H[x(t)] is the Hilbert transform of x(t), as shown in Equation (3).

H[x(t)] =
1
π

∫ +∞

−∞

x(τ)
t − τ

dτ (3)

Figure 5. PWV distribution of the ECG Normal signal directly processed without the Hilbert trans-
form. PWV distribution of the Normal analytic signal using the Hilbert transform.

4. Material and Methods

Figure 6 shows the general scheme of the followed methodology, from the reading of
the records of the database to the results obtained by the classifier.

Figure 6. A comprehensive diagram outlines the series of processing steps applied in the detection of
ventricular fibrillation.

The developed methodology is composed of four fundamental phases.

• First phase: The dataset used is described.
• Second phase: The ECG data undergoes filtering to reduce baseline interference. Once

filtered, the Window Reference Mark (WRM) of the ECG signal is obtained. Each
WRM indicates the start of a time window (tw) within the ECG signal.
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• Third phase: Information extraction is performed by applying the Hilbert transform
(Ht) to each window tw obtained in the first phase. Subsequently, the TFR matrix is
computed using the Pseudo Wigner–Ville method, resulting in the Time–Frequency
Representation Image (TFRI).

• Fourth phase: The TFRI matrices obtained in the previous step are used as input for a
deep learning CNN (CNN1, CNN2, InceptionV3, MobilNet, VGGNet, and AlexNet), as
detailed in Sections 2.3 and 4.4.1. The success of ventricular fibrillation (VF) detection
relies on signal processing techniques and the structure of the classifiers employed. To
achieve optimal performance, it is necessary to adjust the CNN parameters to better
adapt to the data.

4.1. Materials

The ECG records used in this study were sourced from the MIT-BIH Malignant Ventric-
ular Fibrillation [59] and AHA (2000 series) [60] standard databases. Without preselecting
ECG episodes, the analysis was conducted to simulate the use of an AED. A total of 24 pa-
tients were included in the analysis, consisting of 22 records from the MIT-BIH database and
two additional records from the AHA database. Each record contained half-hour annotated
ECG recordings of continuous ECG. The inclusion of AHA records was intended to increase
the number of ventricular tachycardia (VT) episodes and improve the balance of recorded
time between ventricular tachycardia (VT) and ventricular fibrillation (VF) episodes. The
study defined four groups (classes) of rhythms: normal sinus rhythm (Normal), ventricular
tachycardia (VT), ventricular fibrillation including flutter episodes (VF), and other rhythms
(non-ventricular arrhythmia, noise, etc.), labeled as Other (Other).

4.2. Electrocardiographic Signal Preprocessing
4.2.1. Denoising

The purpose of this preprocessing stage is to eliminate various types of noise present
in the ECG signal, such as baseline oscillation and interferences like power line interference
and electromyogram (EMG). Baseline oscillations typically have a frequency range below
1 Hz, power line interference occurs at 50 or 60 Hz, and the EMG exhibits a wide bandwidth
with low amplitude when the patient is at rest and with a low energy below 45 Hz. To
address these issues, the ECG signal is first resampled to 125 Hz. Then, an 8th-order IIR
bandpass filter with a Butterworth response is applied, with a passband ranging from
1 Hz to 45 Hz. This effectively removes the baseline oscillation below 1 Hz, power line
interference, and EMG activity above 45 Hz [61,62], as illustrated in Figure 7.

Figure 7. IIR bandpass filter applied to a Normal-type ECG. The original temporal signal is plotted
in blue, and the filtered output signal is shown in red. The frequency response of the filter is
displayed below.
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4.2.2. Segmentation

The next step involves obtaining a Window Reference Mark (WRM) to indicate the
beginning of the ECG time window, denoted as tw. According to [58], a normal heart
rate range is considered to be between 50 and 120 beats per minute (bpm). Therefore, the
minimum distance (WRMmin) and maximum distance (WRMmax) between two consecutive
WRMs are set to 0.5 s and 1.2 s, respectively. These values were utilized in our analysis.
The calculation of WRM reference marks was performed using a pre-existing algorithm,
where NLMC represents the number of local maxima LM marks present in the signal. From
each generated WRM reference mark, a time window twj of 1.2 s in length (150 samples)
was created, starting at the corresponding WRM mark WRMj, as shown in Equation (4).

twj = [WRMj, WRMj + 1.2 s]; j = 1, . . . , NLMC (4)

4.3. Extraction of Image from TFR

Once the data matrix is obtained from the Time–Frequency Representation (TFR)
combined with the Hilbert transform (Ht) for each tw window, this data matrix TFR is
converted into an image TFRI (Lf × Lt) with a size of Lf × Lt pixels, where Lf = 45 and
Lt = 150. This image is then directly input into the CNN. This approach ensures that all
temporal and spectral information from the ECG signal is preserved in the data matrix,
providing the classifier with comprehensive data information. It is important to note that
there is no feature extraction performed on the TFRI, as it already contains the temporal
and spectral information of the ECG signal.

Figure 8 illustrates examples of the time–frequency representations (TFR) using the
Pseudo Wigner–Ville (PWV) transform for signals belonging to the Normal, Other, VT, and
VF classes. The intensity distributions clearly exhibit distinct patterns for each class. In the
case of a Normal signal, the intensity is localized in time, primarily due to the QRS complex,
and it covers a wide range of frequencies. On the other hand, VF signals exhibit irregular
intensity distributions along both the time and frequency axes without a specific pattern.

4.4. Model Training and Evaluation
4.4.1. Model Architecture

The architectures of the proposed CNN model are summarized in Table 1.

• In the CNN1 method, 2 fully connected layers utilize the output from the TFR and
predict the class of the image based on the vector calculated in previous stages.

• In the CNN2 method, the network consists of 6 layers, including 2 convolution layers,
2 max-pooling layers, and 2 fully connected layers. Each convolution layer (layers 1
and 2) applies convolution with its respective kernel size (layers 3 and 4). Following
each convolution layer, a max-pooling operation is performed on the generated feature
maps. The purpose of max-pooling is to reduce the dimensionality of the feature maps,
aiding in the extraction of essential features.

4.4.2. Training the Convolutional Neural Network Model

Unlike other research studies, which utilized optimization techniques to select layers
in complex CNN architectures and employed different hyperparameters for training, in
our case, we have taken a different approach. We began with a basic CNN structure
and conducted a series of systematic tests where we progressively added and adjusted
layers. Throughout this process, we maintained consistent hyperparameters for training.
We evaluated the impact of these layers on performance using a validation dataset. This
unique methodology has enabled us to identify the specific layers that have a notable
positive impact on the network’s performance for the particular task we are addressing.
The Adam optimizer was employed for training the model, and the categorical cross-
entropy loss function was utilized for this purpose. The model was trained for 100 epochs.
The training and validation results are depicted in Figures 9 and 10. We can see that the
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error is close to 0 and the accuracy value is very high in both the training and evaluation
sets. This indicates that training with 100 epochs is sufficient to have a well-trained model.

Figure 8. In the illustration, the columns, from top to bottom, represent the original ECG time signal
window, TFR (150× 150), TFR + Ht (150× 150), TFR + Ht (45× 150), and TRFI (45× 150), respectively.
From left to right, they correspond to the classes Normal, Other, VT, and VF, respectively.

Table 1. Details concerning the proposed CNN1 and CNN2 architecture.

Model CNN1

Layer Kernel Size Filter Number #Parameters

FC1 512 - 16589312
FC2 256 - 131328

Softmax 4 - 1285

Model CNN2

Layer Kernel Size Filter Number #Parameters

Conv1 3 × 3 32 320
Max Pooling1 4 × 4 - 0

Conv2 3 × 3 64 18496
Max Pooling2 4 × 4 - 0

FC1 128 - 991360
FC2 256 - 33024

Softmax 4 - 1028
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Cross-validation is essential for selecting optimal parameters in machine learning
and deep learning. Various traditional cross-validation methods are available, such as
leave-one-out cross-validation and k-fold cross-validation [63]. In this study, we followed a
specific approach. We randomly chose 67% of the data for each class for training, leaving
33% for testing. The CNN model was trained on the training data, and we evaluated its
classification performance on the test data employing metrics like sensitivity, specificity,
a, and F-Score. We repeated this process five times with different random selections and
averaged the results to assess the overall classifier performance.

Figure 9. Loss function diagram. The figure shows the function image of the model training CNN2;
the train loss is 0.02, and the val loss is 0.1.

Figure 10. Accuracy function. The figure shows the function image of model training Ht_TFR_CNN2;
the train accuracy is 100%, and the val accuracy is 98%.

4.5. Performance Metrics for Classification

The performance of different networks on the testing dataset was evaluated after
the completion of the training phase. The evaluation was based on four performance
metrics: accuracy, sensitivity, specificity, and F-Score. The following equations were used
for calculation [64,65]:
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Accuracy(%) =
(TP + TN)

(TP + FP + TN + FN)
× 100 (5)

Sensitivity(%) =
(TP)

(TP + FN)
× 100 (6)

Speci f icity(%) =
(TN)

(TN + FP)
× 100 (7)

FScore(%) =
(2 × TP)

(2 × TP + FP + FN)
× 100 (8)

In the classification of Normal, Other, VT, and VF patients, the terms true-positive
(TP), true-negative (TN), false-positive (FP), and false-negative (FN) were used.

5. Results

The preprocessing stage involved denoising and reducing baseline variation by apply-
ing an eighth-order Butterworth IIR bandpass filter with a frequency range of 1 Hz to 45 Hz.
Window reference marks (WRMs) were calculated to indicate the beginning and end of the
1.2 s time window for each temporal signal. As previously mentioned, the experiments
in this study utilized signals extracted from the MIT-BIH and AHA standard databases,
categorized into four distinct groups: VF, VT, Normal, and Other. The initial preprocessing
step encompassed denoising and baseline variation reduction through the utilization of an
eighth-order Butterworth IIR bandpass filter with a frequency range spanning from 1 Hz
to 45 Hz. Furthermore, window reference marks (WRMs) were generated to delineate the
temporal boundaries of the 1.2 s time window (tw) for each signal.

We have proposed three different techniques to extract the image feeding the classifier:
TFR_CNN1, Ht_TFR_CNN1, and Ht_TFR_CNN2.

• In the TFR_CNN1 approach, we initially transformed each tw into a time–frequency
Representation Image (TFRI) utilizing the Pseudo Wigner–Ville transform, without
using the Hilbert transform (Ht). The resulting image was then converted into a
feature vector, which served as input for the Fully Connected Layer (FCL) of the
classifier.

• In the Ht_TFR_CNN1 method, information extraction involved applying the Hilbert
transform to each window’s tw obtained in the first phase, followed by the assessment
of the Time–Frequency Representation (TFR) matrix using the Pseudo Wigner–Ville
transform. The resulting TFR matrix was used to generate the TFRI, which was then
used as input for the FCL.

• In the Ht_TFR_CNN2 method, the parameters were extracted using CNN2 by com-
bining the Hilbert transform (Ht) and the TFRI. The extracted vectors were then used
as input for the FCL.

In the TFR_CNN1, Ht_TFR_CNN1, and Ht_TFR_CNN2 methods, after receiving
a vector at the input, the FCL applies a linear combination and an activation function
successively to classify the input image. The output of the FCL is a vector of a size
corresponding to the number of classes, where each component represents the probability
of the input image belonging to a specific class.

Figures 11–14 illustrate the confusion matrix for one of the iterations. Tables 2–5
present the averaged performance values acquired from the reiterated random validation
employed in this study. When the TFR_CNN1 algorithm was used (epochs = 50), the results
showed a sensitivity of 85.88%, an overall specificity of 99.30%, an overall accuracy of
96.82%, and an overall F-Score of 92.10% for VF, and a sensitivity of 95.84%, an overall
specificity of 97.19%, an overall accuracy of 97.09%, and an overall F-Score of 96.52% for
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VT. It can be concluded that achieving high classification results using the TFR_CNN1
strategy is challenging, primarily due to the significant similarity between VF and VT
signals. This necessitates the exploration of alternative approaches to address the class
discrimination problem, leading to the utilization of Ht with RTF. The results obtained
using the Ht_TFR_CNN1 algorithm (epochs = 50) for VF detection showed a sensitivity
of 98.04%, an overall specificity of 98.94%, an overall accuracy of 98.77%, and an overall
F-Score of 98.48%, while for VT, a sensitivity of 89.70%, an overall specificity of 99.70%,
an overall accuracy of 99.00%, and an overall F-Score of 94.43% were obtained. When
employing the Ht_TFR_CNN1 algorithm (epochs = 100) for VF detection, a sensitivity
of 96.44%, an overall specificity of 99.28%, an overall accuracy of 98.75%, and an overall
F-Score of 97.83% were achieved. For VT, the results included a sensitivity of 92.70%,
an overall specificity of 99.53%, an overall accuracy of 99.06%, and an overall F-Score of
95.99%.

Figure 11. Confusion matrix for classifying Normal, Other, VT, and VF classes utilizing the
TFR_CNN1 technique (Epochs = 50).

Figure 12. Confusion matrix for classifying Normal, Other, VT, and VF classes utilizing the
Ht_TFR_CNN1 technique (Epochs = 50).
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Figure 13. Confusion matrix for classifying Normal, Other, VT, and VF classes utilizing the
Ht_TFR_CNN1 technique (Epochs = 100).

Figure 14. Confusion matrix for classifying Normal, Other, VT, and VF classes utilizing the
Ht_TFR_CNN2 method (Epochs = 100).

Table 2. Results achieved for the classification of the Normal class during testing.

Class Normal

Algorithms
Sensitivity (%) Specificity (%) Accuracy (%) F Score (%)

Normal Global VF VT Other Total Total

Ht_TFR_CNN1 (Epochs = 50) 89.70 98.57 99.53 99.48 97.73 98.76 93.92
Ht_TFR_CNN1 (Epochs = 100) 99.29 98.62 98.88 99.33 98.03 98.91 98.95
Ht_TFR_CNN2 (Epochs = 100) 99.34 98.35 99.59 99.83 99.59 98.89 98.84

TFR_CNN1 (Epochs = 50) 98.70 98.59 99.46 98.73 97.73 98.65 98.64

Table 3. Results achieved for the classification of the Other class during testing.

Class Other

Algorithms
Sensitivity (%) Specificity (%) Accuracy (%) F Score (%)

Other Global VT Normal VF Total Total

Ht_TFR_CNN1 (Epochs = 50) 97.24 99.41 99.82 99.29 99.65 98.95 98.31
Ht_TFR_CNN1 (Epochs = 100) 97.74 99.62 99.83 99.60 99.58 99.22 98.67
Ht_TFR_CNN2 (Epochs = 100) 96.98 99.68 99.96 99.61 99.79 99.11 98.31

TFR_CNN1 (Epochs = 50) 97.24 99.47 100 99.33 99.73 98.98 98.34
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Table 4. Results achieved for the classification of the VT class during testing.

Class VT

Algorithms
Sensitivity (%) Specificity (%) Accuracy (%) F Score (%)

VT Global VF Other Normal Total Total

Ht_TFR_CNN1 (Epochs = 50) 89.70 99.70 96.71 99.84 99.94 99.00 94.43
Ht_TFR_CNN1 (Epochs = 100) 92.70 99.53 97.78 99.94 99.92 99.06 95.99
Ht_TFR_CNN2 (Epochs = 100) 90.45 99.73 96.92 99.94 99.98 99.09 94.86

TFR_CNN1 (Epochs = 50) 95.84 97.19 98.55 99.84 99.84 97.90 96.51

Table 5. Results achieved for the classification of the VF class during testing.

Class VF

Algorithms
Sensitivity (%) Specificity (%) Accuracy (%) F Score (%)

VF Global VT Other Normal Total Total

Ht_TFR_CNN1 (Epochs = 50) 98.04 98.94 90.96 99.64 99.68 98.77 98.48
Ht_TFR_CNN1 (Epochs = 100) 96.44 99.28 94.01 99.74 99.76 98.75 97.83
Ht_TFR_CNN2 (Epochs = 100) 98.16 99.07 91.56 99.74 99.83 98.91 98.61

TFR_CNN1 (Epochs = 50) 85.88 99.30 96.58 99.64 99.52 96.82 92.10

In the analysis of VF and VT detection using the Ht_TFR_CNN1 (epochs = 50) and
Ht_TFR_CNN1 (epochs = 100) methods, it can be observed that both sensitivity and overall
specificity fall within the range of 89.70% to 99.70%. These results are superior to those
obtained without utilizing Ht, indicating their considerable acceptability, and consequently,
they were chosen for subsequent tests. Regarding the Ht_TFR_CNN1 (epochs = 100)
method, the results are better than those obtained using Ht_TFR_CNN1 (epochs = 50),
indicating a better learning capability of the training dataset.

Analysis Based on Different CNN Algorithms

Figures 15–18 present the confusion matrix derived from one of the five iterations of
testing data. Additionally, we enhance the understanding of these findings by presenting
Tables 6–9, and Figures 19 and 20, which summarize the results obtained from comparing
the sensitivity, specificity, accuracy, and F-Score values achieved for the respective four
classes.

Figure 15. Confusion matrix for classifying Normal, Other, VT, and VF classes utilizing the VGGNet
method (Epochs = 6).
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Figure 16. Confusion matrix for classifying Normal, Other, VT, and VF classes utilizing the Alexnet
method (Epochs = 6).

Figure 17. Confusion matrix for classifying Normal, Other, VT, and VF classes utilizing the Mobilnet
method (Epochs = 6).

Figure 18. Confusion matrix for classifying Normal, Other, VT, and VF classes utilizing the Incep-
tionV3 method (Epochs = 6).
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Table 6. Results obtained for the classification of the Normal class in testing.

Class Normal

Techniques
Sensitivity (%) Specificity (%) Accuracy (%) F Score (%)

Normal Global VF VT Other Total Total

Ht_TFR_CNN1 (Epochs = 100) 99.29 98.62 98.88 99.33 98.03 98.91 98.95
Ht_TFR_CNN2 (Epochs = 100) 99.34 98.35 99.59 99.83 99.59 98.89 98.84

InceptionV3 (Epochs = 6) 77.99 99.65 99.92 39.30 99.32 87.17 87.49
MobilNet (Epochs = 6) 79.42 99.44 99.08 99.36 99.64 88.39 88.30
VGGnet (Epochs = 6) 96.61 98.32 97.97 100 98.59 97.39 97.45
AlexNet (Epochs = 6) 99.43 97.29 98.69 100 95.83 98.45 98.34

Table 7. Results obtained for the classification of the Other class in testing.

Class Other

Techniques
Sensitivity (%) Specificity (%) Accuracy (%) F Score (%)

Other Global VT Normal VF Total Total

Ht_TFR_CNN1 (Epochs = 100) 97.74 99.62 99.83 99.60 99.58 99.22 98.67
Ht_TFR_CNN2 (Epochs = 100) 96.98 99.68 99.96 99.61 99.79 99.11 98.31

InceptionV3 (Epochs = 6) 88.42 99.81 100 99.72 100 96.96 93.77
MobilNet (Epochs = 6) 99.64 85.08 98.41 79.60 97.68 88.21 91.78
VGGnet (Epochs = 6) 98.54 97.57 100 96.74 99.26 97.39 98.05
AlexNet (Epochs = 6) 95.78 99.57 100 99.58 99.40 98.77 97.63

Table 8. Results obtained for the classification of the VT class in testing.

Class VT

Techniques
Sensitivity (%) Specificity (%) Accuracy (%) F Score (%)

VT Global VF Other Normal Total Total

Ht_TFR_CNN1 (Epochs = 100) 92.70 99.53 97.78 99.94 99.92 99.06 95.99
HT_TFR_CNN2 (Epochs = 100) 90.45 99.73 96.92 99.94 99.98 99.09 94.86

InceptionV3 (Epochs = 6) 98.15 83.55 99.11 99.04 80.18 84.59 90.26
MobilNet (Epochs = 6) 95.53 97.66 98.89 100 99.90 97.49 96.58
VGGnet (Epochs = 6) 90.15 99.15 97.07 99.94 100 98.77 94.43
AlexNet (Epochs = 6) 91.84 99.47 97.54 99.94 100 98.94 95.50

Table 9. Results obtained for the classification of the VF class in testing.

Class VF

Techniques
Sensitivity (%) Specificity (%) Accuracy (%) F Score (%)

VF Global VT Other Normal Total Total

Ht_TFR_CNN1 (Epochs = 100) 96.44 99.28 94.01 99.74 99.76 98.75 97.83
Ht_TFR_CNN2 (Epochs = 100) 98.16 99.07 91.56 99.74 99.83 98.91 98.61

InceptionV3 (Epochs = 6) 77.28 94.90 98.15 89.72 96.86 91.28 85.18
MobilNet (Epochs = 6) 86.97 99.62 97.33 100 99.80 97.01 92.86
VGGnet (Epochs = 6) 93.34 99.25 92.28 100 99.85 98.14 96.20
AlexNet (Epochs = 6) 95.58 99.34 93.42 100 99.84 98.64 97.42

When comparing the classifiers VGGNet and AlexNet with MobilNet and InceptionV3,
it is evident that the former two yield better results, demonstrating a higher learning
capability with the dataset. Analyzing the values in Tables 8 and 9, when using the
VGGNet classifier for VT, a sensitivity of 90.15%, overall specificity of 99.15%, overall
accuracy of 98.77%, and overall F-Score of 94.43% were obtained. For VF, a sensitivity of
93.34%, overall specificity of 99.25%, overall accuracy of 98.14%, and overall F-Score of
96.20% were achieved. Similarly, using the AlexNet classifier for VT resulted in a sensitivity
of 91.84%, overall specificity of 99.47%, overall accuracy of 98.94%, and overall F-Score of
95.50%. For VF, a sensitivity of 95.58%, an overall specificity of 99.34%, an overall accuracy
of 98.64%, and an overall F-Score of 97.42% were obtained.

On the other hand, the classifiers Ht_TFR_CNN1 and Ht_TFR_CNN2 exhibit similar
behavior for the classes Normal and Others.

For the Normal class, they showed a sensitivity of 99.29%, 99.34%; an overall specificity
of 98.62%, 98.35%; an overall accuracy of 98.91%, 98.89%; and an overall F-Score of 98.95%,
98.84%, respectively. For the Others class, they displayed a sensitivity of 97.74%, 96.98%; an
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overall specificity of 99.62%, 99.68%; an overall accuracy of 99.22%, 99.11%; and an overall
F-Score of 98.67%, 98.31%, respectively. However, the InceptionV3 classifier has a higher
sensitivity of 98.15% for VT and a lower sensitivity of 77.28% for VF compared to the
Ht_TFR_CNN2 classifier, which exhibits a lower sensitivity of 90.45% for VT and a higher
sensitivity of 98.16% for VF. Comparing the results provided by the different algorithms,
there is a significant variation in the sensitivity results for VF and sensitivity results for VT,
primarily due to the morphological similarities between the VT class and the VF class.

Figure 19. Results achieved for the classification of the VT class during testing.

Figure 20. Results achieved for the classification of the VF class during testing.

6. Discussion

The identification of ventricular arrhythmias generally involves a procedure for ex-
tracting and selecting relevant features. In this study, we proposed using the Ht_TFR_CNNi
method with (i=1,2) to extract features that capture information about the shape of the ECG
signal. This combined method of Ht and TFR with CNN aims to condense the relevant
information about the data’s shape, enabling effective detection and discrimination of
shockable VF and VT rhythms, even in the presence of noise and complex signals. The
obtained results shown in Tables 2–9 demonstrate the use of the CNN classifier with input
features obtained from two methods, namely Ht_TFR_CNN1 and TFR_CNN1. The results
indicate that the Ht_TFR_CNN1 and Ht_TFR_CNN2 features yield better performance,
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which is why we compare the Ht_TFR_CNN2 method with other works in the literature.
While we employed the CNN classifier to highlight the enhanced classification outcomes
compared to prior studies, the investigation of alternative classifiers remains an ongoing
avenue that could potentially yield further improvements.

As shown in Table 10, the proposed Ht_TFR_CNN2 method achieves an average
accuracy of 98.91% for multi-class discrimination, effectively distinguishing Normal, Other,
and VT, VF types of ventricular arrhythmia. Additionally, Table 11 presents a two-class
classification approach, demonstrating that the Ht_TFR_CNN2 method achieves an accu-
racy of 99.61% in discriminating shockable (VT or VF) and non-shockable rhythms. These
results indicate that the Ht_TFR_CNN2 method delivers high classification performance.
However, we also provide a comparison with other works in the literature, although it is
challenging due to differences in the source signals used and the specific discrimination
tasks performed. To compare with works focusing on VF discrimination, our work achieved
high classification performance [58] by feeding the complete time–frequency image as input
to different classifiers (e.g., Sen = 92.8% and Spe = 97.0% for VF, and Sen = 91.8% and
Spe = 98.7% for VT, using an Artificial Neural Network Classifier, ANNC), Arafat et al. [66]
achieved (Sens = 80.97%, Spe = 98.51%) for classifying VF episodes utilizing an improved
version of the Threshold Crossing Interval (TCI) algorithm. Roopaei et al. [67] obtained an
Acc = 88.60% utilizing chaotic-based reconstructed phase space features. In [68] attained
Sens=91.9% and Spe =97.1% in detecting VF episodes employing SVM and specific feature-
selection classifiers. Li and Rajagopalan [69] utilized a genetic algorithm and obtained Sens
= 98.40%, Spe = 98.00%, and Acc = 96.30% in discriminating VF episodes. Ibtehaz et al. [70]
achieved the highest results in this group, employing SVM and Empirical Mode Decom-
position (EMD) classifiers (Sens = 99.99%, Spe = 98.40%, and Acc = 99.19%) for VF and
non-VF classification. Acharya et al. [71] detected and classified ventricular arrhythmias
employing a CNN neural network, achieving Sen = 56.44%, Spe = 98.19%, and Acc = 97.88%
for VF. Xia et al. [72] obtained high performance values (Sen = 98.15% and Spe = 96.01%
for VF, and Sen = 96.01% and Spe = 98.15% for VT) using Lempel–Ziv and Empirical Mode
Decomposition (EMD) with selected clean episodes of VT and VF. Mjahad et al. [73]
achieved an accuracy , sensitivity, and specificity values of 98.68%, 92.72%, and 99.53%,
respectively employing TDA. Kaur and Singh [74] used Empirical Mode Decomposition
(EMD) and approximate entropy with selected VF and VT episodes from the MIT-BIH
database, achieving moderate classification performance (Sen = 90.47%, Spe = 91.66%, and
Acc = 91.17%). In [75], the authors proposed a fuzzy similarity-based approximate entropy
approach and obtained high performance ratios (Sen = 97.98% and Spe = 97.03% for VF,
and Sen = 97.03% and Spe = 97.98% for VT). However, a fair comparison must consider
that Xie’s work involved the preselection of clean episodes of VF and VT. Despite the
preselection of ECG episodes in some works, the results of the Ht_TFR_CNN method in
this study outperform the other works in the literature aiming to discriminate between VF
and VT rhythms.
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Table 10. Comparison of proposed CNN architecture for applications in detecting Normal, Other, VT, and VF classes with other techniques.

Class VF VT Other Normal
Data Base

Techniques Sens (%) Spe (%) Acc (%) Sens (%) Spe (%) Acc (%) Sens (%) Spe (%) Acc (%) Sens (%) Spe (%) Acc (%)

This work, Ht_TFR_CNN1 (Epochs = 50) 98.04 98.94 98.77 89.7 99.70 99 97.24 99.41 98.95 89.7 98.57 98.76 MITBIH, AHA
This work, Ht_TFR_CNN1 (Epochs = 100) 96.44 99.28 98.75 92.70 99.53 99.06 97.74 99.62 99.22 99.29 98.62 98.91 MITBIH, AHA
This work, Ht_TFR_CNN2 (Epochs = 100) 98.16 99.07 98.91 90.45 99.73 99.09 96.98 99.68 99.11 99.34 98.35 98.89 MITBIH, AHA
This work, InceptionV3 (Epochs = 6) 77.28 94.9 91.28 98.15 83.55 84.59 88.42 99.81 96.96 77.99 99.65 87.17 MITBIH, AHA
This work, MobilNet (Epochs = 6) 86.97 99.62 97.01 95.53 97.66 97.49 99.64 85.08 88.21 79.42 99.44 88.39 MITBIH, AHA
This work, VGGnet (Epochs = 6) 93.34 99.25 98.14 90.15 99.15 98.77 98.54 97.57 97.39 96.61 98.32 97.39 MITBIH, AHA
This work, AlexNet (Epochs = 6) 95.58 99.34 98.64 91.84 99.47 98.94 95.78 99.57 98.77 99.43 97.29 98.45 MITBIH, AHA
[58] SSVR, TFR 91 97 92.8 98.7 92.3 99.2 96.6 96.3 MITBIH, AHA
[58] BAGG, TFR 95.2 96.4 88.8 99.7 88.6 99.8 96.6 94.1 MITBIH, AHA
[58] I2-RLR and TFR 89.6 96.7 91 98.1 92.5 98.1 94.9 96.4 MITBIH, AHA
[58] ANNC and TFR 92.8 97 91.8 98.7 92.9 99 96.2 96.7 MITBIH, AHA
[66] TCSC algorithm 80.97 98.51 98.14 MITBIH, CUDB
[67] Chaotic based 88.6 MITBIH, CCU
[68] SVM and FS 91.9 97.1 96.8 MITBIH, CUDB
[69] SVM and Genetic algorithm 98.4 98 96.3 CUDB, AHA
[70] SVM and EMD 99.99 98.4 99.19 MITBIH, CUDB
[71] CNN neural network 56.44 98.19 97.88 MITBIH, CUDB
[72] EMD and Lempel-Ziv 98.15 96.01 96.01 98.15 MITBIH, CUDB
[73] TDA 97.07 99.25 98.68 92.72 99.53 99.05 97.43 99.54 99.09 99.05 98.45 98.76 MITBIH, AHA
[73] PDI 84.34 96.77 94.26 82.25 98.53 97.38 92.86 97.15 96.19 93.09 92.14 92.65 MITBIH, AHA
[74] App Entropy and EMD 90.47 91.66 91.17 90.62 91.11 90.8 MITBIH
[75] Approximated entropy 97.98 97.03 97.03 97.98 MITBIH, CUDB
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Table 11. Comparison of proposed CNN architecture for applications in detecting ventricular fibrilla-
tion and tachycardia with other techniques.

Class Shockable (VT+VF) Data Base

Technique Sensitivity (%) Specificity (%) Accuracy (%)

This work, Ht_TFR_CNN1 98.53 99.69 99.39 MITBIH, AHA
This work, Ht_TFR_CNN2 99.23 99.74 99.61 MITBIH, AHA
[73] TDA 99.03 99.67 99.51 MITBIH, AHA
[73] PDI 89.63 96.96 95.12 MITBIH, AHA
[76] CNN 95.32 91.04 93.2 MITDB, CUDB, VFDB
[14] VMD with Random Forest 96.54 97.97 97.23 MITBIH, CUDB
[77] RNN 99.72 MITBIH
[78] CNN and IENN 98.6 98.9 98.8 MITBIH, AFDB
[68] FS and SVM 95 99 98.6 MITBIH, CUDB
[79] Personalized features SVM 95.6 95.5 MITBIH, CUDB, VFDB
[16] C4.5 classifier 90.97 97.86 97.02 MITBIH, CUDB
[69] SVM and bootstrap 98.4 98 98.1 MITBIH, AHA, CUDB
[80] Adaptive variational and boosted CART 97.32 98.95 98.29 MITBIH, CUDB

Table 11 presents a comparison focusing on detecting VT/VF episodes, specifically
shockable and non-shockable rhythms. This set of works primarily targets the implementa-
tion on external defibrillators (AEDs) and implantable cardioverter defibrillators (ICDs),
distinguishing between shockable and non-shockable rhythms (considering both VT and
VF as shockable). Mjahad et al. [73] utilized TDA and obtained Sens = 99.03%, Spe = 99.67%,
and Acc = 99.51% in discriminating VF episodes. Acharya et al. [76] proposed an eleven-
layer convolutional neural network (CNN) for shockable and non-shockable arrhythmia
classification, obtaining Sen = 95.32%, Spe = 91.04%, and Acc = 93.20%. Tripathy et al. [14]
proposed Variational Mode Decomposition (VMD) and the Random Forest (RF) classifier,
achieving Sen = 96.54%, Spe = 97.97%, and Acc = 97.23%. Buscema et al. [77] obtained
Acc = 99.72% utilizing RNN. Kumar et al. [78] obtained Acc =98.80%, Sen = 98.60%, and
Spe =98.90% employing CNN and IENN. Alonso-Atienza et al. [68] also obtained accuracy,
sensitivity, and specificity values of 98.6%, 95.0%, and 99.0%, respectively, employing fea-
ture selection and an SVM classifier. Cheng and Dong. [79] achieved an accuracy of 95.50%
employing a personalized features SVM. Mohanty et al. [16] detected and classified ven-
tricular arrhythmias employing a cubic Support Vector Machine (SVM) and C4.5 classifiers,
achieving Sen = 90.97%, Spe = 97.86%, and Acc = 97.02%. Li et al. [69] attained Sen = 98.4%,
Spe = 98.0%, and Acc = 98.1% employing a genetic algorithm (GA) for feature selection
and an SVM classifier. Xu et al. [80] attained high performance values (and Acc = 98.29%,
Sen = 97.32% and Spe = 98.95%) utilizing adaptive variational and boosted CART.

The results of the Ht_TFR_CNN2 proposal in this work outperform those of other
works in this group as well, achieving an accuracy of 99.61%, a sensitivity of 99.74%, and
a specificity of 99.61%. Therefore, the benefits of using the Ht_TFR_CNN2 method in
the classification procedure are evident. Ht_TFR_CNN2 can be successfully employed in
the detection and classification of ventricular arrhythmia, as well as in the classification
of shockable episodes. This illustrates that the fusion of CNN and TRF yields a resilient
signal characterization, implying a potential and encouraging utilization of these attributes
in Automated External Defibrillation (AED) and Implantable Cardioverter Defibrillation
(ICD) treatments.

7. Application in a Real Clinical Setting

In real clinical settings, Artificial Intelligence (AI), specifically convolutional neu-
ral networks (CNNs), offers significant potential for enhancing patient care by detecting
ventricular fibrillation (VF) in individuals at risk of cardiac arrest [81]. This approach
facilitates swift VF identification through the rapid analysis of electrocardiograms (ECG) in
emergency departments. AI models trained on diverse VF patterns can improve accuracy
compared to manual interpretation by clinicians. AI-powered monitoring systems can
continuously analyze ECG signals in critically ill patients, automatically alerting healthcare
providers for VF detection, which is particularly valuable in intensive care units. Moreover,
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AI-assisted VF detection streamlines healthcare efficiency by helping prioritize patients
based on urgency. Despite this promise, integrating AI-based VF detection requires over-
coming challenges such as rigorous validation and regulatory approvals to ensure safety.
Collaboration among clinicians, data scientists, and regulatory bodies is crucial for success-
ful and safe AI implementation in healthcare. The aforementioned factors contribute to the
efficacy of both Automated External Defibrillators (AEDs) and Implantable Cardioverter-
Defibrillators (ICDs). In [82], a ’genetic’ programming (GP) model is employed to predict
favorable defibrillation outcomes for patients with ventricular fibrillation (VF). In [82], the
efficacy of a programmable automatic external cardioverter–defibrillator (AECD) is inves-
tigated within in-hospital cardiac arrest scenarios involving ventricular fibrillation (VF)
and ventricular tachycardia (VT). Continuous research is necessary to refine AI algorithms,
as demonstrated in this article, where the Pseudo Wigner–Ville (PWV) exhibited effective
real-time classification without extensive computational time.

8. Conclusions

The accurate interpretation and differentiation of ventricular arrhythmias, such as VF
and VT, are crucial for patient safety. In this paper, we introduced an innovative approach
to feature extraction, seamlessly integrating RTF and CNN techniques, for VF detection.
We observed a sensitivity rate of 98.16%, a specificity of 99.07%, and an accuracy of 98.91%;
for ventricular tachycardia (VT), the sensitivity was noted at 90.45%, the specificity was
99.73%, and the accuracy was 99.09%; for normal sinus rhythms, the sensitivity was 99.34%,
the specificity was 98.35%, and the accuracy was 98.89%; finally, for other rhythms, the
sensitivity was 96.98%, the specificity was 99.68%, and the accuracy was 99.11%. Moreover,
this study showcases an impressively high accuracy of 99.61%, with a sensitivity of 99.23%
and a specificity of 99.74%, effectively discerning between shockable (VT/VF) and non-
shockable rhythms.

The application of this innovative approach yields slightly or significantly improved
results compared to previous comparable works using the Pseudo-Wigner–Ville t-f repre-
sentation and a diverse range of CNNs. This indicates that the benefits of our methodology
are independent of the classifier used. Additionally, our proposed methodology provides
real-time detection of VF with low computational time, effectively differentiating it from
other cardiac pathologies. This significantly enhances the accuracy of diagnosing patients
experiencing these arrhythmias.

It is worth noting that these powerful results were achieved without the need for
the preselection of episodes. Based on our findings, we conclude that this technique can
be successfully applied to both the detection and classification of ventricular arrhythmia,
including shockable rhythms. Moreover, it offers valuable features that facilitate the
classification task. Despite the higher computational complexity during training, this
technique has the potential to yield superior results not only in the field of ventricular
arrhythmia detection but also in various bioengineering applications that currently involve
a stage of feature selection and extraction prior to classification.
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